Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Microencapsul ; : 1-16, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39162289

RESUMEN

AIM(S): This article explores the application of mesalazine-loaded nanoparticles (MLZ-NPs) encapsulated in Abelmoschus esculentus plant polysaccharide-based pellets (MLZ-NPs-Pellets) for ulcerative colitis. METHODS: MLZ-NPs were prepared and evaluated for diameter, PDI, and entrapment efficiency. In-vitro efficacy study was conducted on Caco-2 cells. MLZ-NPs were encapsulated in polysaccharides to form MLZ-NPs-Pellets and characterised for efficacy in animals and targeting efficiency in human volunteers. RESULTS: Optimised batch of MLZ-NPs were characterised for diameter, PDI, zeta potential and entrapment efficiency which was found to be 145.42 ± 6.75 nm, 0.214 ± 0.049, -31.63 mV and 77.65 ± 2.33(%w/w) respectively. ROS, superoxide and NF-kß were well controlled in Caco-2 cells when treated with MLZ-NPs. In-vivo data revealed that some parameters (body weight, colon length, lipid peroxidase, and glutathione) recovered significantly in the DSS-induced mice model treated with oral MLZ-NPs-Pellets. Gamma scintigraphy revealed that the formulation can effectively target the colon within 600 min. CONCLUSION: MLZ-NPs-Pellets can be effectively used for microbial-triggered colon targeting approach in treating ulcerative colitis.

2.
Int J Biol Macromol ; 275(Pt 1): 133623, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38969037

RESUMEN

Enzyme-triggered oral colon-specific drug delivery system (EtOCDDS1) can withstand the harsh stomach and small intestine environments, releasing encapsulated drugs selectively in the colon in response to colonic microflora, exerting local or systematic therapeutic effects. EtOCDDS boasts high colon targetability, enhanced drug bioavailability, and reduced systemic side effects. Polysaccharides are extensively used in enzyme-triggered oral colon-specific drug delivery systems, and its colon targetability has been widely confirmed, as their properties meet the demand of EtOCDDS. Polysaccharides, known for their high safety and excellent biocompatibility, feature modifiable structures. Some remain undigested in the stomach and small intestine, whether in their natural state or after modifications, and are exclusively broken down by colon-resident microbiota. Such characteristics make them ideal materials for EtOCDDS. This article reviews the design principles of EtOCDDS as well as commonly used polysaccharides and their characteristics, modifications, applications and specific mechanism for colon targeting. The article concludes by summarizing the limitations and potential of ETOCDDS to stimulate the development of innovative design approaches.


Asunto(s)
Colon , Sistemas de Liberación de Medicamentos , Polisacáridos , Polisacáridos/química , Colon/metabolismo , Colon/efectos de los fármacos , Humanos , Sistemas de Liberación de Medicamentos/métodos , Administración Oral , Animales , Portadores de Fármacos/química , Enzimas/química , Enzimas/metabolismo
3.
Drug Deliv Transl Res ; 14(10): 1-17, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38789909

RESUMEN

Fisetin (FS) is a flavonoid that possesses antioxidant and anti-inflammatory properties against ulcerative colitis. FS shows poor dissolution rate and permeability. An attempt has been made to develop colon-targeted solid self-nanoemulsifying drug delivery systems (S-SNEDDS) of FS. Initially, liquid (L) SNEDDS were prepared by loading FS into isotropic mixture of L-SNEDDS was prepared using Labrafil M 1944 CS, Transcutol P, and Tween 80. These L-SNEDDS were further converted into solid (S) SNEDDS by mixing the isotropic mixture with 1:1:1 ratio of guar gum (GG), xanthan gum (XG) and pectin (PC) [GG:XG:PC (1:1:1)]. Aerosil-200 (A-200) was added to enhance their flow characteristics. Further, they were converted into spheroids by extrusion-spheronization technique. The solid-state characterization of S-SNEDDS was done by SEM, DSC, and PXRD, which revealed that the crystalline form of FS was converted into the amorphous form. In the dissolution study, S-SNEDDS spheroids [GG:XG:PC (1:1:1)] exhibited less than 20% drug release within the first 5 h, followed by rapid release of the drug between the 5th and 10th h, indicating its release at colonic site. The site-specific delivery of FS to colon via FS-S-SNEDDS spheroids was confirmed by conducting pharmacokinetic studies on rats. Wherein, results showed delay in absorption of FS loaded in spheroids up to 5 h and achievement of Cmax at 7h, whereas L-SNEDDS showed rapid absorption of FS. Furthermore, FS-L-SNEDDS and FS-S-SNEDDS spheroids [GG:XG:PC (1:1:1)] increased oral bioavailability of FS by 6.86-fold and 4.44-fold, respectively, as compared to unprocessed FS.


Asunto(s)
Disponibilidad Biológica , Colon , Emulsiones , Flavonoides , Flavonoles , Galactanos , Pectinas , Polisacáridos Bacterianos , Flavonoles/farmacocinética , Flavonoles/administración & dosificación , Flavonoles/química , Animales , Colon/metabolismo , Flavonoides/farmacocinética , Flavonoides/administración & dosificación , Flavonoides/química , Masculino , Administración Oral , Galactanos/química , Galactanos/farmacocinética , Galactanos/administración & dosificación , Pectinas/química , Pectinas/farmacocinética , Pectinas/administración & dosificación , Polisacáridos Bacterianos/química , Polisacáridos Bacterianos/farmacocinética , Polisacáridos Bacterianos/administración & dosificación , Gomas de Plantas/química , Gomas de Plantas/farmacocinética , Gomas de Plantas/administración & dosificación , Mananos/química , Mananos/farmacocinética , Mananos/administración & dosificación , Sistemas de Liberación de Medicamentos , Nanopartículas/química , Nanopartículas/administración & dosificación , Ratas , Ratas Sprague-Dawley , Liberación de Fármacos , Solubilidad
4.
Artículo en Inglés | MEDLINE | ID: mdl-38584529

RESUMEN

Nutriose is a dextrin-based soluble fiber prepared from starch. Cereals such as maize, wheat, and barley are the primary sources of nutrients for commercial production. Nutriose is resistant to digestion by human enzymes in the stomach and small intestine. It is mostly undamaged when it enters the colon after traveling through the digestive tract, where it generates shortchain fatty acids (SCFAs) as byproducts. These SCFAs, which include butyrate, propionate, and acetate, have a number of health advantages. They foster an environment in the colon that is advantageous for gut health-promoting bacteria like lactobacilli and bifidobacteria. Nutriose fermentation leads to a more balanced composition of the gut microbiota, which may have advantages for the immune system, better digestion, and increased nutrient absorption. As a result, nutriose is currently being utilized as a prebiotic. Several publications have previously demonstrated the impact of nutriose on stimulating gut mucosal immunity and boosting colonic fermentation and excretion in rats. Nanoformulations and nutrisomes have already been prepared and evaluated in recent years. A novel nutriose-based polymeric coating mix has already been tested as a potential colon-targeting material. As a natural polysaccharide, nutriose's possible uses in pharmaceuticals may increase in the near future. The purpose of this study is to critically analyze existing data to determine the potential of nutriose as a natural polymer for various drug delivery systems.

5.
Carbohydr Polym ; 334: 122009, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38553200

RESUMEN

Colon specific delivery of therapeutics have gained much attention of pharmaceutical researchers in the recent past. Colonic specific targeting of drugs is used not only for facilitating absorption of protein or peptide drugs, but also localization of therapeutic agents in colon to treat several colonic disorders. Among various biopolymers, guar gum (GG) exhibits pH dependent swelling, which allows colon specific release of drug. GG also shows microbial degradation in the colonic environment which makes it a suitable excipient for developing colon specific drug delivery systems. The uncontrolled swelling and hydration of GG can be controlled by structural modification or by grafting with another polymeric moiety. Several graft copolymerized guar gum derivatives are investigated for colon targeting of drugs. The efficacy of various guar gum derivatives are evaluated for colon specific delivery of drugs. The reviewed literature evidenced the potentiality of guar gum in localizing drugs in the colonic environment. This review focuses on the synthesis of several guar gum derivatives and their application in developing various colon specific drug delivery systems including matrix tablets, coated formulations, nano or microparticulate delivery systems and hydrogels.


Asunto(s)
Colon , Sistemas de Liberación de Medicamentos , Colon/metabolismo , Gomas de Plantas/química , Galactanos/química , Mananos/química , Portadores de Fármacos/metabolismo
6.
Int J Biol Macromol ; 263(Pt 2): 130389, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38403207

RESUMEN

Curcumin, a bioactive compound derived from the rhizome of Curcuma longa, has gained widespread attention for its potential therapeutic properties, including anti-inflammatory, antioxidant and anticancer effects. However, its poor aqueous solubility, instability and limited bioavailability have hindered its clinical applications. New beads formulations based on sodium alginate biopolymer (SA) and poly vinyl alcohol (PVA) were successfully prepared and evaluated as a potential drug vehicle for extended release of curcumin (Cur). Pristine and curcumin loaded calcium alginate/poly vinyl alcohol beads (CA/PVA and CA/PVA/Cur) at different compositions of SA and PVA were prepared by an ionotropic gelation method of SA followed by two freeze-thawing (FT) cycles for further crosslinking of PVA. Characterization techniques, such as scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), UV-Visible spectroscopy, thermogravimetric analysis (TGA) and x-ray diffraction (XRD) were used to confirm the successful microencapsulation of curcumin within the CA/PVA microcapsules. Furthermore, the swelling of pristine beads, pH-sensitive properties and in vitro release studies of curcumin loaded beads were investigated at 37 °C in simulated gastric fluid (SGF), simulated intestinal fluid (SIF) and simulated colonic fluid (SCF). The effect of the polymer blend ratio, the encapsulation efficiency (EE %) of curcumin, the loading capacity (LC µg/mg), the sphericity factor (SF), the antioxidant activity of the elaborated beads and their antimicrobial properties against bacteria and fungi were just as much evaluated. The obtained results indicate that the swelling and the behavior of the developed beads were influenced by the pH of the test medium and the PVA content. The introduction of PVA into the SA matrix greatly enhanced the physicochemical properties, the encapsulation efficiency and the loading capacity of the elaborated microparticles. Results also suggested that the antioxidant activity of the loaded beads (CA/PVA/Cur) showed a higher DPPH radical scavenging activity while the bacterial and fungal strains proved sensitive to the different formulations used in the assay. Moreover, the important drug encapsulation efficiency and the sustainable drug release of these materials make them promising for the development of new drug carrier systems for colon targeting.


Asunto(s)
Curcumina , Curcumina/farmacología , Curcumina/química , Hidrogeles/química , Alginatos/química , Antioxidantes/farmacología , Alcohol Polivinílico/química , Antibacterianos/farmacología , Antibacterianos/química , Espectroscopía Infrarroja por Transformada de Fourier , Concentración de Iones de Hidrógeno
7.
Int J Biol Macromol ; 263(Pt 2): 130517, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38423444

RESUMEN

Orally targeted delivery systems have attracted ample interest in colorectal cancer management. In this investigation, we developed Inositol hexaphosphate (IHP) loaded Tripolyphosphate (Tr) crosslinked Pectin (Pe) Chitosan (Ch) nanoparticles (IHP@Tr*Pe-Ch-NPs) and modified them with l-Carnitine (CE) (CE-IHP@Tr*Pe-Ch-NPs) to improve uptake in colon cells. The formulated CE-IHP@Tr*Pe-Ch-NPs displayed a monodisperse distribution with 219.3 ± 5.5 nm diameter and 30.17 mV surface charge. Cell-line studies revealed that CE-IHP@Tr*Pe-Ch-NPs exhibited excellent biocompatibility in J774.2 and decreased cell viability in DLD-1, HT-29, and MCF7 cell lines. More cell internalization was seen in HT-29 and MCF7 due to overexpression of the OCTN2 and ATB0,+ transporter (CE transporters) compared to DLD-1. The cell cycle profile, reactive oxygen species, apoptosis, and mitochondrial membrane potential assays were performed to explore the chemo-preventive mechanism of CE-IHP@Tr*Pe-Ch-NPs. Moreover, the in-silico docking studies revealed enhanced interactive behavior of CE-IHP@Tr*Pe-Ch-NPs, thereby proving their targeting ability. All the findings suggested that CE-IHP@Tr*Pe-Ch-NPs could be a promising drug delivery approach for colon cancer targeting.


Asunto(s)
Quitosano , Nanopartículas , Humanos , Ácido Fítico , Pectinas/farmacología , Carnitina , Células MCF-7 , Colon , Portadores de Fármacos
8.
Nanomedicine (Lond) ; 19(9): 755-777, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38334078

RESUMEN

Aim: This study aimed to develop and evaluate pH-sensitive docetaxel-loaded thiolated hyaluronic acid (HA-SH) nanoparticles (NPs) for targeted treatment of colon cancer. Materials & methods: HA-SH, synthesized via oxidation and subsequent covalent linkage to cysteamine, served as the precursor for developing HA-SH NPs through polyelectrolyte complexation involving chitosan and thiol-bearing HA. Results & conclusion: HA-SH NPs displayed favorable characteristics, with small particle sizes (184-270 nm), positive zeta potential (15.4-18.6 mV) and high entrapment efficiency (91.66-95.02%). In vitro, NPs demonstrated potent mucoadhesion and enhanced cytotoxicity compared with free docetaxel. In vivo assessments confirmed safety and biocompatibility, suggesting HA-SH NPs as promising pH-sensitive drug carriers with enhanced antitumor activity for colorectal cancer treatments.


Asunto(s)
Quitosano , Neoplasias del Colon , Nanopartículas , Humanos , Docetaxel , Ácido Hialurónico , Portadores de Fármacos , Polímeros , Concentración de Iones de Hidrógeno , Tamaño de la Partícula
9.
Int J Pharm X ; 7: 100233, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38379554

RESUMEN

Polysaccharides were identified, which allow for colon targeting in human Inflammatory Bowel Disease (IBD) patients, as well as in rats and dogs (which are frequently used as animals in preclinical studies). The polysaccharides are degraded by colonic enzymes (secreted by bacteria), triggering the onset of drug release at the target site. It has to be pointed out that the microbiota in rats, dogs and humans substantially differ. Thus, the performance of this type of colon targeting system observed in animals might not be predictive for patients. The aim of this study was to limit this risk. Different polysaccharides were exposed to culture medium inoculated with fecal samples from IBD patients, healthy dogs and "IBD rats" (in which colonic inflammation was induced). Dynamic changes in the pH of the culture medium were used as an indicator for the proliferation of the bacteria and, thus, the potential of the polysaccharides to serve as their substrate. Fundamental differences were observed with respect to the extent of the pH variations as well as their species-dependency. The most promising polysaccharides were used to prepare polymeric film coatings surrounding 5-aminosaliciylic acid (5-ASA)-loaded starter cores. To limit premature polysaccharide dissolution/swelling in the upper gastro intestinal tract, ethylcellulose was also included in the film coatings. Drug release was monitored upon exposure to culture medium inoculated with fecal samples from IBD patients, healthy dogs and "IBD rats". For reasons of comparison, also 5-ASA release in pure culture medium was measured. Most film coatings showed highly species-dependent drug release kinetics or limited colon targeting capacity. Interestingly, extracts from aloe vera and reishi (a mushroom) showed a promising potential for colon targeting in all species.

10.
Eur J Pharm Sci ; 192: 106652, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38008226

RESUMEN

Catechin is a naturally occurring flavonoid of the flavan-3-ol subclass with numerous biological functions; however, these benefits are diminished due to several factors, including low water solubility and degradation in the stomach's harsh environment. So, this study aimed to develop an intelligent catechin colon-targeting delivery system with a high loading capacity. This was done by coating surface-decorated mesoporous silica nanoparticles with a pH-responsive enteric polymer called Eudragit®-S100. The pristine wormlike mesoporous silica nanoparticles (< 100 nm) with high surface area and large total pore volume were effectively synthesized and modified with the NH2 group using the post-grafting strategy. Various parameters, including solvent polarity, catechin-carrier mass ratio, and adsorption time, were studied to improve the loading of catechin into the aminated silica nanoparticles. Next, the negatively charged Eudragit®-S100 was electrostatically coated onto the positively charged aminated nanocarriers to shield the loaded catechin from the acidic environment of the stomach (pH 1.9) and to facilitate site-specific delivery in the acidic environment of the colon (pH 7.4). The prepared nanomaterials were evaluated using several methods, including The Brauner-Emmett-Teller, surface area analyzer, zeta sizer, Field Emission Scanning Electron Microscope, Powder X-Ray Diffraction, Fourier Transform Infrared Spectroscopy, Energy-Dispersive X-ray Spectroscopy, and Differential Scanning Calorimetry. In vitro dissolution studies revealed that Eudragit®-S100-coated aminated nanomaterials prevented the burst release of the loaded catechin in the acidic environment, with approximately 90% of the catechin only being released at colonic pH (pH > 7) with a supercase II transport mechanism. As a result, silica nanoparticles coated with Eudragit®-S100 would provide an innovative and promising approach in targeted nanomedicine for the oral delivery of catechin and related medicines for treating diseases related to the colon, such as colorectal cancer and irritable bowel syndrome.


Asunto(s)
Catequina , Nanopartículas , Preparaciones de Acción Retardada/metabolismo , Dióxido de Silicio/química , Portadores de Fármacos/química , Nanopartículas/química , Colon/metabolismo , Concentración de Iones de Hidrógeno , Sistemas de Liberación de Medicamentos , Porosidad , Espectroscopía Infrarroja por Transformada de Fourier
11.
AAPS PharmSciTech ; 24(7): 205, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37789211

RESUMEN

Over the past decades, increasing interests took place in the realm of drug delivery systems. Beyond treating intestinal diseases such as inflammatory bowel disease, colon targeting can provide possible applications for oral administration of proteins as well as vaccines due to the lower enzymatic activity in the distal part of GIT. To date, many strategies are employed to reach the colon. This article encompasses different biomaterials tested as film coatings and highlights appropriate formulations for colonic drug delivery. A comparison of different films was made to display the most interesting drug release profiles. These films contained ethylcellulose, as a thermoplastic polymer, blended with an aqueous shellac ammonium salt solution. Different blend ratios were selected as well for thin films as for coated mini-tablets, mainly varying as follows: (80:20); (75:25); (60:40). The impact of blend ratio and coating level was examined as well as the addition of natural polysaccharide "inulin" to target the colon. In vitro drug release was measured in 0.1 M HCl for 2 h followed by phosphate buffer saline pH 6.8 to simulate gastric and intestinal fluids, respectively. Coated mini-tablets were exposed to fresh fecal samples of humans in order to simulate roughly colonic content. Several formulations were able to fully protect theophylline as a model drug up to 8 h in the upper GIT, but allowing for prolonged release kinetics in the colon. These very interesting colonic release profiles were related to the amount of the natural polysaccharide added into the system.


Asunto(s)
Colon , Inulina , Humanos , Inulina/metabolismo , Colon/metabolismo , Sistemas de Liberación de Medicamentos , Polisacáridos/química , Comprimidos/metabolismo , Agua/metabolismo
12.
Nanomaterials (Basel) ; 13(20)2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37887947

RESUMEN

Though the anti-miR-301a (anti-miR) is a promising treatment strategy for inflammatory bowel disease (IBD), the degradability and the poor targeting of the intestine are a familiar issue. This study aimed to develop a multifunctional oral nanoparticle delivery system loaded with anti-miR for improving the targeting ability and the therapeutic efficacy. The HA-CS/ES100/PLGA nanoparticles (HCeP NPs) were prepared using poly (lactic-co-glycolic acid) copolymer (PLGA), enteric material Eudragit®S100 (ES100), chitosan (CS), and hyaluronic acid (HA). The toxicity of nanoparticles was investigated via the Cell Counting Kit-8, and the cellular uptake and inflammatory factors of nanoparticles were further studied. Moreover, we documented the colon targeting and pharmacodynamic properties of nanoparticles. The nanoparticles with uniform particle size exhibited pH-sensitive release, favorable gene protection, and storage stability. Cytology experiments showed that anti-miR@HCeP NPs improved the cellular uptake through HA and reduced pro-inflammatory factors. Administering anti-miR@HCeP NPs orally to IBD mice markedly reduced their pro-inflammatory factors levels and disease activity indices. We also confirmed that anti-miR@HCeP NPs mostly accumulated in the colon site, and effectively repaired the intestinal barrier, as well as relieved intestinal inflammation. The above nanoparticle is a candidate of the treatment for IBD due to its anti-inflammatory properties.

13.
Curr Drug Deliv ; 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37718525

RESUMEN

Ulcerative colitis (UC) and Crohn's disease (CD) are two types of idiopathic inflammatory bowel disease (IBD) that are increasing in frequency and incidence worldwide, particularly in highly industrialized countries. Conventional tablets struggle to effectively deliver anti-inflammatory drugs since the inflammation is localized in different areas of the colon in each patient. The goal of 3D printing technology in pharmaceutics is to create personalized drug delivery systems (DDS) that are tailored to each individual's specific needs. This review provides an overview of existing 3D printing processes, with a focus on extrusion-based technologies, which have received the most attention. Personalized pharmaceutical products offer numerous benefits to patients worldwide, and 3D printing technology is becoming more affordable every day. Custom manufacturing of 3D printed tablets provides innovative ideas for developing a tailored colon DDS. In the future, 3D printing could be used to manufacture personalized tablets for UC patients based on the location of inflammation in the colon, resulting in improved therapeutic outcomes and a better quality of life.

14.
Fitoterapia ; 169: 105607, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37442485

RESUMEN

The clinical treatment of ulcerative colitis (UC) faces great challenges due to lifetime medication. In this study, Gingerol oil was extracted and purified by the process easily scale-up and cost effective, with productivity 2.72 ± 0.38% (w/w, versus crude drugs). The quality control of gingerol oil was fully established by HPLC fingerprint with 4 common peaks identified as 6-gingerol, 8-gingerol, 6-shogaol and 10-gingerol. The similarities of 6 batches of gingerol oil are within 0.931-0.999. The protective effects of gingerol oil are equivalent to or even stronger than that of 6-gingerol on inflammation and oxidative stress of HT-29 cells induced by lipopolysaccharide and H2O2, as well as on UC in mice caused by dextran sulfate sodium salt (DSS). Our research conclusions coincide well with the holistic view of Traditional Chinese Medicine and network pharmacology. The absorption kinetics of gingerol oil were conducted using the in situ intestinal perfusion in rats and comparable absorption were achieved in the jejunum, ileum and colon segments within 2 h. Thus, gingerol oil colon targeting pellets were prepared by extrusion-spherization technique. The cumulative dissolution behaviors and mechanisms were observed and analyzed by fitting to dissolution model. Our studies provided reliable theoretical and experimental support for the gingerol oil as reliable therapeutic choice of UC.


Asunto(s)
Colitis Ulcerosa , Colitis , Ratas , Ratones , Animales , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Peróxido de Hidrógeno/efectos adversos , Estructura Molecular , Colon , Sulfato de Dextran/efectos adversos , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
15.
Eur J Pharm Sci ; 190: 106523, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37429482

RESUMEN

The oral delivery of biologics such as therapeutic proteins, peptides and oligonucleotides for the treatment of colon related diseases has been the focus of increasing attention over the last years. However, the major disadvantage of these macromolecules is their degradation propensity in liquid state which can lead to the undesirable and complete loss of function. Therefore, to increase the stability of the biologic and reduce their degradation propensity, formulation techniques such as solidification can be performed to obtain a stable solid dosage form for oral administration. Due to their fragility, stress exerted on the biologic during solidification has to be reduced with the incorporation of stabilizing excipients into the formulation. This review focuses on the state-of-the-art solidification techniques required to obtain a solid dosage form for the oral delivery of biologics to the colon and the use of suitable excipients for adequate stabilization upon solidification. The solidifying processes discussed within this review are spray drying, freeze drying, bead coating and also other techniques such as spray freeze drying, electro spraying, vacuum- and supercritical fluid drying. Further, the colon as site of absorption in both healthy and diseased state is critically reviewed and possible oral delivery systems for biologics are discussed.


Asunto(s)
Productos Biológicos , Excipientes , Excipientes/química , Desecación , Liofilización , Colon
16.
Pharmaceutics ; 15(6)2023 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-37376051

RESUMEN

Phage therapy is recognized to be a promising alternative to fight antibiotic-resistant infections. In the quest for oral dosage forms containing bacteriophages, the utilization of colonic-release Eudragit® derivatives has shown potential in shielding bacteriophages from the challenges encountered within the gastrointestinal tract, such as fluctuating pH levels and the presence of digestive enzymes. Consequently, this study aimed to develop targeted oral delivery systems for bacteriophages, specifically focusing on colon delivery and employing Eudragit® FS30D as the excipient. The bacteriophage model used was LUZ19. An optimized formulation was established to not only preserve the activity of LUZ19 during the manufacturing process but also ensure its protection from highly acidic conditions. Flowability assessments were conducted for both capsule filling and tableting processes. Furthermore, the viability of the bacteriophages remained unaffected by the tableting process. Additionally, the release of LUZ19 from the developed system was evaluated using the Simulator of the Human Intestinal Microbial Ecosystem (SHIME®) model. Finally, stability studies demonstrated that the powder remained stable for at least 6 months when stored at +5 °C.

17.
Eur J Pharm Biopharm ; 189: 28-35, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37270158

RESUMEN

Inulin has been applied in Inulin-Eudragit RS (Inu-ERS) coatings as the component responsible for degradation by human microbiota. However, studies on how bacterial enzymes can degrade polysaccharides like inulin imbedded in water insoluble polymers like Eudragit RS are still elusive. The present work aims at elucidating the complex process of enzyme triggered biodegradation of inulin with various molecular weights in isolated films with Eudragit RS. The ratio of inulin to Eudragit RS was varied to create films with different degree of hydrophilicity. The phase behavior study revealed that blends of inulin and Eudragit RS are phase separated systems. The film permeability was studied by determination of the permeability coefficient of caffeine and the fraction of inulin that was released from the films in a buffer solution with or without inulinase was quantified. Together with the morphology characterization of the Inu-ERS films with and without incubation in the enzyme solution, these results suggest that the action of the enzyme was only limited to the fraction of inulin released in the buffer solution. Inulin fully embedded in the Eudragit RS matrix was not degraded. The permeation of the model drug caffeine occurred in the phase-separated film as a result of pores formed as a consequence of inulin release. The inulin to Eudragit RS blend ratio and the molecular weight of inulin affected the percolation threshold, the release of inulin, the morphology of the film formed thereafter and the connectivity of the formed water channels, thus influencing the drug permeation properties.


Asunto(s)
Cafeína , Inulina , Humanos , Inulina/metabolismo , Cafeína/metabolismo , Colon/metabolismo , Permeabilidad
18.
Drug Deliv Transl Res ; 13(12): 2982-3002, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37270444

RESUMEN

Itraconazole (ITZ), a broad-spectrum antifungal drug, was formulated into colon-targeting system aiming to treat opportunistic colonic fungal infections that commonly infect chronic inflammatory bowel diseases (IBD) patients due to immunosuppressive therapy. Antisolvent precipitation technique was employed to formulate ITZ-loaded zein nanoparticles (ITZ-ZNPs) using various zein: drug and aqueous:organic phase ratios. Central composite face-centered design (CCFD) was used for statistical analysis and optimization. The optimized formulation was composed of 5.5:1 zein:drug ratio and 9.5:1 aqueous:organic phase ratio with its observed particle size, polydispersity index, zeta potential, and entrapment efficiency of 208 ± 4.29 nm, 0.35 ± 0.04, 35.7 ± 1.65 mV, and 66.78 ± 3.89%, respectively. ITZ-ZNPs were imaged by TEM that revealed spherical core-shell structure, and DSC proved ITZ transformation from crystalline to amorphous form. FT-IR showed coupling of zein NH group with ITZ carbonyl group without affecting ITZ antifungal activity as confirmed by antifungal activity test that showed enhanced activity of ITZ-ZNPs over the pure drug. Histopathological examination and cytotoxicity tests ensured biosafety and tolerance of ITZ-ZNPs to the colon tissue. The optimized formulation was then loaded into Eudragit S100-coated capsules and both in vitro release and in vivo X-ray imaging confirmed the success of such coated capsules in protecting ITZ from the release in stomach and intestine while targeting ITZ to the colon. The study proved that ITZ-ZNPs is promising and safe nanoparticulate system that can protect ITZ throughout the GIT and targeting its release to the colon with effectual focused local action for the treatment of colon fungal infections.


Asunto(s)
Micosis , Nanopartículas , Zeína , Humanos , Itraconazol/química , Antifúngicos/química , Espectroscopía Infrarroja por Transformada de Fourier , Nanopartículas/química , Colon , Tamaño de la Partícula
19.
Carbohydr Polym ; 313: 120884, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37182972

RESUMEN

Based on the biocompatibility and macrophage targeting of natural polysaccharides, combined with the physiological and pathological characteristics of the gastrointestinal tract and colonic mucosa of ulcerative colitis (UC), we prepare dexamethasone (Dex)-loaded oral colon-targeted nano-in-micro drug delivery systems coated with multilayers of chitosan (CS), hyaluronic acid (HA), and finally Eudragit S100 (ECHCD MPs) using a layer-by-layer coating technique for UC treatment through regulating the M1/M2 polarization of intestinal macrophages. HA/CS/Dex nanoparticles (HCD NPs) are ingested by macrophages via CD44 receptor-mediated endocytosis to regulate M1-to-M2 macrophage polarization and exert anti-inflammatory effects. Moreover, ECHCD MPs show better colon-targeting properties than Dex-loaded chitosan nanoparticles (CD NPs) and HCD NPs which is demonstrated by stronger mucoadhesion to inflamed colon tissues. After oral administration, ECHCD MPs exert significant anti-UC effects. Therefore, ECHCD MPs are proven to be as promising oral colon-targeting drug delivery systems for Dex and have potential application in UC treatment.


Asunto(s)
Quitosano , Colitis Ulcerosa , Colitis , Nanopartículas , Humanos , Ácido Hialurónico/farmacología , Quitosano/farmacología , Sistemas de Liberación de Medicamentos , Colitis/tratamiento farmacológico , Colitis/patología , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/patología , Macrófagos , Colon
20.
ACS Appl Mater Interfaces ; 15(22): 26298-26315, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37233992

RESUMEN

Intestinal immune dysfunction and gut microbiota dysbiosis are critically causative factors in the pathogenesis of ulcerative colitis (UC); however, the current first-line drugs for UC treatment in clinics often remain great challenges due to their nontargeting therapeutic efficacy and severe side effects. In the current study, colon-targeting nanoparticles based on Angelica sinensis polysaccharide with pH- and redox-responsiveness were fabricated to specifically release the naturally active compound ginsenoside Rh2 in the colonic inflammatory site, which greatly alleviated the UC symptoms and improved the gut microbial homeostasis. These dual responsive Rh2-loaded nanoparticles (Rh2/LA-UASP NPs) with a particle size of 117.00 ± 4.80 nm were prepared using the polymer LA-UASP obtained by grafting A. sinensis polysaccharide with urocanic acid and α-lipoic acid (α-LA). As expected, these Rh2/LA-UASP NPs achieved dual pH- and redox-responsive drug release at pH 5.5 and 10 mM GSH. The stability, biocompatibility, and in vivo safety experiments exhibited these prepared nanoparticles had excellent colon-targeting ability and significant accumulation of Rh2 in the inflammatory colon. Meanwhile, these Rh2/LA-UASP NPs could escape from lysosomes and be efficiently internalized into intestinal mucosal cells, thereby effectively inhibiting the release of proinflammatory cytokines. The animal experiments indicated that Rh2/LA-UASP NPs significantly improved the integrity of intestinal mucosa and increased the colon length compared with UC mice. Additionally, the weight loss, histological damage, and inflammation level were greatly ameliorated. The homeostasis of intestinal flora and the level of short-chain fatty acids (SCFAs) were significantly improved after being treated with Rh2/LA-UASP NPs in UC mice. Our study proved that these Rh2/LA-UASP NPs with dual pH-and redox-responsiveness are promising candidates for UC treatment.


Asunto(s)
Angelica sinensis , Colitis Ulcerosa , Nanopartículas , Animales , Ratones , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/patología , Polisacáridos/farmacología , Polisacáridos/uso terapéutico , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA