Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Food Chem ; 462: 141027, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39213963

RESUMEN

Integrating multiple functionalities into a single entity is highly important, especially when a broad spectrum of application is required. In the present work, we synthesized a novel manganese-based MOF (denoted as UoZ-6) that functions as a cold/hot-adapted and recyclable oxidase nanozyme (Km 0.085 mM) further developed for ratiometric-based colorimetric and color tonality visual-mode detection of nitrite in water and food. Nitrite ions promote the diazotization process of the oxTMB product, resulting in a decay in the absorbance signal at 652 nm and the emergence of a new signal at 461 nm. The dual-absorbance ratiometric platform for nitrite ion detection functions effectively across a wide temperature range (0 °C to 100 °C), offering a linear detection range of 5-45 µM with a detection limit of 0.15 µM using visual-mode. This approach is sensitive, reliable, and selective, making it effective for detecting nitrite ions in processed meat and water.


Asunto(s)
Colorimetría , Nitritos , Nitritos/análisis , Colorimetría/métodos , Estructuras Metalorgánicas/química , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Límite de Detección , Frío , Calor , Contaminación de Alimentos/análisis , Color
2.
Artículo en Inglés | MEDLINE | ID: mdl-39270310

RESUMEN

Red-emitting metal-organic frameworks (MOFs) are still mostly based on the use of lanthanides or functionalization with red fluorophores. However, production of transition-metal-based MOFs with red-emitting is scarce. This work reports on the synthesis of a novel dual-state red-emitting Zn-based MOF (denoted as UoZ-7) with the capability to detect target molecules in dual state, in solution, and as solid on paper. UoZ-7 gives strong red emission when excited in the solution and in the solid state with 365 nm ultraviolet (UV) lamp irradiation. Coordination-induced emission is the mechanism for the red emission enhancement in the MOF as a restriction of intramolecular rotation occurred to the ligand within the framework structure. UoZ-7 was successfully used for tetracycline (TC) using dual-mode detection, fluorescence-based ratiometry, and color tonality, in the dual state, in solution, and on the paper. TC molecules adsorb on the red-emitting UoZ-7 surface, and a yellow-greenish color emerges due to aggregation-induced emission between TC and UoZ-7. Concurrently, the inner filter effect diminishes the red emission of UoZ-7. The dual-mode or dual-state detection platform provides a simple and reliable fast method for the detection of TC on-site in various environmental and biomedical applications. Moreover, red-emitting UoZ-7 will have further luminescence-based biomedical applications.

3.
ACS Appl Mater Interfaces ; 15(39): 46098-46107, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37733947

RESUMEN

Dual-state emitters (DSEs) are entities that exhibit fluorescence in both the solution and solid state, which open up a wide range of possibilities for their utilization in various fields. The development of detection platforms using intrinsic luminescent metal-organic frameworks (LMOFs) is highly desirable for a variety of applications. DSE MOFs as a subclass of intrinsic LMOFs are highly attractive due to no need for encapsulation/functionalization by fluorophores and/or using luminescent linkers. Herein, a highly stable intrinsic dual-state blue emission (λem = 425 nm) zinc-based MOF with rodlike nanostructures (denoted as UoZ-2) was synthesized and characterized. To the best of our knowledge, intrinsic DSE of Zn-MOFs with blue emission in the dispersed form in solution and solid-state fluorescence have not been reported yet. When tetracycline (TC) was added, a continuous color evolution from blue to greenish-yellow with dramatic enhancement was observed due to aggregation induced emission (AIE). Thus, a sensitive ratiometry-based visual detection platform, in solution and on paper independently, was designed for detection of TC exploiting the DSE and AIE properties of UoZ-2 alone and UoZ-2:TC. The detection limit was estimated to be 4.5 nM, which is considered to be one of the most sensitive ratiometric fluorescent probes for TC sensing. The ratiometry paper-based UoZ-2 sensor displays a reliable TC quantitative analysis by recognizing RGB values in the on-site TC detection with satisfactory recoveries.


Asunto(s)
Compuestos Heterocíclicos , Estructuras Metalorgánicas , Nanoestructuras , Antibacterianos/análisis , Colorantes Fluorescentes/química , Límite de Detección , Estructuras Metalorgánicas/química , Teléfono Inteligente , Espectrometría de Fluorescencia , Tetraciclina , Zinc
4.
Talanta ; 254: 124178, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36549132

RESUMEN

Color tonality by intrinsic fluorescent metal-organic frameworks (MOFs) is highly desirable in bioanalytical applications due to its stability, low-cost and robustness with no need for functionalization and/or encapsulation of fluorophores. In the present work, ultra-small and higly fluorescent zinc-based MOFs (FMOF-5) were synthesized. The prepared FMOFs were around 5 nm in size, and gave strong blue emission at 440 nm when excited at 350 nm. Interestingly, tetracycline (TC) selectively tuned the blue emission of FMOF-5 to greenish-yellow emission (520 nm) with dramatic enhancement through aggregation induced emission (AIE). The fluorimetric analysis of TC was carried out through the ratiometric peak intensities of F520/F440, with detection limit (LOD) of 5 nM. To realize quantitative point-of-care based on color tonality, a smartphone integrated with the ratiometric visual platform was thereby design. Hence, TC was visually detected with LOD of 10 nM. The prepared FMOF-5-based probe showed high stability (3 months) and reusability (∼10 times). The developed visual-based platform presents great promise for practical point of care testing due to its low-cost, robustness, ruggedness, simple operation, and excellent selectivity and repeatability.


Asunto(s)
Compuestos Heterocíclicos , Estructuras Metalorgánicas , Zinc , Tetraciclina , Antibacterianos/análisis , Colorantes Fluorescentes , Espectrometría de Fluorescencia , Límite de Detección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA