Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Intervalo de año de publicación
1.
Gut Microbes ; 16(1): 2298026, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38170633

RESUMEN

Gut - brain communications disorders in irritable bowel syndrome (IBS) are associated with intestinal microbiota composition, increased gut permeability, and psychosocial disturbances. Symptoms of IBS are difficult to medicate, and hence much research is being made into alternative approaches. This study assesses the potential of a treatment with pasteurized Akkermansia muciniphila for alleviating IBS-like symptoms in two mouse models of IBS with different etiologies. Two clinically relevant animal models were used to mimic IBS-like symptoms in C57BL6/J mice: the neonatal maternal separation (NMS) paradigm and the Citrobacter rodentium infection model. In both models, gut permeability, colonic sensitivity, fecal microbiota composition and colonic IL-22 expression were evaluated. The cognitive performance and emotional state of the animals were also assessed by several tests in the C. rodentium infection model. The neuromodulation ability of pasteurized A. muciniphila was assessed on primary neuronal cells from mice dorsal root ganglia using a ratiometric calcium imaging approach. The administration of pasteurized A. muciniphila significantly reduced colonic hypersensitivity in both IBS mouse models, accompanied by a reinforcement of the intestinal barrier function. Beneficial effects of pasteurized A. muciniphila treatment have also been observed on anxiety-like behavior and memory defects in the C. rodentium infection model. Finally, a neuroinhibitory effect exerted by pasteurized A. muciniphila was observed on neuronal cells stimulated with two algogenic substances such as capsaicin and inflammatory soup. Our findings demonstrate novel anti-hyperalgesic and neuroinhibitory properties of pasteurized A. muciniphila, which therefore may have beneficial effects in relieving pain and anxiety in subjects with IBS.


Asunto(s)
Microbioma Gastrointestinal , Síndrome del Colon Irritable , Humanos , Ratones , Animales , Síndrome del Colon Irritable/terapia , Privación Materna , Verrucomicrobia/fisiología
2.
Int J Mol Sci ; 24(4)2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36834762

RESUMEN

Transient receptor potential channels C4/C5 are widely expressed in the pain pathway. Here, we studied the putative analgesic efficacy of the highly selective and potent TRPC4/C5 antagonist HC-070 in rats. Inhibitory potency on human TRPC4 was assessed by using the whole-cell manual patch-clamp technique. Visceral pain sensitivity was assessed by the colonic distension test after intra-colonic trinitrobenzene sulfonic acid injection and partial restraint stress. Mechanical pain sensitivity was assessed by the paw pressure test in the chronic constriction injury (CCI) neuropathic pain model. We confirm that HC-070 is a low nanomolar antagonist. Following single oral doses (3-30 mg/kg in male or female rats), colonic hypersensitivity was significantly and dose-dependently attenuated, even fully reversed to baseline. HC-070 also had a significant anti-hypersensitivity effect in the established phase of the CCI model. HC-070 did not have an effect on the mechanical withdrawal threshold of the non-injured paw, whereas the reference compound morphine significantly increased it. Analgesic effects are observed at unbound brain concentrations near the 50% inhibitory concentration (IC50) recorded in vitro. This suggests that analgesic effects reported here are brought about by TRPC4/C5 blocking in vivo. The results strengthen the idea that TRPC4/C5 antagonism is a novel, safe non-opioid treatment for chronic pain.


Asunto(s)
Neuralgia , Canales de Potencial de Receptor Transitorio , Ratas , Masculino , Femenino , Humanos , Animales , Neuralgia/metabolismo , Umbral del Dolor , Analgésicos/farmacología , Modelos Animales de Enfermedad , Hiperalgesia/tratamiento farmacológico
3.
World J Gastroenterol ; 28(29): 3903-3916, 2022 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-36157543

RESUMEN

BACKGROUND: Chronic abdominal pain is the most common cause for gastroenterology consultation and is frequently associated with functional gastrointestinal disorders including irritable bowel syndrome and inflammatory bowel disease. These disorders present similar brain/gut/microbiota trialogue alterations, associated with abnormal intestinal permeability, intestinal dysbiosis and colonic hypersensitivity (CHS). Intestinal dysbiosis can alter colon homeostasis leading to abnormal activation of the innate immunity that promotes CHS, perhaps involving the toll-like receptors (TLRs), which play a central role in innate immunity. AIM: To understand the mechanisms between early life event paradigm on intestinal permeability, fecal microbiota composition and CHS development in mice with TLRs expression in colonocytes. METHODS: Maternal separation model (NMS) CHS model, which mimics deleterious events in childhood that can induce a wide range of chronic disorders during adulthood were used. Colonic sensitivity of NMS mice was evaluated by colorectal distension (CRD) coupled with intracolonic pressure variation (IPV) measurement. Fecal microbiota composition was analyzed by 16S rRNA sequencing from weaning to CRD periods. TLR mRNA expression was evaluated in colonocytes. Additionally, the effect of acute intrarectal instillation of the TLR5 agonist flagellin (FliC) on CHS in adult naive wildtype mice was analyzed. RESULTS: Around 50% of NMS mice exhibited increased intestinal permeability and CHS associated with intestinal dysbiosis, characterized by a significant decrease of species richness, an alteration of the core fecal microbiota and a specific increased relative abundance of flagellated bacteria. Only TLR5 mRNA expression was increased in colonocytes of NMS mice with CHS. Acute intrarectal instillation of FliC induced transient increase of IPV, reflecting transient CHS appearance. CONCLUSION: Altogether, these data suggest a pathophysiological continuum between intestinal dysbiosis and CHS, with a role for TLR5.


Asunto(s)
Disbiosis , Receptor Toll-Like 5 , Animales , Colon , Modelos Animales de Enfermedad , Disbiosis/metabolismo , Flagelina/metabolismo , Flagelina/farmacología , Privación Materna , Ratones , ARN Mensajero/metabolismo , ARN Ribosómico 16S , Receptor Toll-Like 5/genética , Receptor Toll-Like 5/metabolismo , Receptores Toll-Like/metabolismo
4.
FASEB J ; 35(4): e21430, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33749885

RESUMEN

Endometriosis is a painful inflammatory disorder affecting ~10% of women of reproductive age. Although chronic pelvic pain (CPP) remains the main symptom of endometriosis patients, adequate treatments for CPP are lacking. Animal models that recapitulate the features and symptoms experienced by women with endometriosis are essential for investigating the etiology of endometriosis, as well as developing new treatments. In this study, we used an autologous mouse model of endometriosis to examine a combination of disease features and symptoms including: a 10 week time course of endometriotic lesion development; the chronic inflammatory environment and development of neuroangiogenesis within lesions; sensory hypersensitivity and altered pain responses to vaginal, colon, bladder, and skin stimulation in conscious animals; and spontaneous animal behavior. We found significant increases in lesion size from week 6 posttransplant. Lesions displayed endometrial glands, stroma, and underwent neuroangiogenesis. Additionally, peritoneal fluid of mice with endometriosis contained known inflammatory mediators and angiogenic factors. Compared to Sham, mice with endometriosis displayed: enhanced sensitivity to pain evoked by (i) vaginal and (ii) colorectal distension, (iii) altered bladder function and increased sensitivity to cutaneous (iv) thermal and (v) mechanical stimuli. The development of endometriosis had no effect on spontaneous behavior. This study describes a comprehensive characterization of a mouse model of endometriosis, recapitulating the clinical features and symptoms experienced by women with endometriosis. Moreover, it delivers the groundwork to investigate the etiology of endometriosis and provides a platform for the development of therapeutical interventions to manage endometriosis-associated CPP.


Asunto(s)
Enfermedades del Colon/etiología , Endometriosis/patología , Enfermedades de la Piel/etiología , Enfermedades de la Vejiga Urinaria/etiología , Enfermedades Vaginales/etiología , Animales , Biomarcadores/sangre , Biomarcadores/metabolismo , Femenino , Inflamación/metabolismo , Ratones , Ratones Endogámicos C57BL , Actividad Motora , Dolor
5.
J Physiol ; 596(17): 4237-4251, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29917237

RESUMEN

KEY POINTS: Tenascin-X (TNX) is an extracellular matrix glycoprotein with anti-adhesive properties in skin and joints. Here we report the novel finding that TNX is expressed in human and mouse gut tissue where it is exclusive to specific subpopulations of neurones. Our studies with TNX-deficient mice show impaired defecation and neural control of distal colonic motility that can be rescued with a 5-HT4 receptor agonist. However, colonic secretion is unchanged. They are also susceptible to internal rectal intussusception. Colonic afferent sensitivity is increased in TNX-deficient mice. Correspondingly, there is increased density of and sensitivity of putative nociceptive fibres in TNX-deficient mucosa. A group of TNX-deficient patients report symptoms highly consistent with those in the mouse model. These findings suggest TNX plays entirely different roles in gut to non-visceral tissues - firstly a role in enteric motor neurones and secondly a role influencing nociceptive sensory neurones Studying further the mechanisms by which TNX influences neuronal function will lead to new targets for future treatment. ABSTRACT: The extracellular matrix (ECM) is not only an integral structural molecule, but is also critical for a wide range of cellular functions. The glycoprotein tenascin-X (TNX) predominates in the ECM of tissues like skin and regulates tissue structure through anti-adhesive interactions with collagen. Monogenic TNX deficiency causes painful joint hypermobility and skin hyperelasticity, symptoms characteristic of hypermobility Ehlers Danlos syndrome (hEDS). hEDS patients also report consistently increased visceral pain and gastrointestinal (GI) dysfunction. We investigated whether there is a direct link between TNX deficiency and GI pain or motor dysfunction. We set out first to learn where TNX is expressed in human and mouse, then determine how GI function, specifically in the colon, is disordered in TNX-deficient mice and humans of either sex. In human and mouse tissue, TNX was predominantly associated with cholinergic colonic enteric neurones, which are involved in motor control. TNX was absent from extrinsic nociceptive peptidergic neurones. TNX-deficient mice had internal rectal prolapse and a loss of distal colonic contractility which could be rescued by prokinetic drug treatment. TNX-deficient patients reported increased sensory and motor GI symptoms including abdominal pain and constipation compared to controls. Despite absence of TNX from nociceptive colonic neurones, neuronal sprouting and hyper-responsiveness to colonic distension was observed in the TNX-deficient mice. We conclude that ECM molecules are not merely support structures but an integral part of the microenvironment particularly for specific populations of colonic motor neurones where TNX exerts functional influences.


Asunto(s)
Colon/patología , Matriz Extracelular/metabolismo , Enfermedades Gastrointestinales/patología , Neuronas Motoras/patología , Células Receptoras Sensoriales/patología , Tenascina/metabolismo , Animales , Movimiento Celular , Colon/metabolismo , Femenino , Enfermedades Gastrointestinales/metabolismo , Humanos , Masculino , Ratones , Ratones Noqueados , Neuronas Motoras/metabolismo , Células Receptoras Sensoriales/metabolismo , Tenascina/genética
6.
Gut Microbes ; 9(1): 26-37, 2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-28806140

RESUMEN

Irritable Bowel Syndrome (IBS) and Inflammatory Bowel Disease (IBD) are related gastrointestinal disorders characterized by abdominal pain associated with colonic hypersensitivity (CHS). Studies in humans have reported an abnormal colonization of Adherent-Invasive E. coli (AIEC) in the ileum of Crohn's disease (CD) patients associated with overexpression of the bacterial colonizing receptor CEACAM6. The aim of the present study was to investigate whether AIEC reference strain LF82 could induce intestinal impairment during infectious and/or post-infectious periods and subsequently the development of CHS. Transgenic mice overexpressing human CEACAM6 protein (TG) and their wild-type littermates were gavaged by CD-associated AIEC bacteria (reference strain LF82) or PBS for 3 d. Colonic hypersensitivity was assessed by colorectal distension (CRD) test during infectious (D4) and post-infectious periods (D21). Several markers of intestinal inflammation were monitored and the colonic expression of purinergic P2X receptors was quantified. At D4, an increased visceromotor response (VMR) to the CRD test was observed in TG mice infected with CD-associated AIEC LF82 in comparison with non-infected TG mice and persisted in a subgroup of infected animals at D21 after bacteria clearance. Increased VMR was associated with low-grade intestinal inflammation, increased intestinal permeability and expression of P2X 3, 4 and 7. This study shows that certain susceptible hosts infected with CD-associated AIEC bacteria can develop persistent CHS associated with low-grade inflammation and increased P2X receptors expression. Thus, CD-associated AIEC infection in CEACAM6 transgenic mice could be used as a novel post-infectious mouse model mimicking quiescent IBD with IBS-like symptoms such as visceral pain.


Asunto(s)
Colitis/patología , Enfermedad de Crohn/microbiología , Infecciones por Escherichia coli/fisiopatología , Escherichia coli/patogenicidad , Inflamación/microbiología , Receptores Purinérgicos P2X/genética , Regulación hacia Arriba , Animales , Antígenos CD/genética , Moléculas de Adhesión Celular/genética , Colitis/genética , Colitis/metabolismo , Colitis/microbiología , Colon/metabolismo , Colon/microbiología , Colon/patología , Escherichia coli/aislamiento & purificación , Infecciones por Escherichia coli/genética , Infecciones por Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Femenino , Proteínas Ligadas a GPI/genética , Íleon/microbiología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Permeabilidad
7.
J Pain Res ; 10: 1645-1655, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28769585

RESUMEN

AIM: Patients with long-standing diabetes often demonstrate intestinal dysfunction, characterized as constipation or colonic hypersensitivity. Our previous studies have demonstrated the roles of voltage-gated sodium channels NaV1.7 and NaV1.8 in dorsal root ganglion (DRG) in colonic hypersensitivity of rats with diabetes. This study was designed to determine roles of antioxidant α-lipoic acid (ALA) on sodium channel activities and colonic hypersensitivity of rats with diabetes. METHODS: Streptozotocin was used to induce diabetes in adult female rats. Colonic sensitivity was measured by behavioral responses to colorectal distention in rats. The excitability and sodium channel currents of colon projection DRG neurons labeled with DiI were measured by whole-cell patch-clamp recordings. The expressions of NaV1.7 and NaV1.8 of colon DRGs were measured by western blot analysis. RESULTS: ALA treatment significantly increased distention threshold in responding to colorectal distension in diabetic rats compared with normal saline treatment. ALA treatment also hyper-polarized the resting membrane potentials, depolarized action potential threshold, increased rheobase, and decreased frequency of action potentials evoked by ramp current stimulation. Furthermore, ALA treatment also reduced neuronal sodium current densities of DRG neurons innervating the colon from rats with diabetes. In addition, ALA treatment significantly downregulated NaV1.7 and NaV1.8 expression in colon DRGs from rats with diabetes. CONCLUSION: Our results suggest that ALA plays an analgesic role, which was likely mediated by downregulation of NaV1.7 and NaV1.8 expressions and functions, thus providing experimental evidence for using ALA to treat colonic hypersensitivity in patients with diabetic visceral pain.

8.
World J Gastroenterol ; 22(31): 7111-23, 2016 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-27610021

RESUMEN

AIM: To investigate anti-hypersensitive effects of α2δ-1 ligands in non-inflammatory and inflammation-associated colonic hypersensitivity (CHS) mouse models. METHODS: To induce an inflammation-associated CHS, 1% dextran sulfate sodium (DSS) was administered to C57Bl/6J male mice, in drinking water, for 14 d. Regarding the non-inflammatory neonatal maternal separation (NMS) -induced CHS model, wild-type C57BI/6J pups were isolated from their mother from day 2 to day 14 (P2 to P14), three hours per day (from 9:00 a.m. to 12:00 p.m.). Colorectal distension was performed by inflating distension probe from 20 µL to 100 µL by 20 µL increment step every 10 s. After a first colorectal distension (CRD), drugs were administered subcutaneously, in a cumulative manner, (Gabapentin at 30 mg/kg and 100 mg/kg; Pregabalin at 10 mg/kg and 30 mg/kg; Carbamazepine at 10 mg/kg and 30 mg/kg) and a second CRD was performed one hour after each injection. RESULTS: The visceromotor response (VMR) to CRD was increased by our NMS paradigm protocol in comparison to non-handled (NH) mice, considering the highest distension volumes (80 µL: 0.783 ± 0.056 mV/s vs 0.531 ± 0.034 mV/s, P < 0.05 and 100 µL: 1.087 ± 0.056 mV/s vs 0.634 ± 0.038 mV/s, P < 0.05 for NMS and NH mice, respectively). In the inflammation-associated CHS, DSS-treated mice showed a dramatic and significant increase in VMR at 60 and 80 µL distension volumes when compared to control mice (60 µL: 0.920 ± 0.079 mV/s vs 0.426 ± 0.100 mV/s P < 0.05 and 80 µL: 1.193 ± 0.097 mV/s vs 0.681 ± 0.094 mV/s P < 0.05 for DSS- and Water-treated mice, respectively). Carbamazepine failed to significantly reduce CHS in both models. Gabapentin significantly reduced CHS in the DSS-induced model for both subcutaneous injections at 30 or 100 mg/kg. Pregabalin significantly reduced VMR to CRD in the non-inflammatory NMS-induced CHS model for the acute subcutaneous administration of the highest cumulative dose (30 mg/kg) and significantly reduced CHS in low-dose DSS-treated mice in a dose-dependent manner. Finally, the percent decrease of AUC induced by acute GBP or Pregabalin treatment were higher in the inflammatory DSS-induced CHS model in comparison to the non-inflammatory NMS-induced CHS model. CONCLUSION: This preclinical study demonstrates α2δ-1 ligands efficacy on inflammation-associated CHS, highlighting their potential clinical interest in patients with chronic abdominal pain and moderate intestinal inflammation.


Asunto(s)
Canales de Calcio/fisiología , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Aminas/uso terapéutico , Animales , Ácidos Ciclohexanocarboxílicos/uso terapéutico , Sulfato de Dextran , Modelos Animales de Enfermedad , Gabapentina , Ligandos , Masculino , Ratones , Ratones Endogámicos C57BL , Pregabalina/uso terapéutico , Ácido gamma-Aminobutírico/uso terapéutico
9.
Neurogastroenterol Motil ; 28(11): 1632-1640, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27196538

RESUMEN

BACKGROUND: Among the different mechanisms involved in irritable bowel syndrome (IBS) physiopathology, visceral hypersensitivity seems to play a key role. It involves sensitization of the colonic primary afferent fibers, especially through an overexpression of ion channels. The aims of this translational study were to investigate the colonic expression of Cav 3.2 calcium channels and their involvement in an animal model of colonic hypersensitivity, and to assess their expression in the colonic mucosa of symptomatic IBS patients. METHODS: This bench-to-bed study combined a preclinical experimental study on mice and a case-control clinical study. Preclinical studies were performed on wild-type and Cav 3.2-KO mice. Colonic sensitivity and Cav 3.2 expression were studied after a low-dose treatment of dextran sodium sulfate (DSS 0.5%). Regarding the clinical study, colonic biopsies were performed in 14 IBS patients and 16 controls during a colonoscopy to analyze the mucosal Cav 3.2 expression. KEY RESULTS: Wild-type, but not Cav 3.2-KO, mice developed visceral hypersensitivity without colonic inflammation, after 0.5% DSS treatment. A significant increase of Cav 3.2 mRNA (p = 0.04) was found in the colon of low-dose DSS-treated wild-type (WT) mice compared to their controls. In human colonic biopsies, the Cav 3.2 mRNA level was significantly higher in the IBS group compared to the control group (p = 0.01). The immunofluorescence staining revealed their protein expression in colonic mucosa, particularly in nerve fibers. CONCLUSIONS & INFERENCES: This translational study supports the involvement of the calcium channels Cav 3.2 in abdominal pain, as observed in IBS patients. It opens new therapeutic perspectives based on molecules specifically blocking these channels.


Asunto(s)
Canales de Calcio Tipo T/biosíntesis , Colon/metabolismo , Modelos Animales de Enfermedad , Síndrome del Colon Irritable/metabolismo , Dolor Visceral/metabolismo , Animales , Canales de Calcio Tipo T/genética , Colon/patología , Femenino , Expresión Génica , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Síndrome del Colon Irritable/genética , Síndrome del Colon Irritable/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Dolor Visceral/genética , Dolor Visceral/patología
10.
J Neurogastroenterol Motil ; 22(1): 129-40, 2016 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-26459453

RESUMEN

BACKGROUND/AIMS: Patients with long-standing diabetes often demonstrate intestinal dysfunction and abdominal pain. However, the pathophysiology of abdominal pain in diabetic patients remains elusive. The purpose of study was to determine roles of voltage-gated sodium channels in dorsal root ganglion (DRG) in colonic hypersensitivity of rats with diabetes. METHODS: Diabetic models were induced by a single intraperitoneal injection of streptozotocin (STZ; 65 mg/kg) in adult female rats, while the control rats received citrate buffer only. Behavioral responses to colorectal distention were used to determine colonic sensitivity in rats. Colon projection DRG neurons labeled with DiI were acutely dissociated for measuring excitability and sodium channel currents by whole-cell patch clamp recordings. Western blot analysis was employed to measure the expression of NaV1.7 and NaV1.8 of colon DRGs. RESULTS: STZ injection produced a significantly lower distention threshold than control rats in responding to colorectal distention. STZ injection also depolarized the resting membrane potentials, hyperpolarized action potential threshold, decreased rheobase and increased frequency of action potentials evoked by 2 and 3 times rheobase and ramp current stimulation. Furthermore, STZ injection enhanced neuronal sodium current densities of DRG neurons innervating the colon. STZ injection also led to a significant upregulation of NaV1.7 and NaV1.8 expression in colon DRGs compared with age and sex-matched control rats. CONCLUSIONS: Our results suggest that enhanced neuronal excitability following STZ injection, which may be mediated by upregulation of NaV1.7 and NaV1.8 expression in DRGs, may play an important role in colonic hypersensitivity in rats with diabetes.

11.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-162044

RESUMEN

BACKGROUND/AIMS: Patients with long-standing diabetes often demonstrate intestinal dysfunction and abdominal pain. However, the pathophysiology of abdominal pain in diabetic patients remains elusive. The purpose of study was to determine roles of voltage-gated sodium channels in dorsal root ganglion (DRG) in colonic hypersensitivity of rats with diabetes. METHODS: Diabetic models were induced by a single intraperitoneal injection of streptozotocin (STZ; 65 mg/kg) in adult female rats, while the control rats received citrate buffer only. Behavioral responses to colorectal distention were used to determine colonic sensitivity in rats. Colon projection DRG neurons labeled with DiI were acutely dissociated for measuring excitability and sodium channel currents by whole-cell patch clamp recordings. Western blot analysis was employed to measure the expression of NaV1.7 and NaV1.8 of colon DRGs. RESULTS: STZ injection produced a significantly lower distention threshold than control rats in responding to colorectal distention. STZ injection also depolarized the resting membrane potentials, hyperpolarized action potential threshold, decreased rheobase and increased frequency of action potentials evoked by 2 and 3 times rheobase and ramp current stimulation. Furthermore, STZ injection enhanced neuronal sodium current densities of DRG neurons innervating the colon. STZ injection also led to a significant upregulation of NaV1.7 and NaV1.8 expression in colon DRGs compared with age and sex-matched control rats. CONCLUSIONS: Our results suggest that enhanced neuronal excitability following STZ injection, which may be mediated by upregulation of NaV1.7 and NaV1.8 expression in DRGs, may play an important role in colonic hypersensitivity in rats with diabetes.


Asunto(s)
Adulto , Animales , Femenino , Humanos , Ratas , Dolor Abdominal , Potenciales de Acción , Accesibilidad Arquitectónica , Western Blotting , Ácido Cítrico , Colon , Grupos Diagnósticos Relacionados , Ganglios Espinales , Hipersensibilidad , Inyecciones Intraperitoneales , Potenciales de la Membrana , Neuronas , Células Receptoras Sensoriales , Sodio , Canales de Sodio , Estreptozocina , Regulación hacia Arriba , Canales de Sodio Activados por Voltaje
12.
Neurogastroenterol Motil ; 25(11): e740-54, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23902154

RESUMEN

BACKGROUND: Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder associated with idiopathic colonic hypersensitivity (CHS). However, recent studies suggest that low-grade inflammation could underlie CHS in IBS. The pro-inflammatory mediator nerve growth factor (NGF) plays a key role in the sensitization of peripheral pain pathways and several studies have reported its contribution to visceral pain development. NGF modulates the expression of Acid-Sensing Ion Channels (ASICs), which are proton sensors involved in sensory neurons sensitization. This study examined the peripheral contribution of NGF and ASICs to IBS-like CHS induced by butyrate enemas in the rat colon. METHODS: Colorectal distension and immunohistochemical staining of sensory neurons were used to evaluate NGF and ASICs contribution to the development of butyrate-induced CHS. KEY RESULTS: Systemic injection of anti-NGF antibodies or the ASICs inhibitor amiloride prevented the development of butyrate-induced CHS. A significant increase in NGF and ASIC1a protein expression levels was observed in sensory neurons of rats displaying butyrate-induced CHS. This increase was specific of small- and medium-diameter L1 + S1 sensory neurons, where ASIC1a was co-expressed with NGF or trkA in CGRP-immunoreactive somas. ASIC1a was also overexpressed in retrogradely labeled colon sensory neurons. Interestingly, anti-NGF antibody administration prevented ASIC1a overexpression in sensory neurons of butyrate-treated rats. CONCLUSIONS & INFERENCES: Our data suggest that peripheral NGF and ASIC1a concomitantly contribute to the development of butyrate-induced CHS NGF-ASIC1a interplay may have a pivotal role in the sensitization of colonic sensory neurons and as such, could be considered as a potential new therapeutic target for IBS treatment.


Asunto(s)
Canales Iónicos Sensibles al Ácido/metabolismo , Ganglios Espinales/metabolismo , Hiperalgesia/etiología , Síndrome del Colon Irritable/metabolismo , Factor de Crecimiento Nervioso/metabolismo , Bloqueadores del Canal Iónico Sensible al Ácido/farmacología , Amilorida/farmacología , Animales , Modelos Animales de Enfermedad , Ganglios Espinales/efectos de los fármacos , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatología , Síndrome del Colon Irritable/fisiopatología , Masculino , Factor de Crecimiento Nervioso/farmacología , Dimensión del Dolor , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA