Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 16(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38730628

RESUMEN

Colorectal tumorigenesis involves the development of aberrant crypt foci (ACF) or preneoplastic lesions, representing the earliest morphological lesion visible in colon cancer. The purpose of this study was to determine changes in protein expression in carcinogen-induced ACF as they mature and transform into adenomas. Protein expression profiles of azoxymethane (AOM)-induced F344 rat colon ACF and adenomas were compared at four time points, 4 (control), 8, 16, and 24 weeks post AOM administration (n = 9/group), with time points correlating with induction and transformation events. At each time point, micro-dissected ACF and/or adenoma tissues were analyzed across multiple quantitative two-dimensional (2D-DIGE) gels using a Cy-dye labeling technique and a pooled internal standard to quantify expression changes with statistical confidence. Western blot and subsequent network pathway mapping were used to confirm and elucidate differentially expressed (p ≤ 0.05) proteins, including changes in vinculin (Vcl; p = 0.007), scinderin (Scin; p = 0.02), and profilin (Pfn1; p = 0.01), By determining protein expression changes in ACF as they mature and transform into adenomas, a "baseline" of altered regulatory proteins associated with adenocarcinoma development in this model has been elucidated. These data will enable future studies aimed at biomarker identification and understanding the molecular biology of intestinal tumorigenesis and adenocarcinoma maturation under varying intestinal conditions.

2.
J Biomed Res ; 38(1): 37-50, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38111199

RESUMEN

The interplay between DNA replication stress and immune microenvironment alterations is known to play a crucial role in colorectal tumorigenesis, but a comprehensive understanding of their association with and relevant biomarkers involved in colorectal tumorigenesis is lacking. To address this gap, we conducted a study aiming to investigate this association and identify relevant biomarkers. We analyzed transcriptomic and proteomic profiles of 904 colorectal tumor tissues and 342 normal tissues to examine pathway enrichment, biological activity, and the immune microenvironment. Additionally, we evaluated genetic effects of single variants and genes on colorectal cancer susceptibility using data from genome-wide association studies (GWASs) involving both East Asian (7062 cases and 195745 controls) and European (24476 cases and 23073 controls) populations. We employed mediation analysis to infer the causal pathway, and applied multiplex immunofluorescence to visualize colocalized biomarkers in colorectal tumors and immune cells. Our findings revealed that both DNA replication activity and the flap structure-specific endonuclease 1 ( FEN1) gene were significantly enriched in colorectal tumor tissues, compared with normal tissues. Moreover, a genetic variant rs4246215 G>T in FEN1 was associated with a decreased risk of colorectal cancer (odds ratio = 0.94, 95% confidence interval: 0.90-0.97, P meta = 4.70 × 10 -9). Importantly, we identified basophils and eosinophils that both exhibited a significantly decreased infiltration in colorectal tumors, and were regulated by rs4246215 through causal pathways involving both FEN1 and DNA replication. In conclusion, this trans-omics incorporating GWAS data provides insights into a plausible pathway connecting DNA replication and immunity, expanding biological knowledge of colorectal tumorigenesis and therapeutic targets.

3.
Proc Biol Sci ; 290(2009): 20231020, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37848058

RESUMEN

The questions of how healthy colonic crypts maintain their size, and how homeostasis is disrupted by driver mutations, are central to understanding colorectal tumorigenesis. We propose a three-type stochastic branching process, which accounts for stem, transit-amplifying (TA) and fully differentiated (FD) cells, to model the dynamics of cell populations residing in colonic crypts. Our model is simple in its formulation, allowing us to estimate all but one of the model parameters from the literature. Fitting the single remaining parameter, we find that model results agree well with data from healthy human colonic crypts, capturing the considerable variance in population sizes observed experimentally. Importantly, our model predicts a steady-state population in healthy colonic crypts for relevant parameter values. We show that APC and KRAS mutations, the most significant early alterations leading to colorectal cancer, result in increased steady-state populations in mutated crypts, in agreement with experimental results. Finally, our model predicts a simple condition for unbounded growth of cells in a crypt, corresponding to colorectal malignancy. This is predicted to occur when the division rate of TA cells exceeds their differentiation rate, with implications for therapeutic cancer prevention strategies.


Asunto(s)
Colon , Modelos Biológicos , Humanos , Colon/patología , Carcinogénesis/genética , Carcinogénesis/patología , Homeostasis , Mutación
4.
Environ Sci Technol ; 57(7): 2864-2876, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36745568

RESUMEN

Element contamination, including that from heavy metals, is associated with gastrointestinal tumorigenesis, but the effects and mechanisms of crucial element exposure associated with colorectal cancer remain unclear. We profiled 56 elements by ICP-MS and used logistic regression, LASSO, BKMR, and GAM to identify colorectal cancer-relevant elements. A series of biochemical experiments were performed to demonstrate the cytotoxicity and the mechanisms of malignant transformation after metal exposure. Using an elementomics approach, we first found that the metal thallium (Tl) was positively correlated with many toxic metals and was associated with a significantly increased risk of colorectal cancer. Acute exposure to Tl induced cytotoxicity and cell death by accelerating the generation of reactive oxygen species and DNA damage. Chronic exposure to Tl led to the inhibition of cell death and thereby induced the malignant transformation of normal colon cells and xenograft tumor formation in nude mice. Furthermore, we describe the first identification of a significant metal quantitative trait locus for the novel colorectal cancer susceptibility locus rs1511625 near ATP13A3. Mechanistically, Tl increased the level of aberrant N6-methyladenosine (m6A) modification of ATP13A3 via the METLL3/METTL14/ALKBH5-ATP13A3 axis to promote colorectal tumorigenesis. This study provides a basis for the development of public health strategies for reducing metal exposure among populations at high risk for colorectal cancer.


Asunto(s)
Neoplasias Colorrectales , Metales Pesados , Ratones , Animales , Humanos , Ratones Desnudos , Carcinogénesis , Metales Pesados/toxicidad , Talio/toxicidad , Neoplasias Colorrectales/inducido químicamente , Adenosina Trifosfatasas , Proteínas de Transporte de Membrana
5.
Gastroenterology ; 164(5): 841-846, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36702361

RESUMEN

Using colorectal cancer as a model, we review some of the insights into cancer evolution afforded by cancer sequencing. These include nonlinear and neutral evolution; polyclonality of driver mutations and parallel evolution in adenomas, although these are rare in carcinomas; the ability of mutational processes to shape evolution against the force of selection; the presence of rare driver genes that function in the same signaling pathways as the longstanding canonical drivers; and the existence of selective windows that constrain the functional effects of cancer driver mutations within limits. Many of these nascent evolutionary paradigms are potentially important for treating colorectal cancers as well as understanding their development.


Asunto(s)
Carcinoma , Neoplasias Colorrectales , Humanos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Carcinogénesis/genética , Transformación Celular Neoplásica/genética , Mutación , Carcinoma/patología
6.
Toxicol Rep ; 9: 1968-1976, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36518435

RESUMEN

Damnacanthal is an anthraquinone, extracted, and purified from the root of Morinda citrifolia in Thailand. This study aimed to measure acute oral toxicity and to investigate the anticancer activity of damnacanthal in colorectal tumorigenesis. We found that the growth of human colorectal cancer cells was inhibited by damnacanthal in a dose- and a time-dependent manner. The growth inhibitory effect of damnacanthal was better than that of 5-FU used as a positive control in colorectal cancer cells, along with the downregulation of cell cycle protein cyclin D1. Similarly, an oral treatment of damnacanthal effectively inhibited the growth of colorectal tumor xenografts in nude mice, which was approximately 2-3-fold higher as compared to 5-FU by tumor size as well as expression of bioluminescence. Furthermore, the study of acute oral toxicity in mice exhibited a relatively low toxicity of damnacanthal with a LD50 cut-off value of 2500 mg/kg according to OECD Guideline 423. These results reveal the potential therapeutic activity of a natural damnacanthal compound as an anti-colorectal cancer drug.

7.
Mol Oncol ; 16(5): 1171-1183, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34919787

RESUMEN

KRAS is a gatekeeper gene in human colorectal tumorigenesis. KRAS is 'undruggable'; hence, efforts have been diverted to inhibit downstream RAF/MEK/ERK and PI3K/Akt signaling. Nevertheless, none of these inhibitors has progressed to clinical use despite extensive trials. We examined levels of phospho-ERK1/2(T202/Y204) and phospho-Akt1/2/3(S473) in human colorectal tumor compared to matched mucosa with semi-quantitative near-infrared western blot and confocal fluorescence immunohistochemistry imaging. Surprisingly, 75.5% (25/33) of tumors had lower or equivalent phospho-ERK1/2 and 96.9% (31/32) of tumors had lower phospho-Akt1/2/3 compared to matched mucosa, irrespective of KRAS mutation status. In contrast, we discovered KRAS-dependent SOX9 upregulation in 28 of the 31 (90.3%) tumors. These observations were substantiated by analysis of the public domain transcriptomics The Cancer Genome Atlas (TCGA) and NCBI Gene Expression Omnibus (GEO) datasets and proteomics Clinical Proteomic Tumor Analysis Consortium (CPTAC) dataset. These data suggest that RAF/MEK/ERK and PI3K/Akt signaling are unlikely to be activated in most human colorectal cancer.


Asunto(s)
Neoplasias Colorrectales , Proteínas Proto-Oncogénicas c-akt , Línea Celular Tumoral , Neoplasias Colorrectales/patología , Regulación hacia Abajo/genética , Humanos , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Mutación/genética , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteómica , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo
8.
Gut Microbes ; 13(1): 1980348, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34606408

RESUMEN

Sequence type (ST) 11 is one of the major lineages of carbapenem-resistant Klebsiella pneumoniae (CRKP). Although the gastrointestinal (GI) carriage of CRKP predisposes individuals to subsequent infections, little is known for its impact on gut homeostasis. In this study, we investigated the association between ST11 CRKP colonization and colorectal cancer (CRC). Two ST11 CRKP, KPC160111 (KL47) and KPC160132 (KL64), were selected as the representative strains. We used azoxymethane (AOM) and dextran sodium sulfate (DSS) to initiate a colitis-associated CRC model. Both strains established prolonged colonization in the GI tract of the AOM-DSS-treated BALB/c mice and aggravated gut dysbiosis. Under this AOM-DSS-induced setting, ST11 K. pneumoniae colonization significantly promoted the growth and progression of colorectal adenomas to high-grade dysplasia. Numerous crypts were formed inside the enlarged adenomas, in which CD163+ tumor-associated macrophages accumulated. Similarly, ST11 K. pneumoniae also increased the population size of the CD163+ macrophages with the M2 phenotype in the peritoneal cavity of LPS-primed BALB/c mice. When applied to RAW264.7 cells, ST11 K. pneumoniae polarized the macrophages toward an M2 phenotype through the inhibition of IKK-NFκB and the activation of STAT6-KLF4-IL-10. Through the M2-skewing ability, ST11 K. pneumoniae promoted the accumulation of CD163+ macrophages in the adenomatous crypts to create an immunosuppressive niche, which not only accommodated the extended stay for its own sake but also deteriorated colorectal tumorigenesis.


Asunto(s)
Colitis/complicaciones , Neoplasias Colorrectales/microbiología , Klebsiella pneumoniae/fisiología , Animales , Carcinogénesis , Neoplasias Colorrectales/etiología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Humanos , Interleucina-10/genética , Interleucina-10/metabolismo , Klebsiella pneumoniae/crecimiento & desarrollo , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Factor de Transcripción STAT6/genética , Factor de Transcripción STAT6/metabolismo
9.
Arch Toxicol ; 95(7): 2507-2522, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33978766

RESUMEN

The consumption of red meat is associated with an increased risk for colorectal cancer (CRC). Multiple lines of evidence suggest that heme iron as abundant constituent of red meat is responsible for its carcinogenic potential. However, the underlying mechanisms are not fully understood and particularly the role of intestinal inflammation has not been investigated. To address this important issue, we analyzed the impact of heme iron (0.25 µmol/g diet) on the intestinal microbiota, gut inflammation and colorectal tumor formation in mice. An iron-balanced diet with ferric citrate (0.25 µmol/g diet) was used as reference. 16S rRNA sequencing revealed that dietary heme reduced α-diversity and caused a persistent intestinal dysbiosis, with a continuous increase in gram-negative Proteobacteria. This was linked to chronic gut inflammation and hyperproliferation of the intestinal epithelium as attested by mini-endoscopy, histopathology and immunohistochemistry. Dietary heme triggered the infiltration of myeloid cells into colorectal mucosa with an increased level of COX-2 positive cells. Furthermore, flow cytometry-based phenotyping demonstrated an increased number of T cells and B cells in the lamina propria following heme intake, while γδ-T cells were reduced in the intraepithelial compartment. Dietary heme iron catalyzed formation of fecal N-nitroso compounds and was genotoxic in intestinal epithelial cells, yet suppressed intestinal apoptosis as evidenced by confocal microscopy and western blot analysis. Finally, a chemically induced CRC mouse model showed persistent intestinal dysbiosis, chronic gut inflammation and increased colorectal tumorigenesis following heme iron intake. Altogether, this study unveiled intestinal inflammation as important driver in heme iron-associated colorectal carcinogenesis.


Asunto(s)
Neoplasias Colorrectales , Hemo , Animales , Neoplasias Colorrectales/inducido químicamente , Neoplasias Colorrectales/patología , Dieta , Hemo/toxicidad , Inflamación/patología , Mucosa Intestinal/patología , Hierro , Ratones , ARN Ribosómico 16S
10.
Theranostics ; 10(19): 8619-8632, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32754267

RESUMEN

Numerous factors have been claimed to play important roles in colorectal cancer (CRC) tumorigenesis, including myeloid-derived suppressor cells (MDSCs) and other immune cells, cytokines, and chemokines; however, the precise mechanisms of colorectal tumorigenesis remain elusive, and there is a lack of effective preventive treatments. Here, we investigated the role of complement system, a key regulator of immune surveillance and homeostasis, in colorectal tumorigenesis. Methods: The prototypical CRC model was induced by combined administration of azoxymethane (AOM)/ dextran sulfate sodium (DSS) in Wild-type (WT), C3-, C5-, C5ar1-, and C5ar2-deficient mice. Using flow cytometry, immunohistochemical staining and multiplex bead assay, we profiled the immune cells, cytokines and chemokines. Bone marrow transplantation was employed to determine the contribution of immune cells in colorectal tumorigenesis. Further, we used C5aR1 antagonist PMX205 to investigate the protective role in colorectal tumorigenesis. Results: Complement was extensively activated in inflamed tissues of AOM/DSS-induced murine CRC model, leading to multifaceted consequences. The deficiency of complement C5 or especially C5ar1, but not C3 almost completely prevented CRC tumorigenesis. C5a/C5aR1 signaling recruited MDSCs into the inflamed colorectum to impair CD8+ T cells, and modulated the production of critical cytokines and chemokines, thus initiating CRC. Moreover, the C5aR1 antagonist PMX205 strongly impeded colorectal tumorigenesis. Bone marrow transplantation further revealed that C5aR1 expression by immune cells was critical for colorectal tumorigenesis. Conclusion: Our study identifies C5a/C5aR1 signaling as a vital immunomodulatory program in CRC tumorigenesis and suggests a feasible preventive strategy.


Asunto(s)
Azoximetano/efectos adversos , Linfocitos T CD8-positivos/metabolismo , Colitis/complicaciones , Neoplasias Colorrectales/inmunología , Sulfato de Dextran/efectos adversos , Receptor de Anafilatoxina C5a/genética , Animales , Trasplante de Médula Ósea , Colitis/inducido químicamente , Colitis/genética , Colitis/inmunología , Neoplasias Colorrectales/etiología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/terapia , Complemento C3/genética , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Técnicas de Inactivación de Genes , Masculino , Ratones , Péptidos Cíclicos/administración & dosificación , Péptidos Cíclicos/farmacología
11.
Semin Cancer Biol ; 56: 168-174, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30189250

RESUMEN

Colorectal cancer (CRC) is one of the leading causes of cancer related-deaths. The risk of development of CRC is complex and multifactorial, and includes disruption of homeostasis of the intestinal epithelial layer mediated though dysregulations of tumor suppressing/promoting signaling pathways. Guanylate cyclase 2C (GUCY2C), a membrane-bound guanylate cyclase receptor, is present in the apical membranes of intestinal epithelial cells and maintains homeostasis. GUCY2C is activated upon binding of paracrine hormones (guanylin and uroguanylin) that lead to formation of cyclic GMP from GTP and activation of downstream signaling pathways that are associated with normal homeostasis. Dysregulation/suppression of the GUCY2C-mediated signaling promotes CRC tumorigenesis. High-calorie diet-induced obesity is associated with deficiency of guanylin expression and silencing of GUCY2C-signaling in colon epithelial cells, leading to tumorigenesis. Thus, GUCY2C agonists, such as linaclotide, exhibit considerable role in preventing CRC tumorigenesis. However, phosphodiesterases (PDEs) are elevated in intestinal epithelial cells during CRC tumorigenesis and block GUCY2C-mediated signaling by degrading cyclic GMP to 5`-GMP. PDE5-specific inhibitors, such as sildenafil, show considerable anti-tumorigenic potential against CRC by amplifying the GUCY2C/cGMP signaling pathway, but cannot achieve complete anti-tumorigenic effects. Hence, dual targeting the elevation of cGMP by providing paracrine hormone stimuli to GUCY2C and by inhibition of PDEs may be a better strategy for CRC prevention than alone. This review delineates the involvement of the GUCY2C/cGMP/PDEs signaling pathway in the homeostasis of intestinal epithelial cells. Further, the events are associated with dysregulation of this pathway during CRC tumorigenesis are also discussed. In addition, current updates on targeting the GUCY2C/cGMP/PDEs pathway with GUCY2C agonists and PDEs inhibitors for CRC prevention and treatment are described in detail.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/prevención & control , GMP Cíclico/metabolismo , Hormonas/metabolismo , Comunicación Paracrina , Hidrolasas Diéster Fosfóricas/metabolismo , Receptores de Enterotoxina/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Transformación Celular Neoplásica/efectos de los fármacos , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Quimioprevención , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/etiología , Susceptibilidad a Enfermedades , Hemostasis , Humanos , Terapia Molecular Dirigida , Comunicación Paracrina/efectos de los fármacos
12.
Cell Rep ; 19(13): 2756-2770, 2017 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-28658623

RESUMEN

Although NOD2 is the major inflammatory bowel disease susceptibility gene, its role in colorectal tumorigenesis is poorly defined. Here, we show that Nod2-deficient mice are highly susceptible to experimental colorectal tumorigenesis independent of gut microbial dysbiosis. Interestingly, the expression of inflammatory genes and the activation of inflammatory pathways, including NF-κB, ERK, and STAT3 are significantly higher in Nod2-/- mouse colons during colitis and colorectal tumorigenesis, but not at homeostasis. Consistent with higher inflammation, there is greater proliferation of epithelial cells in hyperplastic regions of Nod2-/- colons. In vitro studies demonstrate that, while NOD2 activates the NF-κB and MAPK pathways in response to MDP, it inhibits TLR-mediated activation of NF-κB and MAPK. Notably, NOD2-mediated downregulation of NF-κB and MAPK is associated with the induction of IRF4. Taken together, NOD2 plays a critical role in the suppression of inflammation and tumorigenesis in the colon via downregulation of the TLR signaling pathways.


Asunto(s)
Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Proteína Adaptadora de Señalización NOD2/genética , Proteína Adaptadora de Señalización NOD2/metabolismo , Receptores Toll-Like/metabolismo , Animales , Carcinogénesis , Regulación hacia Abajo , Femenino , Factores Reguladores del Interferón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , FN-kappa B/metabolismo , Transducción de Señal , Receptores Toll-Like/genética
13.
BMC Syst Biol ; 10(1): 96, 2016 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-27765040

RESUMEN

BACKGROUND: Colorectal cancer arises from the accumulation of genetic mutations that induce dysfunction of intracellular signaling. However, the underlying mechanism of colorectal tumorigenesis driven by genetic mutations remains yet to be elucidated. RESULTS: To investigate colorectal tumorigenesis at a system-level, we have reconstructed a large-scale Boolean network model of the human signaling network by integrating previous experimental results on canonical signaling pathways related to proliferation, metastasis, and apoptosis. Throughout an extensive simulation analysis of the attractor landscape of the signaling network model, we found that the attractor landscape changes its shape by expanding the basin of attractors for abnormal proliferation and metastasis along with the accumulation of driver mutations. A further hypothetical study shows that restoration of a normal phenotype might be possible by reversely controlling the attractor landscape. Interestingly, the targets of approved anti-cancer drugs were highly enriched in the identified molecular targets for the reverse control. CONCLUSIONS: Our results show that the dynamical analysis of a signaling network based on attractor landscape is useful in acquiring a system-level understanding of tumorigenesis and developing a new therapeutic strategy.


Asunto(s)
Carcinogénesis , Neoplasias Colorrectales/patología , Modelos Biológicos , Carcinogénesis/efectos de los fármacos , Neoplasias Colorrectales/tratamiento farmacológico , Humanos , Terapia Molecular Dirigida , Transducción de Señal/efectos de los fármacos
14.
Proc Natl Acad Sci U S A ; 113(45): 12739-12744, 2016 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-27791078

RESUMEN

Wnt/ß-catenin signaling plays a key role in the tumorigenicity of colon cancer. Furthermore, it has been reported that lncRNAs are dysregulated in several steps of cancer development. Here we show that ß-catenin directly activates the transcription of the long noncoding RNA (lncRNA) ASBEL [antisense ncRNA in the ANA (Abundant in neuroepithelium area)/BTG3 (B-cell translocation gene 3) locus] and transcription factor 3 (TCF3), both of which are required for the survival and tumorigenicity of colorectal cancer cells. ASBEL interacts with and recruits TCF3 to the activating transcription factor 3 (ATF3) locus, where it represses the expression of ATF3. Furthermore, we demonstrate that ASBEL-TCF3-mediated down-regulation of ATF3 expression is required for the proliferation and tumorigenicity of colon tumor cells. ATF3, in turn, represses the expression of ASBEL Our results reveal a pathway involving an lncRNA and two transcription factors that plays a key role in Wnt/ß-catenin-mediated tumorigenesis. These results may provide insights into the variety of biological and pathological processes regulated by Wnt/ß-catenin signaling.

15.
Mol Carcinog ; 55(1): 15-26, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25408419

RESUMEN

The PTTG1-binding factor (PBF) is a transforming gene capable of eliciting tumor formation in xenograft models. However, the precise role of PBF in tumorigenesis and its prognostic value as a cancer biomarker remain largely uncharacterised, particularly in malignancies outside the thyroid. Here, we provide the first evidence that PBF represents a promising prognostic marker in colorectal cancer. Examination of a total of 39 patients demonstrated higher PBF expression at both the mRNA (P = 0.009) and protein (P < 0.0001) level in colorectal tumors compared to matched normal tissue. Critically, PBF was most abundant in colorectal tumors associated with Extramural Vascular Invasion (EMVI), increased genetic instability (GI) and somatic TP53 mutations, all features linked with recurrence and poorer patient survival. We further demonstrate by glutathione-S-transferase (GST) pull-down and coimmunoprecipitation that PBF binds to the tumor suppressor protein p53, as well as to p53 mutants (Δ126-132, M133K, V197E, G245D, I255F and R273C) identified in the colorectal tumors. Importantly, overexpression of PBF in colorectal HCT116 cells interfered with the transcriptional activity of p53-responsive genes such as mdm2, p21 and sfn. Diminished p53 stability (> 90%; P < 0.01) was also evident with a concurrent increase in ubiquitinated p53. Human colorectal tumors with wild-type TP53 and high PBF expression also had low p53 protein levels (P < 0.05), further emphasizing a putative interaction between these genes in vivo. Overall, these results demonstrate an emerging role for PBF in colorectal tumorigenesis through regulating p53 activity, with implications for PBF as a prognostic indicator for invasive tumors.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Proteínas de la Membrana/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Línea Celular Tumoral , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Expresión Génica , Regulación Neoplásica de la Expresión Génica , Inestabilidad Genómica , Humanos , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Ratones , Invasividad Neoplásica , Pronóstico , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proto-Oncogenes Mas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ensayo de Tumor de Célula Madre , Ubiquitinación
16.
Oncotarget ; 6(31): 32013-26, 2015 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-26397137

RESUMEN

BACKGROUND: Accumulating evidence links colorectal cancer (CRC) with the intestinal microbiota. However, the disturbance of intestinal microbiota and the role of Fusobacterium nucleatum during the colorectal adenoma-carcinoma sequence have not yet been evaluated. METHODS: 454 FLX pyrosequencing was used to evaluate the disturbance of intestinal microbiota during the adenoma-carcinoma sequence pathway of CRC. Intestinal microbiota and mucosa tumor-immune cytokines were detected in mice after introducing 1,2-dimethylhydrazine (DMH), F. nucleatum or Berberine (BBR), using pyrosequencing and Bio-Plex Pro™ cytokine assays, respectively. Protein expressions were detected by western blotting. RESULTS: The levels of opportunistic pathogens, such as Fusobacterium, Streptococcus and Enterococcus spp. gradually increased during the colorectal adenoma-carcinoma sequence in human fecal and mucosal samples. F. nucleatum treatment significantly altered lumen microbial structures, with increased Tenericutes and Verrucomicrobia (opportunistic pathogens) (P < 0.05 = in wild-type C57BL/6 and mice with DMH treatment). BBR intervention reversed the F. nucleatum-mediated increase in opportunistic pathogens, and the secretion of IL-21/22/31, CD40L and the expression of p-STAT3, p-STAT5 and p-ERK1/2 in mice, compared with mice fed with F. nucleatum alone. CONCLUSIONS: F. nucleatum colonization in the intestine may prompt colorectal tumorigenesis. BBR could rescue F. nucleatum-induced colorectal tumorigenesis by modulating the tumor microenvironment and blocking the activation of tumorigenesis-related pathways.


Asunto(s)
Adenoma/prevención & control , Berberina/farmacología , Transformación Celular Neoplásica/efectos de los fármacos , Neoplasias Colorrectales/prevención & control , Infecciones por Fusobacterium/complicaciones , Fusobacterium nucleatum/patogenicidad , Microambiente Tumoral/efectos de los fármacos , Adenoma/etiología , Adenoma/patología , Animales , Western Blotting , Transformación Celular Neoplásica/patología , Neoplasias Colorrectales/etiología , Neoplasias Colorrectales/patología , Citocinas/genética , Citocinas/metabolismo , Heces/microbiología , Infecciones por Fusobacterium/microbiología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA