Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Data Brief ; 27: 104568, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31687429

RESUMEN

Comparative ecophysiology is highly valuable approach to reveal adaptive traits linked with specific ecological niches. Although long-term in vitro preserved fungal isolates are often used for analyses, only sparse data is available about the effect of such handling on fungal physiology. The purpose of our data is to show the effect of long-term in vitro preservation of fungal strains on their metabolic profiles. This data is related to research paper "Adaptive traits of bark and ambrosia beetle-associated fungi" (Veselská et al., 2019). Biolog MicroPlates™ for Filamentous fungi were used to compare metabolic profiles between freshly isolated and long-term in vitro preserved strains of two Geosmithia species. Additionally, carbon utilization profiles of 35 Geosmithia species were assessed, including plant pathogen G. morbida and three ambrosia species. Data also shows differences in carbon utilization profiles among diverse ecology types presented in the genus Geosmithia.

2.
Ecol Lett ; 20(10): 1231-1241, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28921858

RESUMEN

Tradeoffs have long been an essential part of the canon explaining the maintenance of species diversity. Despite the intuitive appeal of the idea that no species can be a master of all trades, there has been a scarcity of linked demographic and physiological evidence to support the role of resource use tradeoffs in natural systems. Using five species of Chihuahuan desert summer annual plants, I show that demographic tradeoffs driven by short-term soil moisture variation act as a mechanism to allow multiple species to partition a limiting resource. Specifically, by achieving highest fitness in either rainfall pulse or interpulse periods, variability reduces fitness differences through time that could promote coexistence on a limiting resource. Differences in fitness are explained in part by the response of photosynthesis to changing soil moisture. My results suggest that increasing weather variability, as predicted under climate change, could increase the opportunity for coexistence in this community.


Asunto(s)
Cambio Climático , Clima Desértico , Ecosistema , Plantas , Lluvia , Suelo
3.
New Phytol ; 200(2): 523-533, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23815090

RESUMEN

Studies in disturbed, resource-rich environments often show that invasive plants are more productive than co-occurring natives, but with similar physiological tradeoffs. However, in resource-limited habitats, it is unclear whether native and invasive plants have similar metabolic constraints or if invasive plants are more productive per unit resource cost - that is, use resources more efficiently. Using a common garden to control for environment, we compared leaf physiological traits relating to resource investments, carbon returns, and resource-use efficiencies in 14 native and 18 nonnative invasive species of common genera found in Eastern North American (ENA) deciduous forest understories, where growth is constrained by light and nutrient limitation. Despite greater leaf construction and nitrogen costs, invaders exhibited greater instantaneous photosynthetic energy-use efficiency (PEUE) and marginally greater photosynthetic nitrogen-use efficiency (PNUE). When integrated over leaf lifespan (LL), these differences were magnified. Differences in efficiency were driven by greater productivity per unit leaf investment, as invaders exhibited both greater photosynthetic abilities and longer LL. Our results indicate that woody understory invaders in ENA forests are not constrained to the same degree by leaf-based metabolic tradeoffs as the native understory flora. These strategy differences could be attributable to pre-adaptation in the native range, although other explanations are possible.


Asunto(s)
Carbono/metabolismo , Magnoliopsida/metabolismo , Nitrógeno/metabolismo , Conservación de los Recursos Naturales , Ambiente , Especies Introducidas , Luz , Magnoliopsida/crecimiento & desarrollo , Magnoliopsida/fisiología , Magnoliopsida/efectos de la radiación , Modelos Teóricos , Fotosíntesis/fisiología , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Transpiración de Plantas/fisiología , Especificidad de la Especie , Árboles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA