Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Syst Biol ; 73(3): 495-505, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38733598

RESUMEN

Asymmetrical rates of cladogenesis and extinction abound in the tree of life, resulting in numerous minute clades that are dwarfed by larger sister groups. Such taxa are commonly regarded as phylogenetic relicts or "living fossils" when they exhibit an ancient first appearance in the fossil record and prolonged external morphological stasis, particularly in comparison to their more diversified sister groups. Due to their special status, various phylogenetic relicts tend to be well-studied and prioritized for conservation. A notable exception to this trend is found within Amblypygi ("whip spiders"), a visually striking order of functionally hexapodous arachnids that are notable for their antenniform first walking leg pair (the eponymous "whips"). Paleoamblypygi, the putative sister group to the remaining Amblypygi, is known from Late Carboniferous and Eocene deposits but is survived by a single living species, Paracharon caecusHansen (1921), that was last collected in 1899. Due to the absence of genomic sequence-grade tissue for this vital taxon, there is no global molecular phylogeny for Amblypygi to date, nor a fossil-calibrated estimation of divergences within the group. Here, we report a previously unknown species of Paleoamblypygi from a cave site in Colombia. Capitalizing upon this discovery, we generated the first molecular phylogeny of Amblypygi, integrating ultraconserved element sequencing with legacy Sanger datasets and including described extant genera. To quantify the impact of sampling Paleoamblypygi on divergence time estimation, we performed in silico experiments with pruning of Paracharon. We demonstrate that the omission of relicts has a significant impact on the accuracy of node dating approaches that outweighs the impact of excluding ingroup fossils, which bears upon the ancestral range reconstruction for the group. Our results underscore the imperative for biodiversity discovery efforts in elucidating the phylogenetic relationships of "dark taxa," and especially phylogenetic relicts in tropical and subtropical habitats. The lack of reciprocal monophyly for Charontidae and Charinidae leads us to subsume them into one family, Charontidae, new synonymy.


Asunto(s)
Fósiles , Filogenia , Animales , Arañas/clasificación , Arañas/genética
2.
Ecol Evol ; 12(2): e8606, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35228861

RESUMEN

Copepods of the zooplankton genus Calanus play a key role in marine ecosystems in the northern seas. Although being among the most studied organisms on Earth, due to their ecological importance, genomic resources for Calanus spp. remain scarce, mostly due to their large genome size (from 6 to 12 Gbps). As an alternative to whole-genome sequencing in Calanus spp., we sequenced and de novo assembled transcriptomes of five Calanus species: Calanus glacialis, C. hyperboreus, C. marshallae, C. pacificus, and C. helgolandicus. Functional assignment of protein families based on clusters of orthologous genes (COG) and gene ontology (GO) annotations showed analogous patterns of protein functions across species. Phylogenetic analyses using maximum likelihood (ML) of 191 protein-coding genes mined from RNA-seq data fully resolved evolutionary relationships among seven Calanus species investigated (five species sequenced for this study and two species with published datasets), with gene and site concordance factors showing that 109 out of 191 protein-coding genes support a separation between three groups: the C. finmarchicus group (including C. finmarchicus, C. glacialis, and C. marshallae), the C. helgolandicus group (including C. helgolandicus, C. sinicus, and C. pacificus) and the monophyletic C. hyperboreus group. The tree topology obtained in ML analyses was similar to a previously proposed phylogeny based on morphological criteria and cleared certain ambiguities from past studies on evolutionary relationships among Calanus species.

3.
Proc Biol Sci ; 287(1940): 20202102, 2020 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-33290680

RESUMEN

Genome-scale data have greatly facilitated the resolution of recalcitrant nodes that Sanger-based datasets have been unable to resolve. However, phylogenomic studies continue to use traditional methods such as bootstrapping to estimate branch support; and high bootstrap values are still interpreted as providing strong support for the correct topology. Furthermore, relatively little attention has been given to assessing discordances between gene and species trees, and the underlying processes that produce phylogenetic conflict. We generated novel genomic datasets to characterize and determine the causes of discordance in Old World treefrogs (Family: Rhacophoridae)-a group that is fraught with conflicting and poorly supported topologies among major clades. Additionally, a suite of data filtering strategies and analytical methods were applied to assess their impact on phylogenetic inference. We showed that incomplete lineage sorting was detected at all nodes that exhibited high levels of discordance. Those nodes were also associated with extremely short internal branches. We also clearly demonstrate that bootstrap values do not reflect uncertainty or confidence for the correct topology and, hence, should not be used as a measure of branch support in phylogenomic datasets. Overall, we showed that phylogenetic discordances in Old World treefrogs resulted from incomplete lineage sorting and that species tree inference can be improved using a multi-faceted, total-evidence approach, which uses the most amount of data and considers results from different analytical methods and datasets.


Asunto(s)
Anuros/fisiología , Filogenia , Animales , Genómica
4.
Mol Phylogenet Evol ; 151: 106899, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32590046

RESUMEN

Using FrogCap, a recently-developed sequence-capture protocol, we obtained >12,000 highly informative exons, introns, and ultraconserved elements (UCEs), which we used to illustrate variation in evolutionary histories of these classes of markers, and to resolve long-standing systematic problems in Southeast Asian Golden-backed frogs of the genus-complex Hylarana. We also performed a comprehensive suite of analyses to assess the relative performance of different genetic markers, data filtering strategies, tree inference methods, and different measures of branch support. To reduce gene tree estimation error, we filtered the data using different thresholds of taxon completeness (missing data) and parsimony informative sites (PIS). We then estimated species trees using concatenated datasets and Maximum Likelihood (IQ-TREE) in addition to summary (ASTRAL-III), distance-based (ASTRID), and site-based (SVDQuartets) multispecies coalescent methods. Topological congruence and branch support were examined using traditional bootstrap, local posterior probabilities, gene concordance factors, quartet frequencies, and quartet scores. Our results did not yield a single concordant topology. Instead, introns, exons, and UCEs clearly possessed different phylogenetic signals, resulting in conflicting, yet strongly-supported phylogenetic estimates. However, a combined analysis comprising the most informative introns, exons, and UCEs converged on a similar topology across all analyses, with the exception of SVDQuartets. Bootstrap values were consistently high despite high levels of incongruence and high proportions of gene trees supporting conflicting topologies. Although low bootstrap values did indicate low heuristic support, high bootstrap support did not necessarily reflect congruence or support for the correct topology. This study reiterates findings of some previous studies, which demonstrated that traditional bootstrap values can produce positively misleading measures of support in large phylogenomic datasets. We also showed a remarkably strong positive relationship between branch length and topological congruence across all datasets, implying that very short internodes remain a challenge to resolve, even with orders of magnitude more data than ever before. Overall, our results demonstrate that more data from unfiltered or combined datasets produced superior results. Although data filtering reduced gene tree incongruence, decreased amounts of data also biased phylogenetic estimation. A point of diminishing returns was evident, at which higher congruence (from more stringent filtering) at the expense of amount of data led to topological error as assessed by comparison to more complete datasets across different genomic markers. Additionally, we showed that applying a parameter-rich model to a partitioned analysis of concatenated data produces better results compared to unpartitioned, or even partitioned analysis using model selection. Despite some lingering uncertainties, a combined analysis of our genomic data and sequences supplemented from GenBank (on the basis of a few gene regions) revealed highly supported novel systematic arrangements. Based on these new findings, we transfer Amnirana nicobariensis into the genus Indosylvirana; and I. milleti and Hylarana celebensis to the genus Papurana. We also provisionally place H. attigua in the genus Papurana pending verification from positively identified (voucher substantiated) samples.


Asunto(s)
Anuros/clasificación , Anuros/genética , Secuencia Conservada/genética , Bases de Datos Genéticas , Exones/genética , Intrones/genética , Filogenia , Animales , Funciones de Verosimilitud , ARN Ribosómico 16S/genética , Especificidad de la Especie
5.
Mol Biol Evol ; 37(9): 2727-2733, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32365179

RESUMEN

We implement two measures for quantifying genealogical concordance in phylogenomic data sets: the gene concordance factor (gCF) and the novel site concordance factor (sCF). For every branch of a reference tree, gCF is defined as the percentage of "decisive" gene trees containing that branch. This measure is already in wide usage, but here we introduce a package that calculates it while accounting for variable taxon coverage among gene trees. sCF is a new measure defined as the percentage of decisive sites supporting a branch in the reference tree. gCF and sCF complement classical measures of branch support in phylogenetics by providing a full description of underlying disagreement among loci and sites. An easy to use implementation and tutorial is freely available in the IQ-TREE software package (http://www.iqtree.org/doc/Concordance-Factor, last accessed May 13, 2020).


Asunto(s)
Conjuntos de Datos como Asunto , Técnicas Genéticas , Filogenia , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA