Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros











Intervalo de año de publicación
1.
Ecol Lett ; 27(8): e14490, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39152685

RESUMEN

Species' traits and interactions are products of evolutionary history. Despite the long-standing hypothesis that closely related species possess similar traits, and thus experience stronger competition, measuring the effect of evolutionary history on the ecology of natural communities remains challenging. We propose a novel framework to test whether phylogeny influences patterns of coexistence and abundance of species assemblages. In our approach, phylogenetic trees are used to parameterize species' interactions, which in turn determine the abundance of species in a given assemblage. We use likelihoods to score models parameterized with a given phylogeny, and contrast them with models built using random trees, allowing us to test whether phylogenetic information helps to predict species' abundances. Our statistical framework reveals that interactions are indeed structured by phylogeny in a large set of experimental plant communities. Our results confirm that evolutionary history can help predict, and potentially manage or conserve, the structure and function of complex ecological communities.


Asunto(s)
Filogenia , Plantas , Modelos Biológicos , Evolución Biológica , Ecosistema , Biota
2.
Syst Biol ; 73(3): 546-561, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38767123

RESUMEN

When communities are assembled through processes such as filtering or limiting similarity acting on phylogenetically conserved traits, the evolutionary signature of those traits may be reflected in patterns of community membership. We show how the model of trait evolution underlying community-structuring traits can be inferred from community membership data using both a variation of a traditional eco-phylogenetic metric-the mean pairwise phylogenetic distance (MPD) between taxa-and a recent machine learning tool, Convolutional Kitchen Sinks (CKS). Both methods perform well across a range of phylogenetically informative evolutionary models, but CKS outperforms MPD as tree size increases. We demonstrate CKS by inferring the evolutionary history of freeze tolerance in angiosperms. Our analysis is consistent with a late burst model, suggesting freeze tolerance evolved recently. We suggest that multiple data types that are ordered on phylogenies, such as trait values, species interactions, or community presence/absence, are good candidates for CKS modeling because the generative models produce structured differences between neighboring points that CKS is well-suited for. We introduce the R package kitchen to perform CKS for generic application of the technique.


Asunto(s)
Evolución Biológica , Modelos Biológicos , Filogenia , Clasificación/métodos , Aprendizaje Automático , Magnoliopsida/clasificación , Magnoliopsida/genética
3.
Ann Bot ; 133(5-6): 833-850, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38401154

RESUMEN

BACKGROUND AND AIMS: The quartz fields of the Greater Cape Floristic Region (GCFR) are arid and island-like special habitats, hosting ~142 habitat-specialized plant species, of which 81 % are local endemics, characterized by a rapid turnover of species between and among sites. We use several phylogenetic community metrics: (1) to examine species diversity and phylogenetic structure within and among quartz fields; (2) to investigate whether quartz field specialists are evolutionarily drawn from local species pools, whereas the alternative hypothesis posits that there is no significant evolutionary connection between quartz field specialists and the local species pools; and (3) to determine whether there is an association between certain traits and the presence of species in quartz fields. METHODS: We sampled and developed dated phylogenies for six species-rich angiosperm families (Aizoaceae, Asteraceae, Crassulaceae, Cyperaceae, Fabaceae and Santalaceae) represented in the quartz field floras of southern Africa. Specifically, we focused on the flora of three quartz field regions in South Africa (Knersvlakte, Little Karoo and Overberg) and their surrounding species pools to address our research questions by scoring traits associated with harsh environments. KEY RESULTS: We found that the Overberg and Little Karoo had the highest level of species overlap for families Aizoaceae and Fabaceae, whereas the Knersvlakte and the Overberg had the highest species overlap for families Asteraceae, Crassulaceae and Santalaceae. Although our phylogenetic community structure and trait analyses showed no clear patterns, relatively low pairwise phylogenetic distances between specialists and their local species pools for Aizoaceae suggest that quartz species could be drawn evolutionarily from their surrounding areas. We also found that families Aizoaceae and Crassulaceae in Knersvlakte and Little Karoo were phylogenetically even. CONCLUSIONS: Despite their proximity to one another within the GCFR, the studied areas differ in their species pools and the phylogenetic structure of their specialists. Our work provides further justification for increased conservation focus on these unique habitats under future scenarios of global change.


Asunto(s)
Ecosistema , Magnoliopsida , Filogenia , Sudáfrica , Magnoliopsida/genética , Biodiversidad , Islas
4.
Plant Divers ; 45(3): 347-352, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37397595

RESUMEN

The previously released packages of the PhyloMaker series (i.e. S.PhyloMaker, V.PhyloMaker, and V.PhyloMaker2) have been broadly used to generate phylogenetic trees for ecological and biogeographical studies. Although these packages can be used to generate phylogenetic trees for any groups of plants and animals for which megatrees are available, they focus on generating phylogenetic trees for plants based on the megatrees provided by the packages. How to use these packages to generate phylogenetic trees based on other megatrees is not straightforward. Here, we present a new tool, which is called 'U.PhyloMaker', and a simple R script that can be used to easily generate large phylogenetic trees for both plants and animals at a relatively fast speed.

5.
Evolution ; 77(2): 355-369, 2023 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-36611281

RESUMEN

The acoustic adaptation hypothesis (AAH) and ecological character displacement (ECD) are two potential mechanisms shaping call evolution that can predict opposite trends for the differentiation of signals. Under AAH, signals evolve to minimize environmental degradation and maximize detection against background noise, predicting call homogenization in similar habitats due to environmental constraints on signals. In contrast, ECD predicts greater differences in call traits of closely related taxa in sympatry because of selection against acoustic interference. We used comparative phylogenetic analyses to test the strength of these two selective mechanisms on the evolution of advertisement calls in glassfrogs, a highly diverse family of neotropical anurans. We found that, overall, acoustic adaptation to the environment may outweigh effects of species interactions. As expected under the AAH, temporal call parameters are correlated with vegetation density, but spectral call parameters had an unexpected inverse correlation with vegetation density, as well as an unexpected correlation with temperature. We detected call convergence among co-occurring species and also across multiple populations from the same species in different glassfrogs communities. Our results indicate that call convergence is common in glassfrogs, likely due to habitat filtering, while character displacement is relatively rare, suggesting that costs of signal similarity among related species may not drive divergent selection in all systems.


Asunto(s)
Ecosistema , Vocalización Animal , Animales , Filogenia , Anuros/genética , Acústica , Evolución Biológica
6.
Plant Divers ; 44(4): 335-339, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35967255

RESUMEN

An earlier version of V.PhyloMaker has been broadly used to generate phylogenetic trees of vascular plants for botanical, biogeographical and ecological studies. Here, we update and enlarge this package, which is now called 'V.PhyloMaker2'. With V.PhyloMaker2, one can generate a phylogenetic tree for vascular plants based on one of three different botanical nomenclature systems. V.PhyloMaker2 can generate phylogenies for very large species lists (the largest species list that we tested included 365,198 species). V.PhyloMaker2 generates phylogenies at a fast speed. We provide an example (including a sample species list and an R script to run it) in this paper to show how to use V.PhyloMaker2 to generate phylogenetic trees.

7.
Ecol Evol ; 12(8): e9190, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35983174

RESUMEN

Wild bees form diverse communities that pollinate plants in both native and agricultural ecosystems making them both ecologically and economically important. The growing evidence of bee declines has sparked increased interest in monitoring bee community and population dynamics using standardized methods. Here, we studied the dynamics of bee biodiversity within and across years by monitoring wild bees adjacent to four apple orchard locations in Southern Pennsylvania, USA. We collected bees using passive Blue Vane traps continuously from April to October for 6 years (2014-2019) amassing over 26,000 bees representing 144 species. We quantified total abundance, richness, diversity, composition, and phylogenetic structure. There were large seasonal changes in all measures of biodiversity with month explaining an average of 72% of the variation in our models. Changes over time were less dramatic with years explaining an average of 44% of the variation in biodiversity metrics. We found declines in all measures of biodiversity especially in the last 3 years, though additional years of sampling are needed to say if changes over time are part of a larger trend. Analyses of population dynamics over time for the 40 most abundant species indicate that about one third of species showed at least some evidence for declines in abundance. Bee family explained variation in species-level seasonal patterns but we found no consistent family-level patterns in declines, though bumble bees and sweat bees were groups that declined the most. Overall, our results show that season-wide standardized sampling across multiple years can reveal nuanced patterns in bee biodiversity, phenological patterns of bees, and population trends over time of many co-occurring species. These datasets could be used to quantify the relative effects that different aspects of environmental change have on bee communities and to help identify species of conservation concern.

8.
Ecol Evol ; 12(3): e8649, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35261742

RESUMEN

Biotic specialization holds information about the assembly, evolution, and stability of biological communities. Partner availabilities can play an important role in enabling species interactions, where uneven partner availabilities can bias estimates of biotic specialization when using phylogenetic diversity indices. It is therefore important to account for partner availability when characterizing biotic specialization using phylogenies. We developed an index, phylogenetic structure of specialization (PSS), that avoids bias from uneven partner availabilities by uncoupling the null models for interaction frequency and phylogenetic distance. We incorporate the deviation between observed and random interaction frequencies as weights into the calculation of partner phylogenetic α-diversity. To calculate the PSS index, we then compare observed partner phylogenetic α-diversity to a null distribution generated by randomizing phylogenetic distances among the same number of partners. PSS quantifies the phylogenetic structure (i.e., clustered, overdispersed, or random) of the partners of a focal species. We show with simulations that the PSS index is not correlated with network properties, which allows comparisons across multiple systems. We also implemented PSS on empirical networks of host-parasite, avian seed-dispersal, lichenized fungi-cyanobacteria, and hummingbird pollination interactions. Across these systems, a large proportion of taxa interact with phylogenetically random partners according to PSS, sometimes to a larger extent than detected with an existing method that does not account for partner availability. We also found that many taxa interact with phylogenetically clustered partners, while taxa with overdispersed partners were rare. We argue that species with phylogenetically overdispersed partners have often been misinterpreted as generalists when they should be considered specialists. Our results highlight the important role of randomness in shaping interaction networks, even in highly intimate symbioses, and provide a much-needed quantitative framework to assess the role that evolutionary history and symbiotic specialization play in shaping patterns of biodiversity. PSS is available as an R package at https://github.com/cjpardodelahoz/pss.

9.
Mol Ecol Resour ; 21(8): 2782-2800, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34569715

RESUMEN

Biodiversity accumulates hierarchically by means of ecological and evolutionary processes and feedbacks. Within ecological communities drift, dispersal, speciation, and selection operate simultaneously to shape patterns of biodiversity. Reconciling the relative importance of these is hindered by current models and inference methods, which tend to focus on a subset of processes and their resulting predictions. Here we introduce massive ecoevolutionary synthesis simulations (MESS), a unified mechanistic model of community assembly, rooted in classic island biogeography theory, which makes temporally explicit joint predictions across three biodiversity data axes: (i) species richness and abundances, (ii) population genetic diversities, and (iii) trait variation in a phylogenetic context. Using simulations we demonstrate that each data axis captures information at different timescales, and that integrating these axes enables discriminating among previously unidentifiable community assembly models. MESS is unique in generating predictions of community-scale genetic diversity, and in characterizing joint patterns of genetic diversity, abundance, and trait values. MESS unlocks the full potential for investigation of biodiversity processes using multidimensional community data including a genetic component, such as might be produced by contemporary eDNA or metabarcoding studies. We combine MESS with supervised machine learning to fit the parameters of the model to real data and infer processes underlying how biodiversity accumulates, using communities of tropical trees, arthropods, and gastropods as case studies that span a range of data availability scenarios, and spatial and taxonomic scales.


Asunto(s)
Biodiversidad , Modelos Biológicos , Biota , Variación Genética , Filogenia
10.
Plant Divers ; 43(4): 255-263, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34485767

RESUMEN

Phylogenies are essential to studies investigating the effect of evolutionary history on assembly of species in ecological communities and geographical and ecological patterns of phylogenetic structure of species assemblages. Because phylogenies well resolved at the species level are lacking for many major groups of organisms such as vascular plants, researchers often generate a species-level phylogenies using a phylogeny well resolved at the genus level as a backbone and attaching species to their respective genera in the phylogeny as polytomies or by using a megaphylogeny well resolved at the genus level as a backbone and adding additional species to the megaphylogeny as polytomies of their respective genera. However, whether the result of a study using species-level phylogenies generated in these ways is robust, compared to that based on phylogenies fully resolved at the species level, has not been assessed. Here, we use 1093 angiosperm tree assemblages (each in a 110 × 110 km quadrat) in North America as a model system to address this question, by examining six commonly used metrics of phylogenetic structure (phylogenetic diversity and phylogenetic relatedness) and six climate variables commonly used in ecology. Our results showed that (1) the scores of phylogenetic metrics derived from species-level phylogenies resolved at the genus level with species being attached to their respective genera as polytomies are very strongly or perfectly correlated to those derived from a phylogeny fully resolved at the species level (the mean of correlation coefficients is 0.973), and (2) the relationships between the scores of phylogenetic metrics and climate variables are consistent between the two sets of analyses based on the two types of phylogeny. Our study suggests that using species-level phylogenies resolved at the genus level with species being attached to their genera as polytomies is appropriate in studies exploring patterns of phylogenetic structure of species in ecological communities across geographical and ecological gradients.

11.
Ecology ; 102(7): e03380, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33937979

RESUMEN

Acoustic signaling is key in mediating mate choice, which directly impacts individual fitness. Because background noise and habitat structure can impair signal transmission, the acoustic space of mixed-species assemblages has long been hypothesized to reflect selective pressures against signal interference and degradation. However, other potential drivers that received far less attention can drive similar outputs on the acoustic space. Phylogenetic niche conservatism and allometric constraints may also modulate species acoustic features, and the acoustic space of communities could be a side-effect of ecological assembly processes involving other traits (e.g., environmental filtering). Additionally, the acoustic space can also reflect the sorting of species relying on public information through extended communication networks. Using an integrative approach, we revisit the potential drivers of the acoustic space by addressing the distribution of acoustic traits, body size, and phylogenetic relatedness in tropical anuran assemblages across gradients of environmental heterogeneity in the Pantanal wetlands. We found the overall acoustic space to be aggregated compared with null expectations, even when accounting for confounding effects of body size. Across assemblages, acoustic and phylogenetic differences were positively related, while acoustic and body size similarities were negatively related, although to a minor extent. We suggest that acoustic partitioning, acoustic adaptation, and allometric constraints play a minor role in shaping the acoustic output of tropical anuran assemblages and that phylogenetic niche conservatism and public information use would influence between-assemblage variation. Our findings highlight an overlooked multivariate nature of the acoustic dimension and underscore the importance of including the ecological context of communities to understand drivers of the acoustic space.


Asunto(s)
Ecosistema , Humedales , Acústica , Animales , Anuros , Filogenia
12.
Biol Rev Camb Philos Soc ; 96(5): 2281-2303, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34056816

RESUMEN

Ethnobiology as a discipline has evolved increasingly to embrace theory-inspired and hypothesis-driven approaches to study why and how local people choose plants and animals they interact with and use for their livelihood. However, testing complex hypotheses or a network of ethnobiological hypotheses is challenging, particularly for data sets with non-independent observations due to species phylogenetic relatedness or socio-relational links between participants. Further, to account fully for the dynamics of local ecological knowledge, it is important to include the spatially explicit distribution of knowledge, changes in knowledge, and knowledge transmission and use. To promote the use of advanced statistical modelling approaches that address these limitations, we synthesize methodological advances for hypothesis-driven research in ethnobiology while highlighting the need for more figures than tables and more tables than text in ethnobiological literature. We present the ethnobiological motivations for conducting generalized linear mixed-effect modelling, structural equation modelling, phylogenetic generalized least squares, social network analysis, species distribution modelling, and predictive modelling. For each element of the proposed ethnobiologists quantitative toolbox, we present practical applications along with scripts for a widespread implementation. Because these statistical modelling approaches are rarely taught in most ethnobiological programs but are essential for careers in academia or industry, it is critical to promote workshops and short courses focused on these advanced methods. By embracing these quantitative modelling techniques without sacrificing qualitative approaches which provide essential context, ethnobiology will progress further towards an expansive interaction with other disciplines.


Asunto(s)
Modelos Estadísticos , Plantas , Humanos , Motivación , Filogenia
13.
Ecol Evol ; 11(3): 1399-1412, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33598140

RESUMEN

Endozoochory, a mutualistic interaction between plants and frugivores, is one of the key processes responsible for maintenance of tropical biodiversity. Islands, which have a smaller subset of plants and frugivores when compared with mainland communities, offer an interesting setting to understand the organization of plant-frugivore communities vis-a-vis the mainland sites. We examined the relative influence of functional traits and phylogenetic relationships on the plant-seed disperser interactions on an island and a mainland site. The island site allowed us to investigate the organization of the plant-seed disperser community in the natural absence of key frugivore groups (bulbuls and barbets) of Asian tropics. The endemic Narcondam Hornbill was the most abundant frugivore on the island and played a central role in the community. Species strength of frugivores (a measure of relevance of frugivores for plants) was positively associated with their abundance. Among plants, figs had the highest species strength and played a central role in the community. Island-mainland comparison revealed that the island plant-seed disperser community was more asymmetric, connected, and nested as compared to the mainland community. Neither phylogenetic relationships nor functional traits (after controlling for phylogenetic relationships) were able to explain the patterns of interactions between plants and frugivores on the island or the mainland pointing toward the diffused nature of plant-frugivore interactions. The diffused nature is a likely consequence of plasticity in foraging behavior and trait convergence that contribute to governing the interactions between plants and frugivores. This is one of the few studies to compare the plant-seed disperser communities between a tropical island and mainland and demonstrates key role played by a point-endemic frugivore in seed dispersal on island.

14.
Ecol Evol ; 11(24): 17672-17685, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35003631

RESUMEN

We investigated how the phylogenetic structure of Amazonian plant communities varies along an edaphic gradient within the non-inundated forests. Forty localities were sampled on three terrain types representing two kinds of soil: clayey soils of a high base cation concentration derived from the Solimões formation, and loamy soils with lower base cation concentration derived from the Içá formation and alluvial terraces. Phylogenetic community metrics were calculated for each locality for ferns and palms both with ferns as one group and for each of three fern clades with a crown group age comparable to that of palms. Palm and fern communities showed significant and contrasting phylogenetic signals along the soil gradient. Fern species richness increased but standard effect size of mean pairwise distance (SES.MPD) and variation of pairwise distances (VPD) decreased with increasing soil base cation concentration. In contrast, palm communities were more species rich on less cation-rich soils and their SES.MPD increased with soil base cation concentration. Species turnover between the communities reflected the soil gradient slightly better when based on species occurrences than when phylogenetic distances between the species were considered. Each of the three fern subclades behaved differently from each other and from the entire fern clade. The fern clade whose phylogenetic patterns were most similar to those of palms also resembled palms in being most species-rich on cation-poor soils. The phylogenetic structuring of local plant communities varies along a soil base cation concentration gradient within non-inundated Amazonian rain forests. Lineages can show either similar or different phylogenetic community structure patterns and evolutionary trajectories, and we suggest this to be linked to their environmental adaptations. Consequently, geological heterogeneity can be expected to translate into a potentially highly diverse set of evolutionarily distinct community assembly pathways in Amazonia and elsewhere.

15.
Evolution ; 74(12): 2605-2616, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32840863

RESUMEN

A central theme connecting macroevolutionary processes to macroecological patterns is the shaping of regional biodiversity over time through speciation, extinction, migration, and range shifts. The use of phylogenies to explore the dynamics of diversification due to variation in speciation and extinction rates has been well-developed and there are established methods for inferring speciation times from phylogenies and generating its null distributions (as represented by node heights on molecular phylogenies). But inferring colonization events from phylogenies is more challenging. Unlike speciation events, represented by nodes, colonization events could occur at any point along a branch connecting species in the assemblage to the regional pool. We account for uncertainty in identification of colonization lineages and timing of colonization events by using an efficient analytical solution to inferring the distribution of colonization times from an assemblage phylogeny. Using the same solution, we efficiently derive the null distribution of colonization times, which provides us with a general approach to testing the adequacy of a model to describe colonization events into the assemblage. We illustrate this approach by demonstrating how the movement of squamate lineages into Madagascar has been uneven over time, peaking in the early Cenozoic when ocean conditions favored colonization.


Asunto(s)
Distribución Animal , Modelos Biológicos , Filogenia , Animales , Lagartos , Madagascar , Serpientes
16.
J Anim Ecol ; 89(6): 1482-1496, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32163591

RESUMEN

Theory predicts that trophic specialization (i.e. low dietary diversity) should make consumer populations sensitive to environmental disturbances. Yet diagnosing specialization is complicated both by the difficulty of precisely quantifying diet composition and by definitional ambiguity: what makes a diet 'diverse'? We sought to characterize the relationship between taxonomic dietary diversity (TDD) and phylogenetic dietary diversity (PDD) in a species-rich community of large mammalian herbivores in a semi-arid East African savanna. We hypothesized that TDD and PDD would be positively correlated within and among species, because taxonomically diverse diets are likely to include plants from many lineages. By using DNA metabarcoding to analyse 1,281 faecal samples collected across multiple seasons, we compiled high-resolution diet profiles for 25 sympatric large-herbivore species. For each of these populations, we calculated TDD and PDD with reference to a DNA reference library for local plants. Contrary to our hypothesis, measures of TDD and PDD were either uncorrelated or negatively correlated with each other. Thus, these metrics reflect distinct dimensions of dietary specialization both within and among species. In general, grazers and ruminants exhibited greater TDD, but lower PDD, than did browsers and non-ruminants. We found significant seasonal variation in TDD and/or PDD for all but four species (Grevy's zebra, buffalo, elephant, Grant's gazelle); however, the relationship between TDD and PDD was consistent across seasons for all but one of the 12 best-sampled species (plains zebra). Our results show that taxonomic generalists can be phylogenetic specialists, and vice versa. These two dimensions of dietary diversity suggest contrasting implications for efforts to predict how consumers will respond to climate change and other environmental perturbations. For example, populations with low TDD may be sensitive to phylogenetically 'random' losses of food species, whereas populations with low PDD may be comparatively more sensitive to environmental changes that disadvantage entire plant lineages-and populations with low dietary diversity in both taxonomic and phylogenetic dimensions may be most vulnerable of all.


Asunto(s)
Antílopes , Herbivoria , Animales , Dieta , Ecosistema , Filogenia , Plantas
17.
Neotrop. ichthyol ; 18(2): e200004, 2020. tab, graf
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1135390

RESUMEN

Here we explore the use of community phylogenetics as a tool to document patterns of biodiversity in the Fitzcarrald region, a remote area in Southwestern Amazonia. For these analyses, we subdivide the region into basin-wide assemblages encompassing the headwaters of four Amazonian tributaries (Urubamba, Yuruá, Purús and Las Piedras basins), and habitat types: river channels, terra firme (non-floodplain) streams, and floodplain lakes. We present a robust, well-documented collection of fishes from the region including 272 species collected from 132 field sites over 63 field days and four years, comprising the most extensive collection of fishes from this region to date. We conduct a preliminary community phylogenetic analysis based on this collection and recover results largely statistically indistinguishable from the random expectation, with only a few instances of phylogenetic structure. Based on these results, and of those published in other recent biogeographic studies, we conclude that the Fitzcarrald fish species pool accumulated over a period of several million years, plausibly as a result of dispersal from the larger species pool of Greater Amazonia.(AU)


Aquí exploramos el uso de la filogenética de comunidades como herramienta para documentar patrones de biodiversidad en la región de Fitzcarrald, un área remota en el suroeste de la Amazonía. Para estos análisis subdividimos la región en grupos de toda la cuenca que abarcan las cabeceras de cuatro tributarios del Amazonas (cuencas Urubamba, Yuruá, Purús y Las Piedras) y en los tipos de hábitat: canales fluviales, arroyos de tierra firme (sin planicie aluvial) y lagos de planicie aluvial. Presentamos una colección de peces robusta y bien documentada que incluye 272 especies, colectadas a lo largo de cuatro años y 63 días de campo, en 132 puntos de monitoreo. Convirtiéndose en la colección más extensa de peces de esta región hasta la fecha. Realizamos un análisis filogenético preliminar de la comunidad basado en esta recopilación y recuperamos resultados en gran medida estadísticamente indistinguibles de la expectativa aleatoria, con sólo unos pocos casos de estructura filogenética. Basándonos en estos resultados y los publicados en otros estudios biogeográficos recientes, concluimos que el grupo de especies de peces de Fitzcarrald acumulado durante un período de varios millones de años, se debe posiblemente al resultado de la dispersión del mayor grupo de especies de la Gran Amazonia.(AU)


Asunto(s)
Animales , Filogenia , Ecosistema , Ecosistema Amazónico , Biodiversidad , Ríos
18.
Plants (Basel) ; 8(9)2019 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-31491875

RESUMEN

Highlighting patterns of distribution and assembly of plants involves the use of community phylogenetic analyses and complementary traditional taxonomic metrics. However, these patterns are often unknown or in dispute, particularly along elevational gradients, with studies finding different patterns based on elevation. We investigated how patterns of tree diversity and structure change along an elevation gradient using taxonomic and phylogenetic diversity metrics. We sampled 595 individuals (36 families; 53 genera; 88 species) across 15 plots along an elevational gradient (2440-3330 m) in Ecuador. Seventy species were sequenced for the rbcL and matK gene regions to generate a phylogeny. Species richness, Shannon-Weaver diversity, Simpson's Dominance, Simpson's Evenness, phylogenetic diversity (PD), mean pairwise distance (MPD), and mean nearest taxon distance (MNTD) were evaluated for each plot. Values were correlated with elevation and standardized effect sizes (SES) of MPD and MNTD were generated, including and excluding tree fern species, for comparisons across elevation. Taxonomic and phylogenetic metrics found that species diversity decreases with elevation. We also found that overall the community has a non-random phylogenetic structure, dependent on the presence of tree ferns, with stronger phylogenetic clustering at high elevations. Combined, this evidence supports the ideas that tree ferns have converged with angiosperms to occupy the same habitat and that an increased filtering of clades has led to more closely related angiosperm species at higher elevations.

19.
Ecol Evol ; 9(17): 9479-9499, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31534670

RESUMEN

The amount and patterns of phylodiversity in a community are often used to draw inferences about the local and historical factors affecting community assembly and can be used to prioritize communities and locations for conservation. Because measures of phylodiversity are based on the topology and branch lengths of phylogenetic trees, which are affected by the number and diversity of taxa in the tree, these analyses may be sensitive to changes in taxon sampling and tree reconstruction methods.To investigate the effects of taxon sampling and tree reconstruction methods on measures of phylodiversity, we investigated the community phylogenetics of the Ordway-Swisher Biological Station (Florida), which is home to over 600 species of vascular plants. We studied the effects of (a) the number of taxa included in the regional phylogeny; (b) random versus targeted sampling of species to assemble the regional species pool; (c) including only species from specific clades rather than broad sampling; (d) using trees reconstructed directly for the taxa under study compared to trees pruned from a larger reconstructed tree; and (e) using phylograms compared to chronograms.We found that including more taxa in a study increases the likelihood of observing significantly nonrandom phylogenetic patterns. However, there were no consistent trends in the phylodiversity patterns based on random taxon sampling compared to targeted sampling, or within individual clades compared to the complete dataset. Using pruned and reconstructed phylogenies resulted in similar patterns of phylodiversity, while chronograms in some cases led to significantly different results from phylograms.The methods commonly used in community phylogenetic studies can significantly impact the results, potentially influencing both inferences of community assembly and conservation decisions. We highlight the need for both careful selection of methods in community phylogenetic studies and appropriate interpretation of results, depending on the specific questions to be addressed.

20.
Am J Bot ; 106(7): 958-970, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31291472

RESUMEN

PREMISE: At the intersection of ecology and evolutionary biology, community phylogenetics can provide insights into overarching biodiversity patterns, particularly in remote and understudied ecosystems. To understand community assembly of the high alpine flora in the Sawtooth National Forest, USA, we analyzed phylogenetic structure within and between nine summit communities. METHODS: We used high-throughput sequencing to supplement existing data and infer a nearly completely sampled community phylogeny of the alpine vascular flora. We calculated mean nearest taxon distance (MNTD) and mean pairwise distance (MPD) to quantify phylogenetic divergence within summits, and assessed whether maximum elevation explains phylogenetic structure. To evaluate similarities between summits, we quantified phylogenetic turnover, taking into consideration microhabitats (talus vs. meadows). RESULTS: We found different patterns of community phylogenetic structure within the six most species-rich orders, but across all vascular plants phylogenetic structure was largely not different from random. There was a significant negative correlation between elevation and tree-wide phylogenetic diversity (MPD) within summits: overdispersion degraded as elevation increased. Between summits, we found high phylogenetic turnover driven by greater niche heterogeneity on summits with alpine meadows. CONCLUSIONS: Our results provide further evidence that stochastic processes may also play an important role in the assembly of vascular plant communities in high alpine habitats at regional scales. However, order-specific patterns suggest that adaptations are still important for assembly of specific sectors of the plant tree of life. Further studies quantifying functional diversity will be important in disentangling the interplay of eco-evolutionary processes that likely shape broad community phylogenetic patterns in extreme environments.


Asunto(s)
Altitud , Ecosistema , Magnoliopsida , Filogenia , Idaho
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA