Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(6)2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36991612

RESUMEN

5G demands a significant increment in the number of connected devices. As a result, gNodeBs are constantly pushed to serve more spectrum and smaller sectors. These increased capacity demands are met by using multiband antennas in base stations. One of the key challenges with multiband antennas is the pattern distortions due to the presence of other surrounding antenna element structures. This work provides a novel approach to address the challenge of pattern distortion in the lower frequency band 690-960 MHz due to common-mode (CM) currents in the high- frequency-band antenna element operating in the 1810-2690 MHz band. A common-mode suppression circuit is integrated with the impedance matching network of the high-band antenna element to reduce these common-mode currents. The experimental results verified that the common-mode suppression circuit reduces the common-mode currents at low-band frequencies by moving the common-mode resonance frequency outside the low frequency band, resulting in cleaner low-band patterns meeting pattern specifications.

2.
Micromachines (Basel) ; 14(2)2023 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-36837985

RESUMEN

In this paper, a slotted substrate integrated waveguide (SIW) is used to create a balanced phase shifter with wideband common-mode (CM) suppression. Differential-mode (DM) impedance matching and CM suppression are achieved by utilizing the fact that TE20 mode and TE10 (TE30) mode can only transmit DM signals and CM signals, respectively, and by increasing the bandwidth for CM suppression via slots. Furthermore, a wideband phase shift with low phase deviation can be obtained due to the phase slop counteract between the slot and the delay line. Compared with the state-of-the-art, the proposed one has the advantages of wideband CM suppression, wide phase shift range, and a simple and easy-to-make structure. Five prototypes covering the frequency of 3.5 GHz are designed with the relative operating bandwidth for 45° ± 2° (90° ± 4.5°, 135° ± 6°, and 180° ± 8°) phase shifter of 20% (20%, 20%, and 20%), with the minimum insertion loss of 0.41 dB (0.5 dB, 0.58 dB, and 0.59 dB), with the minimum return loss greater than 15 dB, and with the relative bandwidth for 15-dB CM suppression of 59% (59%, 58%, and 57%).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA