Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 241
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39283714

RESUMEN

Idiopathic inflammatory myopathies (IIM) are rare, acquired muscle diseases; their diagnosis of is based on clinical, serological, and histological criteria. MHC-I-positive immunostaining, although non-specific, is used as a marker for IIM diagnosis; however, the significance of major histocompatibility complex (MHC)-II immunostaining in IIM remains debated. We investigated patterns of MHC-II immunostaining in myofibers and capillaries in muscle biopsies from 103 patients with dermatomyositis ([DM], n = 31), inclusion body myositis ([IBM], n = 24), anti-synthetase syndrome ([ASyS], n = 10), immune-mediated necrotizing myopathy ([IMNM], n = 18), or overlap myositis ([OM], n = 20). MHC-II immunostaining of myofibers was abnormal in 63/103 of patients (61%) but the patterns differed according to the IIM subgroup. They were diffuse in IBM (96%), negative in IMNM (83%), perifascicular in ASyS (70%), negative (61%) or perifascicular (32%) in DM, and either clustered (40%), perifascicular (30%), or diffuse heterogeneous (15%) in OM. Capillary MHC-II immunostaining also identified quantitative (capillary dropout, n = 47/88, 53%) and qualitative abnormalities, that is, architectural abnormalities, including dilated and leaky capillaries, (n = 79/98, 81%) in all IIM subgroups. Thus, MHC-II myofiber expression patterns allow distinguishing among IIM subgroups. We suggest the addition of MHC-II immunostaining to routine histological panels for IIM diagnosis.

2.
Genes Dev ; 38(13-14): 655-674, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39111825

RESUMEN

Alternative cleavage and polyadenylation (APA) often results in production of mRNA isoforms with either longer or shorter 3' UTRs from the same genetic locus, potentially impacting mRNA translation, localization, and stability. Developmentally regulated APA can thus make major contributions to cell type-specific gene expression programs as cells differentiate. During Drosophila spermatogenesis, ∼500 genes undergo APA when proliferating spermatogonia differentiate into spermatocytes, producing transcripts with shortened 3' UTRs, leading to profound stage-specific changes in the proteins expressed. The molecular mechanisms that specify usage of upstream polyadenylation sites in spermatocytes are thus key to understanding the changes in cell state. Here, we show that upregulation of PCF11 and Cbc, the two components of cleavage factor II (CFII), orchestrates APA during Drosophila spermatogenesis. Knockdown of PCF11 or cbc in spermatocytes caused dysregulation of APA, with many transcripts normally cleaved at a proximal site in spermatocytes now cleaved at their distal site, as in spermatogonia. Forced overexpression of CFII components in spermatogonia switched cleavage of some transcripts to the proximal site normally used in spermatocytes. Our findings reveal a developmental mechanism where changes in expression of specific cleavage factors can direct cell type-specific APA at selected genes.


Asunto(s)
Linaje de la Célula , Poliadenilación , Espermatocitos , Espermatogénesis , Animales , Poliadenilación/genética , Masculino , Espermatogénesis/genética , Espermatocitos/metabolismo , Espermatocitos/citología , Linaje de la Célula/genética , Regulación del Desarrollo de la Expresión Génica/genética , Células Madre Adultas/metabolismo , Células Madre Adultas/citología , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Espermatogonias/citología , Espermatogonias/metabolismo , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Factores de Escisión y Poliadenilación de ARNm/genética
3.
Methods Mol Biol ; 2841: 19-36, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39115762

RESUMEN

Newly synthesized proteins are delivered to the apoplast via conventional or unconventional protein secretion in eukaryotes. In plants, proteins are secreted to perform various biological functions. Conserved from yeast to mammals, both conventional and unconventional protein secretion pathways have been revealed in plants. In the conventional protein secretion pathway, secretory proteins with a signal peptide are translocated into the endoplasmic reticulum and transported to the extracellular region via the endomembrane system. On the contrary, unconventional protein secretion pathways have been demonstrated to mediate the secretion of the leaderless secretory proteins. In this chapter, we summarize the updated findings and provide a comprehensive overview of protein secretion pathways in plants.


Asunto(s)
Retículo Endoplásmico , Células Vegetales , Proteínas de Plantas , Transporte de Proteínas , Vías Secretoras , Células Vegetales/metabolismo , Proteínas de Plantas/metabolismo , Retículo Endoplásmico/metabolismo , Señales de Clasificación de Proteína , Plantas/metabolismo
4.
Animal Model Exp Med ; 7(4): 584-590, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38962826

RESUMEN

BACKGROUND: Pig organ xenotransplantation is a potential solution for the severe organ shortage in clinic, while immunogenic genes need to be eliminated to improve the immune compatibility between humans and pigs. Current knockout strategies are mainly aimed at the genes causing hyperacute immune rejection (HAR) that occurs in the first few hours while adaptive immune reactions orchestrated by CD4 T cell thereafter also cause graft failure, in which process the MHC II molecule plays critical roles. METHODS: Thus, we generate a 4-gene (GGTA1, CMAH, ß4GalNT2, and CIITA) knockout pig by CRISPR/Cas9 and somatic cell nuclear transfer to compromise HAR and CD4 T cell reactions simultaneously. RESULTS: We successfully obtained 4KO piglets with deficiency in all alleles of genes, and at cellular and tissue levels. Additionally, the safety of our animals after gene editing was verified by using whole-genome sequencing and karyotyping. Piglets have survived for more than one year in the barrier, and also survived for more than 3 months in the conventional environment, suggesting that the piglets without MHC II can be raised in the barrier and then gradually mated in the conventional environment. CONCLUSIONS: 4KO piglets have lower immunogenicity, are safe in genomic level, and are easier to breed than the model with both MHC I and II deletion.


Asunto(s)
Rechazo de Injerto , N-Acetilgalactosaminiltransferasas , Trasplante Heterólogo , Animales , Humanos , Porcinos , N-Acetilgalactosaminiltransferasas/genética , Rechazo de Injerto/genética , Rechazo de Injerto/inmunología , Galactosiltransferasas/genética , Proteínas Nucleares/genética , Oxigenasas de Función Mixta/genética , Animales Modificados Genéticamente , Técnicas de Inactivación de Genes , Sistemas CRISPR-Cas , Edición Génica , Transactivadores
5.
Chembiochem ; : e202400401, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38981854

RESUMEN

A molecular switch based on the metastable radical anion derived from a substituted heteroaryl quinone is described. Pyrrolyl quinone thiocyanate (PQ 9) showed an interaction with the fluoride anion that was visible to the naked eye and quantified by UV/vis and 1H and 13 C NMR. The metastable quinoid species formed by the interaction with F- ("ON" state) showed a molecular switching effect autocontrolled by the presence of ascorbate ("OFF" state) and back to the "ON" state by an autooxidation process, measured by visible and UV/vis spectroscopy. Due to its out-of-equilibrium properties and the exchange of matter and energy, a dissipative structural behaviour is proposed. Considering its similarity to the mechanism of coenzyme Q in oxidative phosphophorylation, PQ 9 was evaluated on Saccharomyces cerevisiae mitochondrial function for inhibition of complexes II, III and IV, reactive oxygen species (ROS) production, catalase activity and lipid peroxidation. The results showed that PQ 9 inhibited complex III activity as well as the activity of all electron transport chain (ETC) complexes. In addition, PQ 9 reduced ROS production and catalase activity in yeast. The results suggest that PQ 9 may have potential applications as a new microbicidal compound by inducing ETC dysfunction.

6.
Biomedicines ; 12(6)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38927501

RESUMEN

Amyotrophic lateral sclerosis is a severe neurodegenerative disease whose exact cause is still unclear. Currently, research attention is turning to the mitochondrion as a critical organelle of energy metabolism. Current knowledge is sufficient to confirm the involvement of the mitochondria in the pathophysiology of the disease, since the mitochondria are involved in many processes in the cell; however, the exact mechanism of involvement is still unclear. We used peripheral blood mononuclear cells isolated from whole fresh blood from patients with amyotrophic lateral sclerosis for measurement and matched an age- and sex-matched set of healthy subjects. The group of patients consisted of patients examined and diagnosed at the neurological clinic of the University Hospital Martin. The set of controls consisted of healthy individuals who were actively searched, and controls were selected on the basis of age and sex. The group consisted of 26 patients with sporadic forms of ALS (13 women, 13 men), diagnosed based on the definitive criteria of El Escorial. The average age of patients was 54 years, and the average age of healthy controls was 56 years. We used a high-resolution O2K respirometry method, Oxygraph-2k, to measure mitochondrial respiration. Basal respiration was lower in patients by 29.48%, pyruvate-stimulated respiration (respiratory chain complex I) was lower by 29.26%, and maximal respiratory capacity was lower by 28.15%. The decrease in succinate-stimulated respiration (respiratory chain complex II) was 26.91%. Our data confirm changes in mitochondrial respiration in ALS patients, manifested by the reduced function of complex I and complex II of the respiratory chain. These defects are severe enough to confirm this disease's hypothesized mitochondrial damage. Therefore, research interest in the future should be directed towards a deeper understanding of the involvement of mitochondria and respiratory complexes in the pathophysiology of the disease. This understanding could develop new biomarkers in diagnostics and subsequent therapeutic interventions.

7.
Pharmaceuticals (Basel) ; 17(6)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38931345

RESUMEN

Immunotherapy has shown promising clinical results in clear cell renal cell carcinoma (ccRCC), but low clinical target response rates due to dysfunction of the major histocompatibility complex (MHC) and an inhibitory tumor immune microenvironment (TIME) have largely limited the associated clinical benefits. In the present study, we explored the feasibility of enhancing tumor-specific-MHC-II-HLA-DRA expression, counteracting the TIME's suppressive effects, thereby improving the sensitivity of immune checkpoint inhibitor (ICI) therapy from the standpoint of cuproptosis. Immunohistochemical staining and in vitro experiments validated the expression of HLA-DRA in ccRCC and its positive impact on ICI therapy. Subsequently, we observed that cuproptosis upregulated HLA-DRA expression in a dose-dependent manner, further confirming the link between cuproptosis and HLA-DRA. In vivo experiments showed that cuproptosis increased the sensitivity to ICI treatment, and implementing cuproptosis alongside anti-PD-1 treatment curtailed tumor growth. Mechanistically, cuproptosis upregulates HLA-DRA expression at the transcriptional level in a dose-dependent manner by inducing the production of reactive oxygen species; high levels of HLA-DRA promote the expression of chemokines CCL5, CXCL9, and CXCL10 in the TIME, inhibiting the development of a pro-tumor microenvironment by promoting the infiltration of CD4+T and CD8+T cells, thereby synergizing ICI therapy and exerting anti-tumor effects. Taken together, this work highlights the role of cuproptosis in mediating TIME remodeling and synergistic immunotherapy, providing new evidence that cuproptosis can evoke effective anti-tumor immune responses.

8.
Cell Rep ; 43(5): 114237, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38753484

RESUMEN

Cardiac dysfunction, an early complication of endotoxemia, is the major cause of death in intensive care units. No specific therapy is available at present for this cardiac dysfunction. Here, we show that the N-terminal gasdermin D (GSDMD-N) initiates mitochondrial apoptotic pore and cardiac dysfunction by directly interacting with cardiolipin oxidized by complex II-generated reactive oxygen species (ROS) during endotoxemia. Caspase-4/11 initiates GSDMD-N pores that are subsequently amplified by the upregulation and activation of NLRP3 inflammation through further generation of ROS. GSDMD-N pores form prior to BAX and VDAC1 apoptotic pores and further incorporate into BAX and VDAC1 oligomers within mitochondria membranes to exacerbate the apoptotic process. Our findings identify oxidized cardiolipin as the definitive target of GSDMD-N in mitochondria of cardiomyocytes during endotoxin-induced myocardial dysfunction (EIMD), and modulation of cardiolipin oxidation could be a therapeutic target early in the disease process to prevent EIMD.


Asunto(s)
Cardiolipinas , Endotoxemia , Péptidos y Proteínas de Señalización Intracelular , Miocitos Cardíacos , Oxidación-Reducción , Proteínas de Unión a Fosfato , Especies Reactivas de Oxígeno , Cardiolipinas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Endotoxemia/metabolismo , Endotoxemia/patología , Proteínas de Unión a Fosfato/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Ratones , Humanos , Ratones Endogámicos C57BL , Masculino , Apoptosis , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Mitocondrias/metabolismo , Gasderminas
9.
Basic Res Cardiol ; 119(4): 673-689, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38724619

RESUMEN

Succinate accumulates during myocardial ischemia and is rapidly oxidized during reperfusion, leading to reactive oxygen species (ROS) production through reverse electron transfer (RET) from mitochondrial complex II to complex I, and favoring cell death. Given that connexin 43 (Cx43) modulates mitochondrial ROS production, we investigated whether Cx43 influences RET using inducible knock-out Cx43Cre-ER(T)/fl mice. Oxygen consumption, ROS production, membrane potential and coenzyme Q (CoQ) pool were analyzed in subsarcolemmal (SSM, expressing Cx43) and interfibrillar (IFM) cardiac mitochondria isolated from wild-type Cx43fl/fl mice and Cx43Cre-ER(T)/fl knock-out animals treated with 4-hydroxytamoxifen (4OHT). In addition, infarct size was assessed in isolated hearts from these animals submitted to ischemia-reperfusion (IR), and treated or not with malonate, a complex II inhibitor attenuating RET. Succinate-dependent ROS production and RET were significantly lower in SSM, but not IFM, from Cx43-deficient animals. Mitochondrial membrane potential, a RET driver, was similar between groups, whereas CoQ pool (2.165 ± 0.338 vs. 4.18 ± 0.55 nmol/mg protein, p < 0.05) and its reduction state were significantly lower in Cx43-deficient animals. Isolated hearts from Cx43Cre-ER(T)/fl mice treated with 4OHT had a smaller infarct size after IR compared to Cx43fl/fl, despite similar concentration of succinate at the end of ischemia, and no additional protection by malonate. Cx43 deficiency attenuates ROS production by RET in SSM, but not IFM, and was associated with a decrease in CoQ levels and a change in its redox state. These results may partially explain the reduced infarct size observed in these animals and their lack of protection by malonate.


Asunto(s)
Conexina 43 , Ratones Noqueados , Mitocondrias Cardíacas , Especies Reactivas de Oxígeno , Ubiquinona , Animales , Ubiquinona/análogos & derivados , Ubiquinona/farmacología , Ubiquinona/metabolismo , Ubiquinona/deficiencia , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Mitocondrias Cardíacas/efectos de los fármacos , Conexina 43/metabolismo , Conexina 43/genética , Especies Reactivas de Oxígeno/metabolismo , Ratones , Transporte de Electrón/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/genética , Masculino
10.
Chin Med ; 19(1): 68, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38741130

RESUMEN

BACKGROUND: Myocarditis refers to an autoimmune inflammatory response of the myocardium with characterization of self-reactive CD4+ T cell activation, which lacks effective treatment and has a poor prognosis. Acacetin is a natural flavonoid product that has been reported to have anti-inflammatory effects. However, acacetin has not been investigated in myocarditis. METHODS: Oral acacetin treatment was administered in an experimental autoimmune myocarditis model established with myosin heavy chain-alpha peptide. Echocardiography, pathological staining, and RT-qPCR were used to detect cardiac function, myocardial injury, and inflammation levels. Flow cytometry was utilized to detect the effect of acacetin on CD4+ T cell function. RNA-seq, molecular docking, and microscale thermophoresis (MST) were employed to investigate potential mechanisms. Seahorse analysis, mitoSOX, JC-1, and mitotracker were utilized to detect the effect of acacetin on mitochondrial function. RESULTS: Acacetin attenuated cardiac injury and fibrosis as well as heart dysfunction, and reduced cardiac inflammatory cytokines and ratio of effector CD4+ T and Th17 cells. Acacetin inhibited CD4+ T cell activation, proliferation, and Th17 cell differentiation. Mechanistically, the effects of acacetin were related to reducing mitochondrial complex II activity thereby inhibiting mitochondrial respiration and mitochondrial reactive oxygen species in CD4+ T cells. CONCLUSION: Acacetin may be a valuable therapeutic drug in treating CD4+ T cell-mediated myocarditis.

11.
Open Med (Wars) ; 19(1): 20240955, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38799252

RESUMEN

Immune thrombocytopenia (ITP) is an autoimmune disease characterized by a low platelet (PLT) count and a high risk of bleeding, the clinical treatment for which still needs to be upgraded. Based on the critical role of human leukocyte antigen class II heterodimer ß5 (HLA-DRB5) in immune system, we herein investigated its effect on ITP. ITP murine models were established by the injection of guinea pig anti-mouse platelet serum (GP-APS), and the PLT of mouse peripheral blood was counted during the modeling. Quantitative real-time reverse transcription polymerase chain reaction, western blot and immunofluorescence assay was performed to quantify expressions of HLA-DRB5, major histocompatibility complex II (MHC-II) and co-stimulatory molecules (CD80, CD86). Flow cytometry was conducted to analyze the percentage of CD8+ T cells. As a result, the PLT count was decreased in mouse peripheral blood. Expressions of HLA-DRB5, MHC-II and co-stimulatory molecules, as well as the percentage of CD8+ T cells were elevated in peripheral blood of ITP mice. HLA-DRB5 knockdown mitigated ITP by increasing peripheral PLT level, downregulating expressions of MHC-II and co-stimulatory molecules and inactivating CD8+ T cells. Collectively, the downregulation of HLA-DRB5 restores the peripheral PLT count in ITP mice by reducing MHC-II-mediated antigen presentation of macrophages to inhibit the activation of CD8+ T cells.

12.
BMC Cancer ; 24(1): 445, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600469

RESUMEN

BACKGROUND: Proprotein convertase subtilisin/kexin type 9 (PCSK9), the last member of the proprotein convertase family, functions as a classic regulator of low-density lipoprotein (LDL) by interacting with low-density lipoprotein receptor (LDLR). Recent studies have shown that PCSK9 can affect the occurrence and development of tumors and can be used as a novel therapeutic target. However, a comprehensive pan-cancer analysis of PCSK9 has yet to be conducted. METHODS: The potential oncogenic effects of PCSK9 in 33 types of tumors were explored based on the datasets of The Cancer Genome Atlas (TCGA) dataset. In addition, the immune regulatory role of PCSK9 inhibition was evaluated via in vitro cell coculture and the tumor-bearing mouse model. Finally, the antitumor efficacy of targeted PCSK9 combined with OVA-II vaccines was verified. RESULTS: Our results indicated that PCSK9 was highly expressed in most tumor types and was significantly correlated with late disease stage and poor prognosis. Additionally, PCSK9 may regulate the tumor immune matrix score, immune cell infiltration, immune checkpoint expression, and major histocompatibility complex expression. Notably, we first found that dendritic cell (DC) infiltration and major histocompatibility complex-II (MHC-II) expression could be upregulated by PCSK9 inhibition and improve CD8+ T cell activation in the tumor immune microenvironment, thereby achieving potent tumor control. Combining PCSK9 inhibitors could enhance the efficacies of OVA-II tumor vaccine monotherapy. CONCLUSIONS: Conclusively, our pan-cancer analysis provided a more comprehensive understanding of the oncogenic and immunoregulatory roles of PCSK9 and demonstrated that targeting PCSK9 could increase the efficacy of long peptide vaccines by upregulating DC infiltration and MHC-II expression on the surface of tumor cells. This study reveals the critical oncogenic and immunoregulatory roles of PCSK9 in various tumors and shows the promise of PCSK9 as a potent immunotherapy target.


Asunto(s)
Genes MHC Clase II , Inmunoterapia , Neoplasias , Proproteína Convertasa 9 , Proproteína Convertasas , Animales , Ratones , Antígenos de Histocompatibilidad , Lipoproteínas LDL , Neoplasias/genética , Neoplasias/terapia , Proproteína Convertasa 9/metabolismo , Proproteína Convertasas/antagonistas & inhibidores , Receptores de LDL/genética , Microambiente Tumoral
13.
bioRxiv ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38562704

RESUMEN

Alternative Cleavage and Polyadenylation (APA) often results in production of mRNA isoforms with either longer or shorter 3'UTRs from the same genetic locus, potentially impacting mRNA translation, localization and stability. Developmentally regulated APA can thus make major contributions to cell-type-specific gene expression programs as cells differentiate. During Drosophila spermatogenesis, approximately 500 genes undergo APA when proliferating spermatogonia differentiate into spermatocytes, producing transcripts with shortened 3' UTRs, leading to profound stage-specific changes in the proteins expressed. The molecular mechanisms that specify usage of upstream polyadenylation sites in spermatocytes are thus key to understanding the changes in cell state. Here, we show that upregulation of PCF11 and Cbc, the two components of Cleavage Factor II (CFII), orchestrates APA during Drosophila spermatogenesis. Knock down of PCF11 or cbc in spermatocytes caused dysregulation of APA, with many transcripts normally cleaved at a proximal site in spermatocytes now cleaved at their distal site, as in spermatogonia. Forced overexpression of CFII components in spermatogonia switched cleavage of some transcripts to the proximal site normally used in spermatocytes. Our findings reveal a developmental mechanism where changes in expression of specific cleavage factors can direct cell-type-specific APA at selected genes.

14.
Insect Biochem Mol Biol ; 170: 104127, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38657708

RESUMEN

Mitochondrial electron transfer inhibitors at complex II (METI-II), also referred to as succinate dehydrogenase inhibitors (SDHI), represent a recently developed class of acaricides encompassing cyflumetofen, cyenopyrafen, pyflubumide and cyetpyrafen. Despite their novelty, resistance has already developed in the target pest, Tetranychus urticae. In this study a new mutation, H146Q in a highly conserved region of subunit B of complex II, was identified in a T. urticae population resistant to all METI-IIs. In contrast to previously described mutations, H146Q is located outside the ubiquinone binding site of complex II. Marker-assisted backcrossing of this mutation in a susceptible genetic background validated its association with resistance to cyflumetofen and pyflubumide, but not cyenopyrafen or cyetpyrafen. Biochemical assays and the construction of inhibition curves with isolated mitochondria corroborated this selectivity. In addition, phenotypic effects of H146Q, together with the previously described H258L, were further examined via CRISPR/Cas9 gene editing. Although both mutations were successfully introduced into a susceptible T. urticae population, the H146Q gene editing event was only recovered in individuals already harboring the I260V mutation, known to confer resistance towards cyflumetofen. The combination of H146Q + I260V conferred high resistance levels to all METI-II acaricides with LC50 values over 5000 mg a.i./L for cyflumetofen and pyflubumide. Similarly, the introduction of H258L via gene editing resulted in high resistance levels to all tested acaricides, with extreme LC50 values (>5000 mg a.i./L) for cyenopyrafen and cyetpyrafen, but lower resistance levels for pyflubumide and cyflumetofen. Together, these findings indicate that different mutations result in a different cross-resistance spectrum, probably also reflecting subtle differences in the binding mode of complex II acaricides.


Asunto(s)
Acaricidas , Tetranychidae , Animales , Tetranychidae/genética , Tetranychidae/efectos de los fármacos , Acaricidas/farmacología , Succinato Deshidrogenasa/genética , Succinato Deshidrogenasa/metabolismo , Succinato Deshidrogenasa/antagonistas & inhibidores , Mutación , Sitios de Unión , Ubiquinona/análogos & derivados , Resistencia a Medicamentos/genética , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Femenino , Propionatos/farmacología
15.
Phytopathology ; 114(7): 1646-1656, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38648033

RESUMEN

Actin filaments and their associated actin-binding proteins play key roles in plant innate immune signaling. CAP1, or cyclase-associated protein 1, is an important regulatory factor of the actin cytoskeleton-associated signaling network and was hypothesized here to be involved in resistance against wheat stripe rust because TaCAP1 expression was upregulated in response to Puccinia striiformis f. sp. tritici (Pst). Downregulation of TaCAP1 expression led to decreased resistance against Pst, in contrast to increased resistance upon TaCAP1 overexpressing, as demonstrated by the changes of phenotypes and hyphal growth. We found increased expression of pathogenesis-responsive or relative related genes and disease grade changed in TaCAP1 overexpressing plants. Our results also showed TaCAP1-regulated host resistance to Pst by inducing the production and accumulation of reactive oxygen species and mediating the salicylic acid signaling pathway. Additionally, TaCAP1 interacted with chlorophyll a/b-binding proteins TaLHCB1.3 and TaLHCB1.4, also known as the light-harvesting chlorophyll-protein complex II subunit B, which belong to the light-harvesting complex II protein family. Silencing of two TaLHCB1 genes showed higher susceptibility to Pst, which reduced wheat resistance against Pst. Therefore, the data presented herein further illuminate our understanding that TaCAP1 interacts with TaLHCB1s and functions as a positive regulator of wheat resistance against stripe rust.


Asunto(s)
Basidiomycota , Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas , Proteínas de Plantas , Puccinia , Triticum , Triticum/microbiología , Triticum/genética , Triticum/inmunología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Resistencia a la Enfermedad/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Puccinia/fisiología , Basidiomycota/fisiología , Especies Reactivas de Oxígeno/metabolismo , Ácido Salicílico/metabolismo , Transducción de Señal , Plantas Modificadas Genéticamente
16.
J Neuroinflammation ; 21(1): 108, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664840

RESUMEN

BACKGROUND: Parkinson's disease (PD) is a neurodegenerative disorder that is characterized by the presence of proteinaceous alpha-synuclein (α-syn) inclusions (Lewy bodies), markers of neuroinflammation and the progressive loss of nigrostriatal dopamine (DA) neurons. These pathological features can be recapitulated in vivo using the α-syn preformed fibril (PFF) model of synucleinopathy. We have previously determined that microglia proximal to PFF-induced nigral α-syn inclusions increase in soma size, upregulate major-histocompatibility complex-II (MHC-II) expression, and increase expression of a suite of inflammation-associated transcripts. This microglial response is observed months prior to degeneration, suggesting that microglia reacting to α-syn inclusion may contribute to neurodegeneration and could represent a potential target for novel therapeutics. The goal of this study was to determine whether colony stimulating factor-1 receptor (CSF1R)-mediated microglial depletion impacts the magnitude of α-syn aggregation, nigrostriatal degeneration, or the response of microglial in the context of the α-syn PFF model. METHODS: Male Fischer 344 rats were injected intrastriatally with either α-syn PFFs or saline. Rats were continuously administered Pexidartinib (PLX3397B, 600 mg/kg), a CSF1R inhibitor, to deplete microglia for a period of either 2 or 6 months. RESULTS: CSF1R inhibition resulted in significant depletion (~ 43%) of ionized calcium-binding adapter molecule 1 immunoreactive (Iba-1ir) microglia within the SNpc. However, CSF1R inhibition did not impact the increase in microglial number, soma size, number of MHC-II immunoreactive microglia or microglial expression of Cd74, Cxcl10, Rt-1a2, Grn, Csf1r, Tyrobp, and Fcer1g associated with phosphorylated α-syn (pSyn) nigral inclusions. Further, accumulation of pSyn and degeneration of nigral neurons was not impacted by CSF1R inhibition. Paradoxically, long term CSF1R inhibition resulted in increased soma size of remaining Iba-1ir microglia in both control and PFF rats, as well as expression of MHC-II in extranigral regions. CONCLUSIONS: Collectively, our results suggest that CSF1R inhibition does not impact the microglial response to nigral pSyn inclusions and that CSF1R inhibition is not a viable disease-modifying strategy for PD.


Asunto(s)
Microglía , Ratas Endogámicas F344 , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos , alfa-Sinucleína , Animales , Microglía/metabolismo , Microglía/efectos de los fármacos , alfa-Sinucleína/metabolismo , Ratas , Masculino , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/antagonistas & inhibidores , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Pirroles/farmacología , Aminopiridinas/farmacología , Cuerpos de Inclusión/metabolismo , Cuerpos de Inclusión/patología , Sustancia Negra/metabolismo , Sustancia Negra/patología , Sustancia Negra/efectos de los fármacos , Modelos Animales de Enfermedad
17.
Mol Oncol ; 18(5): 1054-1057, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38520041

RESUMEN

Mitochondrial metabolism and electron transport chain (ETC) function are essential for tumour proliferation and metastasis. However, the impact of ETC function on cancer immunogenicity is not well understood. In a recent study, Mangalhara et al. found that inhibition of complex II leads to enhanced tumour immunogenicity, T-cell-mediated cytotoxicity and inhibition of tumour growth. Surprisingly, this antitumour effect is mediated by succinate accumulation affecting histone methylation. Histone methylation promotes the transcriptional upregulation of major histocompatibility complex-antigen processing and presentation (MHC-APP) genes in a manner independent of interferon signalling. Modulating mitochondrial electron flow to enhance tumour immunogenicity provides an exciting new therapeutic avenue and may be particularly attractive for tumours with reduced expression of MHC-APP genes or dampened interferon signalling.


Asunto(s)
Mitocondrias , Neoplasias , Humanos , Mitocondrias/metabolismo , Mitocondrias/inmunología , Neoplasias/inmunología , Neoplasias/patología , Neoplasias/metabolismo , Animales , Transporte de Electrón
18.
J Neurol ; 271(6): 3439-3454, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38520521

RESUMEN

This study presents an in-depth analysis of mitochondrial enzyme activities in Friedreich's ataxia (FA) patients, focusing on the Electron Transport Chain complexes I, II, and IV, the Krebs Cycle enzyme Citrate Synthase, and Coenzyme Q10 levels. It examines a cohort of 34 FA patients, comparing their mitochondrial enzyme activities and clinical parameters, including disease duration and cardiac markers, with those of 17 healthy controls. The findings reveal marked reductions in complexes II and, specifically, IV, highlighting mitochondrial impairment in FA. Additionally, elevated Neurofilament Light Chain levels and cardiomarkers were observed in FA patients. This research enhances our understanding of FA pathophysiology and suggests potential biomarkers for monitoring disease progression. The study underscores the need for further clinical trials to validate these findings, emphasizing the critical role of mitochondrial dysfunction in FA assessment and treatment.


Asunto(s)
Biomarcadores , Ataxia de Friedreich , Ubiquinona , Humanos , Ataxia de Friedreich/diagnóstico , Masculino , Adulto , Biomarcadores/metabolismo , Femenino , Ubiquinona/análogos & derivados , Adulto Joven , Persona de Mediana Edad , Citrato (si)-Sintasa/metabolismo , Mitocondrias/metabolismo , Adolescente , Estudios de Cohortes
19.
Int J Biol Macromol ; 263(Pt 2): 130379, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38403214

RESUMEN

Cytoplasmic coat protein complex II (COPII) plays a multifunctional role in the transport of newly synthesized proteins, autophagosome formation, and endoplasmic reticulum (ER)-ER-phagy. However, the molecular mechanisms of the COPII subunit in ER-phagy in plant pathogens remain unknown. Here, we identified the subunit of COPII vesicles (BcSfb3) and explored the importance of BcSfb3 in Botrytis cinerea. BcSfb3 deletion affected vegetative growth, conidiation, conidial morphology, and plasma membrane integrity. We confirmed that the increase in infectious hyphal growth was delayed in the ΔBcSfb3 mutant, reducing its pathogenicity in the host plant. Furthermore, the ΔBcSfb3 mutant was sensitive to ER stress, which caused massive ER expansion and induced the formation of ER whorls that were taken up into the vacuole. Further examination demonstrated that BcSfb3 deletion caused ER stress initiated by unfolded protein response, and which led to the promotion of ER-phagy and autophagy that participate in sclerotia formation. In conclusion, these results demonstrate that BcSfb3 plays an important role in fungal development, pathogenesis, ER-phagy and autophagy in B. cinerea.


Asunto(s)
Autofagia , Retículo Endoplásmico , Virulencia , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico , Botrytis
20.
J Biol Chem ; 300(1): 105470, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38118236

RESUMEN

The prevailing notion that reduced cofactors NADH and FADH2 transfer electrons from the tricarboxylic acid cycle to the mitochondrial electron transfer system creates ambiguities regarding respiratory Complex II (CII). CII is the only membrane-bound enzyme in the tricarboxylic acid cycle and is part of the electron transfer system of the mitochondrial inner membrane feeding electrons into the coenzyme Q-junction. The succinate dehydrogenase subunit SDHA of CII oxidizes succinate and reduces the covalently bound prosthetic group FAD to FADH2 in the canonical forward tricarboxylic acid cycle. However, several graphical representations of the electron transfer system depict FADH2 in the mitochondrial matrix as a substrate to be oxidized by CII. This leads to the false conclusion that FADH2 from the ß-oxidation cycle in fatty acid oxidation feeds electrons into CII. In reality, dehydrogenases of fatty acid oxidation channel electrons to the Q-junction but not through CII. The ambiguities surrounding Complex II in the literature and educational resources call for quality control, to secure scientific standards in current communications of bioenergetics, and ultimately support adequate clinical applications. This review aims to raise awareness of the inherent ambiguity crisis, complementing efforts to address the well-acknowledged issues of credibility and reproducibility.


Asunto(s)
Complejo II de Transporte de Electrones , Electrones , Ácidos Grasos , Flavina-Adenina Dinucleótido , Succinato Deshidrogenasa , Transporte de Electrón , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Flavina-Adenina Dinucleótido/análogos & derivados , Flavina-Adenina Dinucleótido/metabolismo , Oxidación-Reducción , Reproducibilidad de los Resultados , Succinato Deshidrogenasa/metabolismo , Ciclo del Ácido Cítrico , Mitocondrias/metabolismo , Ubiquinona/metabolismo , Ácido Succínico/metabolismo , Complejo II de Transporte de Electrones/metabolismo , Metabolismo Energético
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA