Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 278: 116395, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38728939

RESUMEN

Escherichia coli (E. coli) plays an important ecological role, and is a useful bioindicator to recognize the evolution of resistance in human, animal and environment. Recently, extended-spectrum ß-lactamases (ESBL) producing E.coli has posed a threat to public health. Generally, captive healthy giant pandas are not exposed to antibiotics; however, they still acquire antimicrobial resistant bacteria. In order to understand whether there is an exchange of resistance genes within the ecosystems of captive giant pandas, this study explored resistance characteristics of 330 commensal E. coli isolates from feces of giant pandas, the surroundings, and breeders. Isolates from different sources showed similar resistance phenotype, and ESBL/AmpC-producing isolates showed more profound resistance to antibiotics than non-ESBL/AmpC-producing isolates (P<0.05). Furthermore, the occurrence of broad-spectrum ß-lactamase related resistance genes and colistin resistance genes was detected, and isolates phylogenetic typing and multilocus sequence typing (MLST) were applied in this study. Seven different ß-lactamase resistance genes (blaCTX-M-55, blaCTX-M-15, blaCTX-M-27, blaCTX-M-65, blaTEM-1, blaOXA-1 and blaCMY) and mcr-1 were found in 68 ESBL/AmpC-producing isolates. blaCTX-M-55 (48.53 %) was found the most predominant resistance genes, followed by blaTEM-1 (19.12 %) and blaCTX-M-27 (16.18 %). Nonetheless, blaCTX-M-55 was commonly detected in the isolates from giant pandas (63.16 %), the surroundings (43.48 %), and breeders (33.33 %). However, there were no carbapenemase genes detected in this study. mcr-1 was harbored in only one isolate from giant panda. Forty-five tansconjugants were successfully obtained in the conjugation experiments. The presence of antimicrobial resistance and related resistance genes tested were observed in the transconjugants. The results indicated that 52.63 % of the isolates from giant panda 73.91 % of the isolates from surroundings, and 100 % of the isolates from breeders were phylogroup A. Total of 27 sequence types (ST) were recognized from the isolate by MLST and found that ST48 (19/68; 27.94 %) was the predominant ST type, especially in the isolates from giant pandas and the surroundings. In conclusion, commensal ESBL/AmpC-producing E. coli becomes a reservoir of ESBL resistance genes, which is a potential threaten to health of giant pandas. The interaction between giant pandas, surroundings and breeders contribute to development of resistant phenotypes and genotypes which might transfer across species or the surroundings easily; hence, strict monitoring based on a "One Health" approach is recommended.


Asunto(s)
Antibacterianos , Proteínas Bacterianas , Escherichia coli , Heces , Tipificación de Secuencias Multilocus , Ursidae , beta-Lactamasas , Animales , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , beta-Lactamasas/genética , Ursidae/microbiología , China , Antibacterianos/farmacología , Heces/microbiología , Proteínas Bacterianas/genética , Ecosistema , Filogenia , Pruebas de Sensibilidad Microbiana , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/veterinaria , Farmacorresistencia Bacteriana Múltiple/genética , Farmacorresistencia Bacteriana/genética
2.
Appl Environ Microbiol ; 89(3): e0162822, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36809030

RESUMEN

Changes in the gut microbiota have been linked to metabolic endotoxemia as a contributing mechanism in the development of obesity and type 2 diabetes. Although identifying specific microbial taxa associated with obesity and type 2 diabetes remains difficult, certain bacteria may play an important role in initiating metabolic inflammation during disease development. The enrichment of the family Enterobacteriaceae, largely represented by Escherichia coli, induced by a high-fat diet (HFD) has been correlated with impaired glucose homeostasis; however, whether the enrichment of Enterobacteriaceae in a complex gut microbial community in response to an HFD contributes to metabolic disease has not been established. To investigate whether the expansion of Enterobacteriaceae amplifies HFD-induced metabolic disease, a tractable mouse model with the presence or absence of a commensal E. coli strain was established. With an HFD treatment, but not a standard-chow diet, the presence of E. coli significantly increased body weight and adiposity and induced impaired glucose tolerance. In addition, E. coli colonization led to increased inflammation in liver and adipose and intestinal tissue under an HFD regimen. With a modest effect on gut microbial composition, E. coli colonization resulted in significant changes in the predicted functional potential of microbial communities. The results demonstrated the role of commensal E. coli in glucose homeostasis and energy metabolism in response to an HFD, indicating contributions of commensal bacteria to the pathogenesis of obesity and type 2 diabetes. The findings of this research identified a targetable subset of the microbiota in the treatment of people with metabolic inflammation. IMPORTANCE Although identifying specific microbial taxa associated with obesity and type 2 diabetes remains difficult, certain bacteria may play an important role in initiating metabolic inflammation during disease development. Here, we used a mouse model distinguishable by the presence or absence of a commensal Escherichia coli strain in combination with a high-fat diet challenge to investigate the impact of E. coli on host metabolic outcomes. This is the first study to show that the addition of a single bacterial species to an animal already colonized with a complex microbial community can increase severity of metabolic outcomes. This study is of interest to a wide group of researchers because it provides compelling evidence to target the gut microbiota for therapeutic purposes by which personalized medicines can be made for treating metabolic inflammation. The study also provides an explanation for variability in studies investigating host metabolic outcomes and immune response to diet interventions.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Animales , Ratones , Escherichia coli/fisiología , Dieta Alta en Grasa/efectos adversos , Obesidad/microbiología , Bacterias , Inflamación , Enterobacteriaceae , Modelos Animales de Enfermedad , Glucosa/metabolismo , Ratones Endogámicos C57BL
3.
Poult Sci ; 101(4): 101770, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35240351

RESUMEN

Several strategies have been in place in food animal production to reduce the unnecessary use of antimicrobial agents. Beyond the monitoring of their use, the evaluation of the effect of these strategies on the occurrence and types of antimicrobial resistance (AMR) associated genes is crucial to untangle the potential emergence and spread of AMR to humans through the food chain. In the present study, the occurrence of these genes was evaluated in commensal Escherichia coli isolated from broiler carcasses "produced without the use of antibiotics" in 3 antibiotic-free (AB-free) farms in Italy in 2019. Sequenced data were analyzed along with publicly available genomes of E. coli collected in Italy from the broiler food chain from previous years (2017-2018). The genetic relationships among all 93 genomes were assessed on de novo assemblies by in silico MLST and SNP calling. Moreover, the resistomes of all genomes were investigated. According to SNP calling, genomes were gathered in three clades. Clade A encompassed, among others, ST117, ST8070, and ST1011 genomes. ST10 belonged to clade B, whereas Clade C included ST58, ST297, ST1101, and ST23 among others. Regarding the occurrence of AMR genes, a statistically significant lower occurrence of these genes in the genomes of this study in comparison to the public genomes was observed considering the whole group of genes as well as genes specifically conferring resistance to aminoglycosides, ß-lactams, phenicols, trimethoprim, and lincosamides. Moreover, significant reductions were observed by comparing the whole group of AMR associated mutations, as well as those specifically for fluoroquinolones and fosfomycin resistance. Although the identification of 3° generation cephalosporin resistance associated genes in AB-free E. coli is a concern, this study provides a first indication of the impact of a more prudent use of antimicrobial agents on the occurrence of AMR genes in Italian broiler production chain. More studies are needed in next years on a higher number of genomes to confirm this preliminary observation.


Asunto(s)
Pollos , Infecciones por Escherichia coli , Escherichia coli , Animales , Antibacterianos/farmacología , Pollos/microbiología , Farmacorresistencia Bacteriana/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/aislamiento & purificación , Infecciones por Escherichia coli/veterinaria , Tipificación de Secuencias Multilocus/veterinaria
4.
Lett Appl Microbiol ; 73(5): 623-633, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34376018

RESUMEN

The human gut houses a complex group of bacterial genera, including both opportunistic pathogens and commensal micro-organisms. These are regularly exposed to antibiotics, and their subinhibitory concentrations play a pivotal role in shaping the microbial responses. This study was aimed to investigate the effects exerted by sub-MICs of nalidixic acid (NA) on the growth rate, bacterial motility, biofilm formation and expression of outer membrane proteins (OMPs) in a commensal strain of E. coli. The NA-sensitive strain was sequentially passaged under sub-MICs of NA. E-test was used to determine the MIC values of NA. Results indicated significant changes in the growth profile of commensal E. coli upon exposure to NA at sub-MICs. Differential expression of OMPs was observed in cells treated with sub-MICs of NA. Bacterial motility was reduced under 1/2 MIC of NA. Interestingly, successive passaging under 1/2 MIC of NA led to the emergence of resistant E. coli with an increased MIC value of 64 µg ml-1 in just 24 days. The NA-resistant variant was confirmed by comparing its 16S rRNA sequence to that of the sensitive commensal strain. Mutations in the Quinolone Resistance-Determining Regions (QRDRs) of chromosomal gyrA, and Topoisomerase IV-encoding parC genes were detected in NA-resistant E. coli. Our results demonstrate how antibiotics play an important role as signalling molecules or elicitors in driving the pathogenicity of commensal bacteria in vitro.


Asunto(s)
Escherichia coli , Ácido Nalidíxico , Antibacterianos/farmacología , Fenómenos Fisiológicos Bacterianos , Girasa de ADN/genética , Topoisomerasa de ADN IV/genética , Farmacorresistencia Bacteriana , Escherichia coli/genética , Humanos , Pruebas de Sensibilidad Microbiana , Mutación , Ácido Nalidíxico/farmacología , ARN Ribosómico 16S
5.
Antibiotics (Basel) ; 10(4)2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33810387

RESUMEN

We recently described the genetic antimicrobial resistance and virulence profile of a collection of 279 commensal E. coli of food-producing animal (FPA), pet, wildlife and human origin. Phenotypic antimicrobial resistance (AMR) and the role of commensal E. coli as reservoir of extra-intestinal pathogenic Escherichia coli (ExPEC) virulence-associated genes (VAGs) or as potential ExPEC pathogens were evaluated. The most common phenotypic resistance was to tetracycline (76/279, 27.24%), sulfamethoxazole/trimethoprim (73/279, 26.16%), streptomycin and sulfisoxazole (71/279, 25.45% both) among the overall collection. Poultry and rabbit were the sources mostly associated to AMR, with a significant resistance rate (p > 0.01) to quinolones, streptomycin, sulphonamides, tetracycline and, only for poultry, to ampicillin and chloramphenicol. Finally, rabbit was the source mostly associated to colistin resistance. Different pandemic (ST69/69*, ST95, ST131) and emerging (ST10/ST10*, ST23, ST58, ST117, ST405, ST648) ExPEC sequence types (STs) were identified among the collection, especially in poultry source. Both ST groups carried high number of ExPEC VAGs (pandemic ExPEC STs, mean = 8.92; emerging ExPEC STs, mean = 6.43) and showed phenotypic resistance to different antimicrobials (pandemic ExPEC STs, mean = 2.23; emerging ExPEC STs, mean = 2.43), suggesting their role as potential ExPEC pathogens. Variable phenotypic resistance and ExPEC VAG distribution was also observed in uncommon ExPEC lineages, suggesting commensal flora as a potential reservoir of virulence (mean = 3.80) and antimicrobial resistance (mean = 1.69) determinants.

6.
J Appl Microbiol ; 131(2): 682-694, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33387370

RESUMEN

AIMS: The goal was to study the effects of sub-minimum inhibitory concentrations (sub-MICs) of amoxicillin (AMX) on various physiological responses and virulence determinants in a commensal strain of Escherichia coli. MATERIALS AND RESULTS: The commensal strain was passaged under various sub-MICs of AMX and its effect on bacterial growth, motility, biofilm formation, expression of outer membrane proteins (OMPs) and cell adhesion was analysed. Bacterial growth was diminished at 1/2 and 1/4 MICs of AMX with significant reduction in growth rate. Using crystal violet (CV) assays and quantification of surface polysaccharides we observed strong biofilm formation, together with reduced swimming motility in E. coli at 1/2 MIC of AMX. Differential OMP expression upon AMX sub-MIC exposure coincided with enhanced cell adhesion to HT-29 cells in vitro. The results demonstrated that sub-MICs of AMX can stimulate unpredictable changes in commensal bacterial strains which can be a potent source for the propagation of antibiotic resistance. CONCLUSIONS: The study reports that AMX at 1/2 MIC significantly compromised bacterial growth and swimming motility, alongside inducing biofilm formation. This was also accompanied by upregulation of a single OMP which subsequently increased cell adhesion capabilities in E. coli at 1/2 MIC, thereby enhancing its colonization and survival abilities within the gut microsphere. SIGNIFICANCE AND IMPACT OF THE STUDY: For the first time, the effects of AMX sub-MICs on a commensal E. coli strain were described. The results corroborate on how antibiotics can act as stimulatory molecules and determine the pathogenicity of commensal bacteria in vivo that can disseminate resistance to other intestinal pathogens or microbes.


Asunto(s)
Amoxicilina/farmacología , Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Adhesión Bacteriana/efectos de los fármacos , Proteínas de la Membrana Bacteriana Externa/metabolismo , Biopelículas/efectos de los fármacos , Escherichia coli/metabolismo , Escherichia coli/patogenicidad , Escherichia coli/fisiología , Células HT29 , Humanos , Virulencia/efectos de los fármacos
7.
BMC Microbiol ; 20(1): 366, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33256594

RESUMEN

BACKGROUND: The emergence of metallo-ß-lactamase (MBL)-producing isolates is alarming since they carry mobile genetic elements with great ability to spread; therefore, early detection of these isolates, particularly their reservoir, is crucial to prevent their inter- and intra-care setting dissemination and establish suitable antimicrobial therapies. The current study was designed to evaluate the frequency of antimicrobial resistance (AMR), MBL producers and identification of MBL resistance genes in Escherichia coli strains isolated from fecal samples of the healthy children under 3 years old. A total of 412 fecal E. coli isolates were collected from October 2017 to December 2018. The study population included healthy infants and children aged < 3 years who did not exhibit symptoms of any diseases, especially gastrointestinal diseases. E. coli isolates were assessed to determine the pattern of AMR. E. coli isolates were assessed to determine the pattern of AMR, the production of extended spectrum ß-lactamase (ESBL) and MBL by phenotypic methods. Carbapenem-resistant isolates were investigated for the presence of MBL and carbapenemase genes, plasmid profiling, and the ability of conjugation. RESULTS: In sum, AMR, multi-drug resistance (MDR) and ESBL production were observed in more than 54.9, 36.2 and 11.7% of commensal E. coli isolates, respectively. Out of six isolates resistant to imipenem and meropenem, four isolates were phenotypically detected as MBL producers. Two and one E. coli strains carried the blaNDM-1 and blaVIM-2 genes, respectively and were able to transmit imipenem resistance through conjugation. CONCLUSION: Our findings showed that children not exposed to antibiotics can be colonized by E. coli isolates resistant to the commonly used antimicrobial compounds and can be a good indicator for the occurrence and prevalence of AMR in the community. These bacteria can act as a potential reservoir of AMR genes including MBL genes of pathogenic bacteria and lead to the dissemination of resistance mechanisms to other bacteria.


Asunto(s)
Farmacorresistencia Bacteriana , Escherichia coli/fisiología , beta-Lactamasas/metabolismo , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Carbapenémicos/farmacología , Preescolar , Conjugación Genética , Farmacorresistencia Bacteriana/efectos de los fármacos , Farmacorresistencia Bacteriana/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/enzimología , Escherichia coli/aislamiento & purificación , Heces/microbiología , Femenino , Humanos , Lactante , Irán , Masculino , Pruebas de Sensibilidad Microbiana , Plásmidos/genética , beta-Lactamasas/genética
8.
Antibiotics (Basel) ; 9(11)2020 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-33172096

RESUMEN

Animals, humans and food are all interconnected sources of antimicrobial resistance (AMR), allowing extensive and rapid exchange of AMR bacteria and genes. Whole genome sequencing (WGS) was used to characterize 279 Escherichia coli isolates obtained from animals (livestock, companion animals, wildlife), food and humans in Italy. E. coli predominantly belonged to commensal phylogroups B1 (46.6%) and A (29%) using the original Clermont criteria. One hundred and thirty-six sequence types (STs) were observed, including different pandemic (ST69, ST95, ST131) and emerging (ST10, ST23, ST58, ST117, ST405, ST648) extraintestinal pathogenic Escherichia coli (ExPEC) lineages. Eight antimicrobial resistance genes (ARGs) and five chromosomal mutations conferring resistance to highest priority critically important antimicrobials (HP-CIAs) were identified (qnrS1, qnrB19, mcr-1, blaCTX-M1,15,55, blaCMY-2, gyrA/parC/parE, ampC and pmrB). Twenty-two class 1 integron arrangements in 34 strains were characterized and 11 ARGs were designated as intI1 related gene cassettes (aadA1, aadA2, aadA5, aad23, ant2_Ia, dfrA1, dfrA7, dfrA14, dfrA12, dfrA17, cmlA1). Notably, most intI1 positive strains belonged to rabbit (38%) and poultry (24%) sources. Three rabbit samples carried the mcr-1 colistin resistance gene in association with IS6 family insertion elements. Poultry meat harbored some of the most prominent ExPEC STs, including ST131, ST69, ST10, ST23, and ST117. Wildlife showed a high average number of virulence-associated genes (VAGs) (mean = 10), mostly associated with an ExPEC pathotype and some predominant ExPEC lineages (ST23, ST117, ST648) were identified.

9.
Front Microbiol ; 11: 565349, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33154738

RESUMEN

Multiple-drug resistance bacteria containing antimicrobial resistance genes (ARGs) are a concern for public health. Integrons are bacterial genetic elements that can capture, rearrange, and express mobile gene cassettes responsible for the spread of ARGs. Few studies link genotype and phenotype of swine-related ARGs in the context of mobile gene cassette arrays among commensal Escherichia coli (E. coli) in nonclinical livestock isolates from intensive farms. In the present study, a total of 264 isolates were obtained from 330 rectal swabs to determine the prevalence and characteristics of antibiotic-resistant gene being carried by commensal E. coli in the healthy swine from four intensive farms at Anhui, Hebei, Shanxi, and Shaanxi, in China. Antimicrobial resistance phenotypes of the recovered isolates were determined for 19 antimicrobials. The E. coli isolates were commonly nonsusceptible to doxycycline (75.8%), tetracycline (73.5%), sulfamethoxazole-trimethoprim (71.6%), amoxicillin (68.2%), sulfasalazine (67.1%), ampicillin (58.0%), florfenicol (56.1%), and streptomycin (53.0%), but all isolates were susceptible to imipenem (100%). Isolates [184 (69.7%)] exhibited multiple drug resistance with 11 patterns. Moreover, 197 isolates (74.6%) were detected carrying the integron-integrase gene (intI1) of class 1 integrons. A higher incidence of antimicrobial resistance was observed in the intI1-positive E. coli isolates than in the intI1-negative E. coli isolates. Furthermore, there were 17 kinds of gene cassette arrays in the 70 integrons as detected by sequencing amplicons of variable regions, with 66 isolates (94.3%) expressing their gene cassettes encoding for multiple drug resistance phenotypes for streptomycin, neomycin, gentamicin, kanamycin, amikacin, sulfamethoxazole-trimethoprim, sulfasalazine, and florfenicol. Notably, due to harboring multiple, hybrid, and recombination cassettes, complex cassette arrays were attributed to multiple drug resistance patterns than simple arrays. In conclusion, we demonstrated that the prevalence of multiple drug resistance and the incidence of class 1 integrons were 69.7 and 74.6% in commensal E. coli isolated from healthy swine, which were lower in frequency than that previously reported in China.

10.
Plasmid ; 112: 102541, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32979461

RESUMEN

A large plasmid, pCERC14, found in an antibiotic resistant commensal Escherichia coli isolate recovered from a healthy adult was sequenced. pCERC14 was 162,926 bp and carried FII-18 and FIB-1 replicons and an F-like transfer region as well as several virulence determinants, some of which are involved in the uptake of iron which would be advantageous for the commensal lifestyle. The plasmid backbone is interrupted in 11 places by complete IS (IS1 (4 copies), IS2 (2), IS629 (2) and single IS100, IS186, ISEc33) and in three places by partial IS copies. The antibiotic resistance genes were found in two IS26-bounded pseudo-compound transposons (PCT). One contained a remnant of a class 1 integron that includes a dfrA5 gene cassette and the sul1 gene conferring resistance to trimethoprim and sulphonamides, respectively. The second, named PTntet(C)-var, contained a 4828 bp DNA segment that includes the tet(C) tetracycline resistance determinant. As tet(C) is relatively rare in E. coli and other Gram-negative bacterial isolates, the structure and evolution of tet(C)-containing PCT in available sequences was examined. The largest identified was PTntet(C), a close relative of PTntet(C)-var, and a potential progenitor for these PCT. Most PCT shared one internal boundary with PTntet(C) but the length of the central tet(C)-containing segment was shorter due to IS26-mediated deletions. The most abundant variant form, previously named Tn6309, was widely distributed and, in a derivative of it, most of the tetA(C) gene has been replaced by the tetA(A) gene presumably by homologous recombination.


Asunto(s)
Elementos Transponibles de ADN , Genes Bacterianos , Integrones , Plásmidos/genética , Resistencia a la Tetraciclina , Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Recombinación Homóloga , Humanos , Tetraciclina/farmacología , Virulencia/genética
11.
Jpn J Infect Dis ; 73(6): 437-442, 2020 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-32475872

RESUMEN

We investigated the relationship between colibactin-producing (clb+) Escherichia coli and colorectal adenocarcinoma. In total, 729 E. coli colonies were isolated from tumor and surrounding non-tumor regions in resected specimens from 34 Japanese patients; 450 colonies were from the tumor regions and 279 from the non-tumor regions. clb+ bacteria were found in tumor regions of 11 patients (11/34, 32.4%) and they were also detected in the non-tumor regions of 7 out of these 11 patients (7/34, 20.6%). The prevalence of clb+ isolates was 72.7% (327/450) and 44.1% (123/279) in tumor and non-tumor regions, respectively. All the recovered clb+ isolates belonged to the phylogenetic group B2 and were the most predominant type in tumor regions. Hemolytic (α-hemolysin-positive, hlyA+) and non-hemolytic (α-hemolysin-negative, hlyA-) clb+ isolates were obtained from patient #19; however, the prevalence of hlyA+ clb+ isolates was significantly higher in tumor regions (35/43, 81.4%) than in non-tumor regions (3/19, 15.8%). Moreover, a significantly higher production of N-myristoyl-D-asparagine, a by-product of colibactin biosynthesis, was observed in hlyA+ clb+ isolates than in hlyA- clb+ isolates. Our results suggest that hlyA+ clb+ E. coli may have a selective advantage in colorectal colonization and, consequently, might play a role in carcinogenesis. The presence of hlyA+ clb+ bacteria in healthy individuals is a potential risk marker of colorectal cancer.


Asunto(s)
Adenocarcinoma/microbiología , Neoplasias Colorrectales/microbiología , Infecciones por Escherichia coli/microbiología , Escherichia coli/aislamiento & purificación , Péptidos/metabolismo , Policétidos/metabolismo , Anciano , Anciano de 80 o más Años , Carcinogénesis , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Femenino , Genes Bacterianos , Proteínas Hemolisinas/genética , Humanos , Japón , Masculino , Persona de Mediana Edad , Filogenia , Reacción en Cadena de la Polimerasa/métodos , Estudios Retrospectivos
12.
Antimicrob Resist Infect Control ; 9(1): 31, 2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-32046786

RESUMEN

BACKGROUND: Antimicrobial resistance is a serious public health problem. Fecal carriage of drug-resistant bacteria has been suggested as an important source of antimicrobial resistant genes (ARGs). We aimed to identify risk factors associated with fecal carriage of drug-resistant commensal Escherichia coli among healthy adult population. METHODS: We conducted a systematic review and meta-analysis following the PRISMA guideline. We identified observational studies published from 2014 to 2019 through PubMed, Embase, and Web of Science. Studies were eligible if they investigated and reported risk factors and accompanying measure of associations for fecal carriage of drug-resistant E. coli for healthy population aged 18-65. Data on risk factors assessed in three or more studies were extracted. RESULTS: Fifteen of 395 studies involving 11480 healthy individuals were included. The pooled prevalence of drug-resistant Enterobacteriaceae was 14% (95% confidence interval [CI] 8-23%). Antimicrobial use within the 12 months prior to stool culture (odds ratio [OR] 1.84 [95%CI 1.35-2.51]), diarrhea symptoms (OR 1.56 [95%CI 1.09-2.25]), travel to India (OR 4.15 [95%CI 2.54-6.78]), and vegetarian diet (OR 1.60 [95%CI 1.00(1.0043)-2.56(2.5587)]) were associated with increased risk of fecal carriage of drug-resistant E. coli. Among travellers, antimicrobial use (OR 2.81 [95%CI 1.47-5.36]), diarrhea symptoms (OR 1.65 [95%CI 1.02-2.68]), travel to India (OR 3.80 [95%CI 2.23-6.47]), and vegetarian diet (OR 1.92 [95%CI 1.13-3.26]) were associated with increased risk. Among general adult population, antimicrobial use (OR 1.51 [95%CI 1.17-1.94]), diarrhea symptoms (OR 1.53 [95%CI 1.27-1.84]), and travel to Southeast Asia (OR 1.67 [95%CI 1.02-2.73]) were associated with the increased risk of drug-resistant E. coli carriage. CONCLUSIONS: The findings indicate that dietary habit as well as past antimicrobial use and travel to high-risk country are associated with the risk of fecal carriage of drug-resistant commensal E. coli.


Asunto(s)
Farmacorresistencia Bacteriana , Infecciones por Escherichia coli/transmisión , Escherichia coli , Factores de Riesgo , Adolescente , Adulto , Anciano , Antibacterianos/uso terapéutico , Enterobacteriaceae Resistentes a los Carbapenémicos/efectos de los fármacos , Farmacorresistencia Bacteriana/genética , Escherichia coli/genética , Infecciones por Escherichia coli/epidemiología , Heces/microbiología , Conducta Alimentaria , Genes Bacterianos , Humanos , Persona de Mediana Edad , Prevalencia , Viaje , Adulto Joven
13.
Artículo en Inglés | MEDLINE | ID: mdl-31935799

RESUMEN

Commensal Escherichia coli, naturally occurring in the intestinal tract, can be the origin of extraintestinal pathogenic E. coli (ExPEC) strains. ExPEC causes high mortality and significant economic losses in the swine industry in several countries and poses a serious threat to public health worldwide. The aim of this study was to analyze the extended phylogenetic structure and extraintestinal virulence potential in two groups of commensal E. coli isolates from post-weaning piglets and sows. The phylogenetic assignment to eight groups was determined using the revised Clermont phylogenetic typing method in quadruplex PCR. Identification of extraintestinal virulence genes (VGs) and adhesin operon genes was performed using multiplex or simplex PCR. The revised phylogenetic assignment allowed us to distinguish E. coli with significantly higher (groups C and F) or lower (group E) virulence potential in isolates from piglets. The majority of the tested VGs occurred more frequently in isolates from piglets than from sows, with statistically significant differences for seven genes: fimH, papAH, iutA, iroN, ompT, traT, and iss. Complete operons for type I and P fimbriae significantly prevailed among E. coli from piglets. This study provides insight into the extended phylogenetic structure of porcine commensal E. coli and showed that these strains, particularly from piglets, constitute a considerable reservoir of extraintestinal VGs and may increase the potential risk of extraintestinal infections.


Asunto(s)
Escherichia coli/genética , Escherichia coli/patogenicidad , Porcinos/microbiología , Animales , Portador Sano , Escherichia coli/aislamiento & purificación , Proteínas de Escherichia coli/genética , Femenino , Fimbrias Bacterianas , Humanos , Operón , Filogenia , Virulencia/genética , Factores de Virulencia/genética , Destete
14.
Glob Health Action ; 12(sup1): 1815272, 2019 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-32909519

RESUMEN

BACKGROUND: The majority of existing studies aimed at investigating the incidence and prevalence of multidrug-resistance by bacteria have been performed in healthcare settings. Relatively few studies have been conducted in community settings, but these have consistently shown a high prevalence of multidrug-resistant bacteria in low- and middle-income countries (LMICs). OBJECTIVES: To provide an appraisal of the evidence on the high prevalence of multidrug-, extensive drug-, and pandrug-resistance in commensal Escherichia coli isolates from human sources in community settings in LMICs. METHODS: Using the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines, PubMed, EMBASE, MEDLINE, Web of Science, CINAHL, and Cochrane Library databases were systematically searched with the search string: 'Enterobacteriaceae', OR 'E. coli', OR 'Escherichia coli', AND 'antibiotic resistance', OR 'antimicrobial resistance', OR 'drug-resistance', AND 'prevalence', OR 'incidence', OR 'morbidity', OR 'odds ratio', OR 'risk ratio', OR 'confidence interval', OR 'p-value', OR 'rate'. Data were extracted and proportional meta-analysis was performed using the Freeman-Tukey transformation random effect model. RESULTS: The prevalence of multidrug-, extensive drug- and pandrug-resistance were extracted from articles that met our inclusion criteria and pooled together after a systematic screening of 9,369 items. The prevalence of multidrug-resistance was 28% of 14,336 total cases of isolates tested, 95% CI: 23-32. Extensive drug-resistance was 24% of 8,686 total cases of isolates tested, 95% CI: 14-36. Lastly, pandrug-resistance was 5% of 5,670 total cases of isolates tested, 95% CI: 3-8. CONCLUSION: This paper provides an appraisal of the evidence on the high prevalence of multidrug-, extensive drug- and pandrug-resistance by commensal E. coli in community settings in LMICs. Our results call for greater effort to be placed at the community level in the design of new and improved public health policies to counter the global threat of antibiotic-resistant infections and bacteria.


Asunto(s)
Farmacorresistencia Bacteriana Múltiple , Escherichia coli/aislamiento & purificación , Países en Desarrollo , Escherichia coli/efectos de los fármacos , Humanos , Incidencia , Prevalencia
15.
Vet World ; 12(12): 2070-2075, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32095061

RESUMEN

BACKGROUND AND AIM: There is currently no published information on the prevalence and antimicrobial susceptibility patterns of commensal Escherichia coli in dogs of Grenada origin. Monitoring antimicrobial resistance helps in the empirical selection of antibiotics. This study determined the occurrence of E. coli including the O157:H7 serotype in feces of non-diarrheic dogs of Grenada origin and the antibiotic resistance pattern of the E. coli isolates. MATERIALS AND METHODS: Fecal samples from 142 of the 144 (98.6%) dogs were culture positive for E. coli. Selection of up to three colonies from each of the 142 E. coli-positive samples yielded a total of 402 E. coli isolates, which were analyzed for the presence of non-sorbitol fermenting colonies, and O157-agglutination. RESULTS: Of the 402 E. coli isolates, 30 (7.5%) were non-sorbitol fermenters. However, none of the 402 isolates gave a positive reaction (O157:H7) to the E. coli O157:H7 latex kit. Antimicrobial susceptibility tests against 12 antibiotics revealed low resistance rates to all the tested antibiotics except for tetracycline (Te) (23.4%), cephalothin (CF) (13.2%), and ampicillin (AM) (7.7%). Thirty-nine out of the 402 (9.7%), E. coli isolates were resistant to two or more antibiotics of different classes. CONCLUSION: This is the first report of isolation and antimicrobial susceptibilities of commensal E. coli from non-diarrheic dogs in Grenada. Some of the isolates (39/402 isolates, 9.7%) were resistant to multiple antibiotics. This study showed that presently, dogs in Grenada should not be considered a reservoir for the E. coli O157:H7 serotype and for multiple antibiotic-resistant E. coli strains. Among the 402 E. coli isolates, the resistance rate to drugs other than Te, CF, and AM was very low.

16.
Microbes Environ ; 33(3): 242-248, 2018 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-30210140

RESUMEN

Antibiotics in animal husbandry are used to maintain welfare, but lead to the generation of resistant strains. We analyzed commensal multidrug-resistant Escherichia coli from pigs at the beginning and end of the production cycle in a farm with a farrow-to-finish system in order to investigate whether clonal spread or horizontal gene transfer constitutes the main factor responsible for the prevalence of resistance in this environment. Among 380 isolates, 56 multidrug-resistant E. coli with a similar resistant phenotype were selected for more detailed investigations including a genomic similarity analysis and the detection of mobile elements. Isolates carried blaTEM-1, aadA1, strA/B, tetA, tetB, tetC, dfrA1, dfrA5, dfrA7, dfrA12, sul1, sul2, sul3, and qnrS resistance genes, with the common co-occurrence of genes encoding the same resistance phenotype. A pulse-field gel electrophoresis analysis of the genomic similarity of multidrug-resistant E. coli showed ≤65% similarity of most of the tested strains and did not reveal a dominant clone responsible for the prevalence of resistance. Class 1 and 2 integrons and transposons 7 and 21 were detected among mobile elements; however, some were truncated. Plasmids were represented by 11 different incompatibility groups (K, FIB, I1, FIIA, FIC, FIA, Y, P, HI1, B/O, and T). Genetic resistance traits were unevenly spread in the clonal groups and suggested the major rearrangement of genetic material by horizontal gene transfer. The present results revealed that in commensal E. coli from pigs in a homogeneous farm environment, there was no dominant clone responsible for the spread of resistance and persistence in the population.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Infecciones por Escherichia coli/veterinaria , Escherichia coli/efectos de los fármacos , Escherichia coli/aislamiento & purificación , Porcinos/microbiología , Animales , Análisis por Conglomerados , Elementos Transponibles de ADN , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Escherichia coli/genética , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/genética , Granjas , Heces/microbiología , Femenino , Transferencia de Gen Horizontal , Genes Bacterianos , Pruebas de Sensibilidad Microbiana/veterinaria , Viabilidad Microbiana/efectos de los fármacos , Plásmidos , Polonia , Destete
17.
Artículo en Inglés | MEDLINE | ID: mdl-29597292

RESUMEN

Commensal Escherichia coli population is a dynamic structure which may be important in the pathogenesis of extraintestinal infections. The aim of this study was the comparison of genetic diversity of commensal E. coli isolates from two age group-adults and young children. E. coli strains were isolated on MacConkey agar and identified by biochemical tests. Determination of four major phylogenetic groups, identification of virulence genes and antimicrobial resistance determinants were performed by using multiplex or simplex PCR. Phenotypic analysis of resistance was based on disc-diffusion method. The prevalence of virulence genes was significantly higher among isolates from adults than from young children. Phylogroup B2 predominated among E. coli from adults, whereas phylogroup A was the most common in isolates from young children. The analyses of antimicrobial resistance revealed that resistance to at least one antimicrobial agent and multidrug-resistance were detected significantly more frequent in the isolates from adults than from young children. This study documented that the commensal E. coli isolates from adults showed greater genetic diversity than from young children and constitutes a substantial reservoir of the virulence genes typical for extraintestinal pathogenic E. coli.


Asunto(s)
Farmacorresistencia Bacteriana/genética , Escherichia coli , Microbioma Gastrointestinal , Variación Genética , Filogenia , Simbiosis , Virulencia/genética , Adolescente , Adulto , Factores de Edad , Antibacterianos/farmacología , Preescolar , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/aislamiento & purificación , Escherichia coli/patogenicidad , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/genética , Humanos , Lactante , Masculino , Persona de Mediana Edad , Fenotipo , Polonia , Factores de Virulencia/genética , Adulto Joven
18.
Eur J Microbiol Immunol (Bp) ; 7(3): 200-209, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29034109

RESUMEN

The World Health Organization has rated multidrug-resistant (MDR) Pseudomonas aeruginosa as a critical threat to human health. In the present study, we performed a survey of intestinal colonization, and local and systemic immune responses following peroral association of secondary abiotic mice with either a clinical MDR P. aeruginosa or a commensal murine Escherichia coli isolate. Depletion of the intestinal microbiota following antibiotic treatment facilitated stable intestinal colonization of both P. aeruginosa and E. coli that were neither associated with relevant clinical nor histopathological sequelae. Either stable bacterial colonization, however, resulted in distinct innate and adaptive immune cell responses in the intestines, whereas a pronounced increase in macrophages and monocytes could be observed in the small as well as large intestines upon P. aeruginosa challenge only, which also applied to colonic T lymphocytes. In addition, TNF secretion was exclusively elevated in large intestines of P. aeruginosa-colonized mice. Strikingly, association of secondary abiotic mice with MDR P. aeruginosa, but not commensal E. coli, resulted in pronounced systemic pro-inflammatory responses, whereas anti-inflammatory responses were dampened. Hence, intestinal carriage of MDR P. aeruginosa as compared to a mere commensal Gram-negative strain in otherwise healthy individuals results in distinct local and systemic pro-inflammatory sequelae.

19.
Future Microbiol ; 12: 505-513, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28326812

RESUMEN

AIM: Reticulated gelatin (RG), hibiscus and propolis (RGHP) is a medical device that can reduce the bacterial adherence to epithelial cultured cells and invasion by enteropathogens, thus gathering relevant properties to decrease the risk of urinary tract infections (UTIs). We aimed at evaluating in Wistar rats the efficacy of RGHP, RG and vehicle against intestinal commensals commonly involved in UTIs. METHODS: Animals received orally (with supplemental Na2CO3): RGHP 1540 mg/day/rat; RG 500 mg/day/rat or vehicle. RESULTS: RGHP significantly reduced fecal Escherichia coli and Enterococcus spp. levels without affecting other targeted Enterobacteriaceae. The antagonistic property of RGHP was confirmed in streptomycin-pretreated rats highly colonized with a human commensal E. coli strain with uropathogenic potential. CONCLUSION: RGHP may decrease the risk of UTIs by reducing colonization by opportunistic uropathogens.


Asunto(s)
Antibacterianos/farmacología , Enterobacteriaceae/efectos de los fármacos , Gelatina , Hibiscus , Própolis/administración & dosificación , Infecciones Urinarias/tratamiento farmacológico , Administración Oral , Animales , Apiterapia , Adhesión Bacteriana/efectos de los fármacos , Enterococcus/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Heces/microbiología , Femenino , Gelatina/administración & dosificación , Intestinos/microbiología , Fitoterapia , Ratas Wistar , Estreptomicina/administración & dosificación , Simbiosis , Infecciones Urinarias/microbiología , Escherichia coli Uropatógena/efectos de los fármacos
20.
Plasmid ; 80: 24-31, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25819400

RESUMEN

A collection of 111 commensal Escherichia coli isolated from 84 faecal samples from healthy Australian adults were screened using PCR-based replicon typing. Each isolate represented a distinct strain found in a particular faecal sample. Fifty-one isolates were resistant to one or more of 12 antibiotics tested. FII and FIB replicons were most common and usually found together. The FII replicon was detected in 63 isolates (35 susceptible, 28 resistant), the FIB replicon was present in 65 (32 susceptible, 33 resistant) and 54 (30 susceptible, 24 resistant) included both. Other replicon types were found infrequently (A/C, I1, K, L/M, P, R, Y, FIA and FIC) or not at all (HI1, HI2, N, T, U, W, X). Only the B/O amplicon, found in 21 resistant but only 4 susceptible isolates, was associated with antibiotic resistance. Detailed analysis of this group revealed that the B/O PCR also detected Z plasmids of several distinguishable types. PCR assays were developed to detect the two repA genes (repABKI and repAZ) found in members of the I-complex (I, B/O, K and Z plasmids). These assays distinguished the B/O and Z plasmids detected by the original "B/O" PCR. One isolate carried repABKI and the remainder carried repAZ. These genes were also detected in further isolates in the collection. Conjugative transfer of resistance genes was detected for the B/O plasmid and two Z groups. Evidence for transfer of repAZ plasmids in the human colon in the absence of antibiotic selection was also obtained.


Asunto(s)
Farmacorresistencia Bacteriana/genética , Escherichia coli/genética , Adulto , Australia , Secuencia de Bases , Escherichia coli/clasificación , Escherichia coli/aislamiento & purificación , Voluntarios Sanos , Humanos , Datos de Secuencia Molecular , Tipificación Molecular , Filogenia , Plásmidos , Replicón , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA