Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Comput Chem ; 39(26): 2153-2162, 2018 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-30239020

RESUMEN

The computational cost of quantum chemical methods grows rapidly with increasing level of theory and basis set size. At increasing costs, higher accuracies can be reached, forcing a compromise between cost and accuracy for most molecular systems. Heats of reaction, however, are mostly determined by a subset of atoms that experience significant bonding and/or electronic changes. To exploit this fact, the Stepwise Basis Builder (SBB) algorithm selectively adds basis functions to reactive atoms and maintains small basis sets on spectator atoms. This article introduces the SBB algorithm and how it chooses a basis for each atom, predicts calculation errors, and uses these predicted errors to reach target levels of accuracy. Benchmarks show SBB heats of reaction and activation barriers converge to values consistent with higher-quality calculations using a greatly reduced number of basis functions. © 2018 Wiley Periodicals, Inc.

2.
Beilstein J Nanotechnol ; 2: 427-47, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22003450

RESUMEN

We present a theoretical framework for the computation of anharmonic vibrational frequencies for large systems, with a particular focus on determining adsorbate frequencies from first principles. We give a detailed account of our local implementation of the vibrational self-consistent field approach and its correlation corrections. We show that our approach is both robust, accurate and can be easily deployed on computational grids in order to provide an efficient computational tool. We also present results on the vibrational spectrum of hydrogen fluoride on pyrene, on the thiophene molecule in the gas phase, and on small neutral gold clusters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA