Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Food Res Int ; 195: 114995, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39277255

RESUMEN

Common vetch protein, similar to pea protein, offers valuable qualities like being non-GMO, hypoallergenic, and nutritious. However, its strong beany flavor hinders consumer acceptance. This study explores enzymatic deamidation using glutaminase to address this issue. GC-MS analysis identified 54 volatile compounds in the raw material protein, with 2-pentylfuran, hexanal, and several nonenals contributing the most to the undesirable aroma. Principal component analysis (PCA) confirmed the effectiveness of glutaminase deamidation in removing these off-flavors. The study further reveals that deamidation alters the protein's secondary structure, with an increase in α - helix structure and a decrease in ß - sheet structure. The surface hydrophobicity increased from 587.33 ± 2.63 to 1855.63 ± 3.91 exposing hydrophobic clusters that bind flavor compounds. This disruption weakens the interactions that trap these undesirable flavors, ultimately leading to their release and a more pleasant aroma. These findings provide valuable insights for enzymatic deodorization of not only common vetch protein but also pea protein.


Asunto(s)
Glutaminasa , Glutaminasa/metabolismo , Glutaminasa/química , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/metabolismo , Gusto , Cromatografía de Gases y Espectrometría de Masas , Aromatizantes/química , Odorantes/análisis , Interacciones Hidrofóbicas e Hidrofílicas , Humanos , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Análisis de Componente Principal , Estructura Secundaria de Proteína
2.
Animals (Basel) ; 14(15)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39123708

RESUMEN

The aim of this study was to determine whether the inclusion of 40% of common vetch (CV) hay as a feed ingredient in place of alfalfa hay (AH) would improve performance and ruminal fermentation and microbiota in fattening lambs. Twenty lambs were equally divided into two groups: control group (fed 40% AH with 20% rice straw) and CV group (fed 40% CV hay with 20% rice straw). Concerning hay quality, CV hay had greater in vitro digestibility of dry matter and neutral detergent fiber (p < 0.05) than AH. Lambs fed the CV diet had a higher average daily gain (ADG) and efficiency of feed and economy than lambs fed the control group. The NH3-N content and estimated methane produced per unit of ADG of the CV diet group were significantly lower (p < 0.05) than control group. Multiple differential microbial genera were identified, with Prevotella being the most dominant genus and a tendency towards higher (p = 0.095) in lambs offered CV diet. The higher Ruminococcus abundance (p < 0.05) was found in animals of the CV group compared to the control group. In summary, CV can be incorporated into lamb diets as a low-cost forage alternative to AH to improve feed efficiency and animal performance and to reduce methane produced per unit of ADG.

3.
J Plant Physiol ; 302: 154317, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39068773

RESUMEN

Common vetch (Vicia sativa L.) is widely planted as forage, green manure and food. Phosphate (Pi) deficiency is an important constraint for legume crop production. In this study, P-deficiency tolerance in 40 common vetch collections was evaluated under hydroponic condition. The collections were clustered into three groups based on the tolerance level. Physiological responses to P-deficiency in two tolerant collections (418 and 426) in comparison with one sensitive collection (415) were investigated. Greater growth inhibition was observed in sensitive collection compared with two tolerant collections, although the inorganic phosphorus (P) content in sensitive collection was higher than those in tolerant collections. The internal and external purple acid phosphatase activity in plants showed no significant difference between 418 and 415 under low phosphate condition. Transcriptomic analysis in the tolerant collection 426 in response to Pi starvation showed that many common adaptive strategies were applied and PHOSPHATE STARVATION RESPONSE (PHR)-related Pi signaling and transporter genes were altered. VsPHT1.2 had the highest expression level in root among all VsPHT1s, and it was remarkably upregulated after short time of P-deficiency treatment in tolerant collections compared with sensitive collection. In conclusion, common vetch response to P starvation by altering the expressions of core genes involved in Pi transport and signaling, and the elevated expression of VsPHT1.2 gene might contribute to higher Pi acquisition efficiency in P-deficiency tolerant collections.


Asunto(s)
Adaptación Fisiológica , Fosfatos , Fosfatos/deficiencia , Fosfatos/metabolismo , Adaptación Fisiológica/genética , Regulación de la Expresión Génica de las Plantas , Fósforo/deficiencia , Fósforo/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Microorganisms ; 12(5)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38792779

RESUMEN

The use of green manure can substantially increase the microbial diversity and multifunctionality of soil. Green manuring practices are becoming popular for tobacco production in China. However, the influence of different green manures in tobacco fields has not yet been clarified. Here, smooth vetch (SV), hairy vetch (HV), broad bean (BB), common vetch (CV), rapeseed (RS), and radish (RD) were selected as green manures to investigate their impact on soil multifunctionality and evaluate their effects on enhancing soil quality for tobacco cultivation in southwest China. The biomass of tobacco was highest in the SV treatment. Soil pH declined, and soil organic matter (SOM), total nitrogen (TN), and dissolved organic carbon (DOC) content in CV and BB and activity of extracellular enzymes in SV and CV treatments were higher than those in other treatments. Fungal diversity declined in SV and CV but did not affect soil multifunctionality, indicating that bacterial communities contributed more to soil multifunctionality than fungal communities. The abundance of Firmicutes, Rhizobiales, and Micrococcales in SV and CV treatments increased and was negatively correlated with soil pH but positively correlated with soil multifunctionality, suggesting that the decrease in soil pH contributed to increases in the abundance of functional bacteria. In the bacteria-fungi co-occurrence network, the relative abundance of key ecological modules negatively correlated with soil multifunctionality and was low in SV, CV, BB, and RS treatments, and this was associated with reductions in soil pH and increases in the content of SOM and nitrate nitrogen (NO3--N). Overall, we found that SV and CV are more beneficial for soil multifunctionality, and this was driven by the decrease in soil pH and the increase in SOM, TN, NO3--N, and C- and N-cycling functional bacteria.

5.
Plants (Basel) ; 13(5)2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38475559

RESUMEN

Common vetch (Vicia sativa L.) is an important annual diploid leguminous forage. In the present study, transcriptomic profiling in common vetch in response to salt stress was conducted using a salt-tolerant line (460) and a salt-sensitive line (429). The common responses in common vetch and the specific responses associated with salt tolerance in 460 were analyzed. Several KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways, including plant hormone and MAPK (mitogen-activated protein kinase) signaling, galactose metabolism, and phenylpropanoid phenylpropane biosynthesis, were enriched in both lines, though some differentially expressed genes (DEGs) showed distinct expression patterns. The roots in 460 showed higher levels of lignin than in 429. α-linolenic acid metabolism, carotenoid biosynthesis, the photosynthesis-antenna pathway, and starch and sucrose metabolism pathways were specifically enriched in salt-tolerant line 460, with higher levels of accumulated soluble sugars in the leaves. In addition, higher transcript levels of genes involved in ion homeostasis and reactive oxygen species (ROS) scavenging were observed in 460 than in 429 in response to salt stress. The transcriptomic analysis in common vetch in response to salt stress provides useful clues for further investigations on salt tolerance mechanism in the future.

6.
Int J Biol Macromol ; 257(Pt 2): 128743, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38100960

RESUMEN

In this study, sesame (Sesamum indicum L.) meal protein and common vetch (Vicia sativa L.) starch were extracted and used to obtain biodegradable composite films at different pH values (7, 9, and 11). Films were plasticized with glycerol (2.5 %) and enriched with gallic acid (0.25 %). Increasing pH promoted mechanical properties of the films with the developed barrier and thermal characteristics. Gallic acid addition at pH 7 resulted in lower tensile strength and higher elongation by reducing intermolecular forces, and a shift of diffraction peaks through lower angles due to crystal lattice expansion, as compared to neutral films without gallic acid. On the other hand, gallic acid-enriched films at neutral pH exhibited superior antioxidant properties. The mild alkalinity with gallic acid provided the lowest water vapor permeability, high thermal stability, improved mechanical properties and light barrier property due to deprotonation and subsequent interactions with biopolymers. The FTIR spectrum confirmed intense interactions, such as crosslinking and covalent bonding, promoted by mild alkalinity. Therefore, sesame protein and common vetch starch-based composite film with gallic acid incorporation at pH 9 can be recommended to be used in biodegradable active food packaging applications.


Asunto(s)
Sesamum , Vicia sativa , Almidón/química , Ácido Gálico/química , Resistencia a la Tracción , Permeabilidad , Concentración de Iones de Hidrógeno , Embalaje de Alimentos/métodos
7.
Front Plant Sci ; 14: 1166133, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37655219

RESUMEN

Common vetch is one of the most profitable forage legumes due to its versatility in end-use which includes grain, hay, green manure, and silage. Furthermore, common vetch is one of the best crops to rotate with cereals as it can increase soil fertility which results in higher yield in cereal crops. The National Vetch Breeding Program located in South Australia is focused on developing new vetch varieties with higher grain and dry matter yields, better resistance to major diseases, and wider adaptability to Australian cropping environments. As part of this program, a study was conducted with 35 field trials from 2015 to 2021 in South Australia, Western Australia, Victoria, and New South Wales with the objective of determining the best parents for future crosses and the vetch lines with highest commercial value in terms of grain yield production. A total of 392 varieties were evaluated. The individual field trials were combined in a multi-environment trial data, where each trial is identified as an environment. Multiplicative mixed models were used to analyze the data and a factor analytic approach to model the genetic by environment interaction effects. The pedigree of the lines was then assembled and incorporated into the analysis. This approach allowed to partition the total effects into additive and non-additive components. The total and additive genetic effects were inspected across and within environments for broad and specific selections of the lines with the best commercial value and the best parents. Summary measures of overall performance and stability were used to aid with selection of parents. To the best of our knowledge, this is the first study which used the pedigree information to breed common vetch. In this paper, the application of this statistical methodology has been successfully implemented with the inclusion of the pedigree improving the fit of the models to the data with most of the total genetic variation explained by the additive heritable component. The results of this study have shown the importance of including the pedigree information for common vetch breeding programs and have improved the ability of breeders to select superior commercial lines and parents.

8.
Foods ; 12(13)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37444251

RESUMEN

In the present study, the morphology, refined structure, thermal properties, and dynamic rheological, texture, and digestive properties of common vetch starch, a potential new type of legume starch, were systematically investigated, and compared with commercially available pea and mung bean starch. The results showed that the composition and chemical structure of common vetch starch were similar to the pea and mung bean starch. However, the amylose content (35.69), A-chain proportion (37.62), and relative crystallinity (34.16) of common vetch starch were higher, and the particle size and molecular weight (44,042 kDa) were larger. The value of pasting properties and enthalpy change (ΔH) of gelatinization of common vetch starch was lower and higher than mung bean and pea starch, respectively, and a lower swelling power and pasting index indicate that common vetch starch had higher hot-paste and cold-paste stability. In addition, common vetch starch gel exhibited good rheology, cohesiveness, and anti-digestive properties. These results provide new insights into the broader application of common vetch starch.

9.
Plant Physiol Biochem ; 200: 107770, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37216823

RESUMEN

Common vetch (Vicia sativa L.) is a leguminous crop used to feed livestock with vegetative organs or fertilize soils by returning to the field. Survival of fall-seeded plants is often affected by freezing damage during overwintering. This study aims to investigate the transcriptomic profiling in response to cold in a mutant with reduced accumulation of anthocyanins under normal growth and low-temperature conditions for understanding the underlying mechanisms. The mutant had increased cold a tolerance with higher survival rate and biomass during overwintering compared to the wild type, which led to increased forage production. Transcriptomic analysis in combination with qRT-PCR and physiological measurements revealed that reduced anthocyanins accumulation in the mutant resulted from reduced expression of serial genes involving in anthocyanin biosynthesis, which led to the altered metabolism, with an increased accumulation of free amino acids and polyamines. The higher levels of free amino acids and proline in the mutant under low temperature were associated with improved cold tolerance. The altered expression of some genes involved in ABA and GA signaling was also associated with increased cold tolerance in the mutant.


Asunto(s)
Antocianinas , Vicia sativa , Antocianinas/genética , Antocianinas/metabolismo , Vicia sativa/genética , Vicia sativa/metabolismo , Transcriptoma/genética , Frío , Aminoácidos/metabolismo , Redes y Vías Metabólicas/genética , Regulación de la Expresión Génica de las Plantas
10.
Plants (Basel) ; 12(6)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36986962

RESUMEN

Common vetch (Vicia sativa L.) is a grain legume used in animal feeding, rich in protein content, fatty acid, and mineral composition that makes for a very adequate component to enrich feedstuff. In addition, relevant pharmacological properties have been reported in humans. The common vetch, similar to other legumes, can fix atmospheric nitrogen, a crucial feature for sustainable agricultural systems. These properties enhance the use of vetch as a cover crop and its sowing in intercropping systems. Moreover, several studies have recently pointed out the potential of vetch in the phytoremediation of contaminated soils. These characteristics make vetch a relevant crop, which different potential improvements target. Varieties with different yields, flowering times, shattering resistance, nutritional composition, rhizobacteria associations, drought tolerance, nitrogen fixation capacity, and other agronomic-relevant traits have been identified when different vetch accessions are compared. Recently, the analysis of genomic and transcriptomic data has allowed the development of different molecular markers to be used for assisted breeding purposes, promoting crop improvement. Here, we review the potential of using the variability of V. sativa genetic resources and new biotechnological and molecular tools for selecting varieties with improved traits to be used in sustainable agriculture systems.

11.
Plants (Basel) ; 13(1)2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38202360

RESUMEN

Anthracnose (Colletotrichum spinaciae) and powdery mildew (Erysiphe pisi) are important diseases of common vetch (Vicia sativa) and often co-occur in the same plant. Here, we evaluate how C. spinaciae infection affects susceptibility to E. pisi, using sterilized and non-sterilized field soil to test the effect of resident soil microorganisms on the plant's immune response. Plants infected with C. spinaciae (C+) exhibited a respective 41.77~44.16% and 72.37~75.27% lower incidence and severity of powdery mildew than uninfected (C-) plants. Moreover, the net photosynthetic rate, transpiration rate, and stomatal conductance were higher in the C- plants than in the C+ plants prior to infection with powdery mildew. These differences were not recorded following powdery mildew infection. Additionally, the activities of superoxide dismutase, polyphenol oxidase, and catalase were higher in the C+ plants than in the C- plants. The resident soil microbiota did not affect the plant responses to both pathogens. By uncovering the mechanistic basis of plant immune response, our study informs integrated disease management in a globally important forage crop.

12.
Foods ; 11(18)2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-36141051

RESUMEN

Three extraction methods: water extraction, lactic acid bacteria fermentation, and back-slopping fermentation were applied to extract a new type of legume starch, common vetch starch. Our results showed that the lactic acid bacteria fermented starch had the highest amylose content (35.69%), followed by the back-slopping fermented starch (32.34%), and the water-extracted starch (30.25%). Furthermore, erosion surface, lower molecular weight, smaller particle size, larger specific surface area, and a higher proportion of B1 chain were observed in the fermented starch, especially in the back-slopping fermented starch. All the extracted starches showed a type C structure, but a type CB structure was observed in the back-slopping fermented starch. In addition, the relative crystallinity of the lactic acid bacteria fermented starch (34.16%) and the back-slopping fermented starch (39.43%) was significantly higher than that of the water-extracted starch (30.22%). Moreover, the swelling power, solubility, pasting, and thermal properties of the fermented starches were also improved. In conclusion, the fermentation extraction method, especially back-slopping fermentation, could improve the quality of the extracted common vetch starch when compared with the traditional water extraction method.

13.
J Plant Physiol ; 278: 153811, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36126616

RESUMEN

Common vetch (Vicia sativa L.) is an important leguminous crop, providing humans with starch from seeds, feeding livestock with vegetative organs, or fertilizing soils by returning to field. It is aimed to evaluate salt tolerance in common vetch collections for breeding programs and to investigate the underlined physiological mechanisms. Relative germination rate and relative seedling growth showed great difference among common vetch collections in response to salt. A lower level of Na+ and higher levels of K+ and K+/Na+ ratio were maintained in both shoots and roots in salt-tolerant collections than in salt-sensitive ones under salt stress. Expression of the genes involved in transportation and redistribution of Na+ and K+ were cooperatively responsible for salt stress. Transcript levels of NHX7, HKT1, AKT2, and HAK17 in leaves and roots were induced after salt stress, with higher transcript levels in salt-tolerant collections compared with the sensitive ones. Proline and P5CS1 transcript levels were increased after salt stress, with higher levels in salt-tolerant collection compared with salt-sensitive ones. Both O2- and H2O2 were accumulated after salt stress, and lower levels were accumulated in salt-tolerant collection compared with salt-sensitive ones. Superoxide dismutase, catalase and ascorbate peroxidase activities were altered in response to salt and higher levels were maintained in salt-tolerant collections compared with salt-sensitive ones. It is suggested that salt tolerance in common vetch is associated with maintenance of K+ and Na+ homeostasis and the associated gene expression and promoted proline accumulation and antioxidant defense system.


Asunto(s)
Vicia sativa , Antioxidantes , Ascorbato Peroxidasas , Catalasa , Humanos , Peróxido de Hidrógeno , Fitomejoramiento , Prolina/metabolismo , Estrés Salino , Tolerancia a la Sal/genética , Sodio/metabolismo , Suelo , Almidón , Estrés Fisiológico , Superóxido Dismutasa , Vicia sativa/genética , Vicia sativa/metabolismo
14.
Int J Mol Sci ; 23(15)2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-35955619

RESUMEN

Owing to its strong environmental suitability to adverse abiotic stress conditions, common vetch (Vicia sativa) is grown worldwide for both forage and green manure purposes and is an important protein source for human consumption and livestock feed. The germination of common vetch seeds and growth of seedlings are severely affected by salinity stress, and the response of common vetch to salinity stress at the molecular level is still poorly understood. In this study, we report the first comparative transcriptomic analysis of the leaves and roots of common vetch under salinity stress. A total of 6361 differentially expressed genes were identified in leaves and roots. In the roots, the stress response was dominated by genes involved in peroxidase activity. However, the genes in leaves focused mainly on Ca2+ transport. Overexpression of six salinity-inducible transcription factors in yeast further confirmed their biological functions in the salinity stress response. Our study provides the most comprehensive transcriptomic analysis of common vetch leaf and root responses to salinity stress. Our findings broaden the knowledge of the common and distinct intrinsic molecular mechanisms within the leaves and roots of common vetch and could help to develop common vetch cultivars with high salinity tolerance.


Asunto(s)
Vicia sativa , Regulación de la Expresión Génica de las Plantas , Humanos , Hojas de la Planta/genética , Salinidad , Estrés Salino/genética , Estrés Fisiológico/genética , Transcriptoma , Vicia sativa/genética
15.
Int J Biol Macromol ; 216: 487-497, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35810850

RESUMEN

Common vetch (CV), a leguminous crop cultivated for green manure and fodder rich in protein and starch, is widespread over much area of the northern hemisphere. Its seeds can be used as a protein source to human consumption. CV protein isolates (CVPI) and major protein fractions (CV albumin protein, CVAP; CV globulin protein, CVGP; CV glutelin protein, CVGTP) from 4 samples were investigated the properties to facilitate full use of protein resources. Protein comprises 27.70 %-32.14 % of the dry CV seed weight, which is mainly composed by CVAP (26.79 %-56.12 %) and CVGP (22.78 %-52.42 %). CVPI, CVAP and CVGP mainly presented 7S and 11S components. CVGTP mainly contained the 11S component. They showed difference in thermal properties and surface hydrophobicity. Circular dichroism data showed that α-helix was their major secondary structure. CVPI and major protein fractions exhibited a U-shape protein solubility. CVPI and CVAP had advantages in emulsifying and foaming properties. This study provided novel insights on unexploited sources of CV proteins with interesting characteristics in terms of potential uses as protein-based foods.


Asunto(s)
Fabaceae , Globulinas , Vicia sativa , Fabaceae/química , Globulinas/química , Humanos , Proteínas de Plantas/química , Semillas/química , Vicia sativa/metabolismo
16.
Int J Mol Sci ; 23(4)2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35216390

RESUMEN

The common vetch (Vicia sativa L.) seed is an ideal plant-based protein food for humans, but its edible value is mainly limited by the presence of cyanogenic glycosides that hydrolyze to produce toxic hydrogen cyanide (HCN), and the genes that regulate HCN synthesis in common vetch are unknown. In this study, seeds from common vetch at 5, 10, 15, 20, 25, 30, and 35 days after anthesis were sampled, and the seven stages were further divided into five developmental stages, S1, S2, S3, S4, and S5, based on morphological and transcriptome analyses. A total of 16,403 differentially expressed genes were identified in the five developmental stages. The HCN contents of seeds in these five stages were determined by alkaline titration, and weighted gene coexpression network analysis was used to explain the molecular regulatory mechanism of HCN synthesis in common vetch seeds. Eighteen key regulatory genes for HCN synthesis were identified, including the VsGT2, VsGT17 and CYP71A genes, as well as the VsGT1 gene family. VsGT1, VsGT2, VsGT17 and CYP71A jointly promoted HCN synthesis, from 5 to 25 days after anthesis, with VsGT1-1, VsGT1-4, VsGT1-11 and VsGT1-14 playing major roles. The HCN synthesis was mainly regulated by VsGT1, from 25 to 35 days after anthesis. As the expression level of VsGT1 decreased, the HCN content no longer increased. In-depth elucidation of seed HCN synthesis lays the foundations for breeding common vetch with low HCN content.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/genética , Cianuro de Hidrógeno/metabolismo , Semillas/genética , Semillas/metabolismo , Transcriptoma/genética , Vicia sativa/genética , Vicia sativa/metabolismo , Perfilación de la Expresión Génica/métodos , Fitomejoramiento/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
17.
Mol Biol Rep ; 49(1): 313-320, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34741708

RESUMEN

BACKGROUND: Common vetch (Vicia sativa L.) is an annual legume with excellent suitability in cold and dry regions. Despite its great applied potential, the genomic information regarding common vetch currently remains unavailable. METHODS AND RESULTS: In the present study, the whole genome survey of common vetch was performed using the next-generation sequencing (NGS). A total of 79.84 Gbp high quality sequence data were obtained and assembled into 3,754,145 scaffolds with an N50 length of 3556 bp. According to the K-mer analyses, the genome size, heterozygosity rate and GC content of common vetch genome were estimated to be 1568 Mbp, 0.4345 and 35%, respectively. In addition, a total of 76,810 putative simple sequence repeats (SSRs) were identified. Among them, dinucleotide was the most abundant SSR type (44.94%), followed by Tri- (35.82%), Tetra- (13.22%), Penta- (4.47%) and Hexanucleotide (1.54%). Furthermore, a total of 58,175 SSR primer pairs were designed and ten of them were validated in Chinese common vetch. Further analysis showed that Chinese common vetch harbored high genetic diversity and could be clustered into two main subgroups. CONCLUSION: This is the first report about the genome features of common vetch, and the information will help to design whole genome sequencing strategies. The newly identified SSRs in this study provide basic molecular markers for germplasm characterization, genetic diversity and QTL mapping studies for common vetch.


Asunto(s)
Repeticiones de Microsatélite , Vicia sativa/genética , Secuenciación Completa del Genoma/métodos , Composición de Base , China , Mapeo Cromosómico , Tamaño del Genoma , Genoma de Planta , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia
18.
Ying Yong Sheng Tai Xue Bao ; 32(12): 4411-4418, 2021 Dec.
Artículo en Chino | MEDLINE | ID: mdl-34951282

RESUMEN

Northwest China is burdened by declining soil fertility and poor capacity of water and nutrient retention. A pot experiment was conducted to examine the effects of organic acid conditio-ners (OASC) with four application rates (0, 20, 40, and 60 g·kg-1) on soil nutrients and crop growth. Maize and common vetch were the focus crops and loessial soil and irrigated desert soil were the soil types. The results showed that OASC application reduced water evaporation loss and significantly improved soil available nutrient content, with the most obvious effects on soil phosphorus. Available phosphorus content and proportion were increased by 256.5% and 227.4%, respectively, compared with no OASC treatment. The shoot dry weights of maize and common vetch on loessial soil were initially increased with the increasing OASC application rate and were highest at the application rate of 20 g·kg-1. The values progressively decreased with increasing OASC addition rates. Total salt content was significantly increased and the rate of emergence of common vetch decreased at OASC rate exceeding 20 g·kg-1. For irrigated desert soil, the OASC application rate did not affect total salt content when maize was planted. There was significant increase in soil total salt contents when common vetch was planted and at the OASC rate of 60 g·kg-1. The shoot dry weight of common vetch and maize was highest with the OASC application rates at 40 g·kg-1 and 60 g·kg-1, respectively. The optimal OASC rate for planting common vetch and maize on loess soil was 20 g·kg-1. The application rates of 40 g·kg-1 and 60 g·kg-1 were optimal for planting common vetch and maize on irrigated desert, respectively.


Asunto(s)
Fertilizantes , Suelo , Agricultura , China , Fertilizantes/análisis , Nitrógeno/análisis , Nutrientes , Zea mays
19.
Open Life Sci ; 16(1): 1111-1121, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34712821

RESUMEN

Drought is among the most important natural disasters with severe effects on animals and plants. MicroRNAs are a class of noncoding RNAs that play a crucial role in plant growth, development, and response to stress factors, including drought. However, the microRNAs in drought responses in common vetch (Vicia sativa), an annual herbaceous leguminous plant commonly used for forage by including it in mixed seeding during winter and spring, have not been characterized. To explore the microRNAs' response to drought in common vetch, we sequenced 10 small RNA (sRNA) libraries by the next-generation sequencing technology. We obtained 379 known miRNAs belonging to 38 families and 47 novel miRNAs. The two groups had varying numbers of differentially expressed miRNAs: 85 in the comparison group D5 vs C5 and 38 in the comparison group D3 vs C3. Combined analysis of mRNA and miRNA in the same samples under drought treatment identified 318 different target genes of 123 miRNAs. Functional annotation of the target genes revealed that the miRNAs regulate drought-responsive genes, such as leucine-rich repeat receptor-like kinase-encoding genes (LRR-RLKs), ABC transporter G family member 1 (ABCG1), and MAG2-interacting protein 2 (MIP2). The genes were involved in various pathways, including cell wall biosynthesis, reactive oxygen removal, and protein transport. The findings in this study provide new insights into the miRNA-mediated regulatory networks of drought stress response in common vetch.

20.
Plant Direct ; 5(10): e352, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34646975

RESUMEN

Wild plants are often tolerant to biotic and abiotic stresses in their natural environments, whereas domesticated plants such as crops frequently lack such resilience. This difference is thought to be due to the high levels of genome heterozygosity in wild plant populations and the low levels of heterozygosity in domesticated crop species. In this study, common vetch (Vicia sativa) was used as a model to examine this hypothesis. The common vetch genome (2n = 14) was estimated as 1.8 Gb in size. Genome sequencing produced a reference assembly that spanned 1.5 Gb, from which 31,146 genes were predicted. Using this sequence as a reference, 24,118 single nucleotide polymorphisms were discovered in 1243 plants from 12 natural common vetch populations in Japan. Common vetch genomes exhibited high heterozygosity at the population level, with lower levels of heterozygosity observed at specific genome regions. Such patterns of heterozygosity are thought to be essential for adaptation to different environments. The resources generated in this study will provide insights into de novo domestication of wild plants and agricultural enhancement.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA