Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 275
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39268850

RESUMEN

Advanced photodetectors are crucial for high-fidelity optical communication. However, the tradeoff between high external quantum efficiency (EQE) and high light fidelity (Li-Fi) frequency often limits data transmission accuracy and timeliness. Here, we report a photodetector consisting of lead sulfide (PbS) colloidal quantum dots (CQDs) with near-infrared responsiveness and perovskite frameworks responsible for the charge transport to overcome the EQE × Li-Fi constraint. Optimizing the PbS CQDs distribution and trap depth in the perovskite layer enhances charge injection, achieving a device gain of 11892% for 1200 nm photons and a response frequency of 24 kHz at -2 V. The device exhibits a record EQE × Li-Fi frequency product of 106 Hz. We have applied the detector to near-infrared optical communications at a data transfer rate of 2000 bits per second (2 kbps) to demonstrate the advances in high fidelity, the device retains over 98% of the original waveform information in its output.

2.
Small ; : e2402500, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39246184

RESUMEN

In order to enhance the overall efficiency of colloidal quantum dots solar cells, it is crucial to suppress the recombination of charge carriers and minimize energy loss at the interfaces between the transparent electrode, electron transport layer (ETL), and colloidal quantum dots (CQDs) light-absorbing material. In the current study, ZnO/SrTiO3 (STO), ZnO/WO3 (TO), and ZnO/Zn2SnO4 (ZTO) bilayers are introduced as an ETL using a spin-coating technique. The ZTO interlayer exhibits a smoother surface with a root-mean-square (RMS) value of ≈ 3.28 nm compared to STO and TO interlayers, which enables it to cover the surface of the ITO/ZnO substrate entirely and helps to prevent direct contact between the CQDs absorber layer and the ITO/ZnO substrate, thereby effectively preventing efficient charge recombination at the interfaces of the ETL/CQDs. Furthermore, the ZTO interlayer possesses superior electron mobility, a higher visible light transmission, and a suitable energy band structure compared to STO and TO. These characteristics are advantageous for extracting charge carriers and facilitating electron transport. The PbS CQDs solar cell based on the ITO/ZnO/ZTO/PbS-FABr/PbS-EDT/NiO/Au device configuration exhibits the highest efficiency of 15.28%, which is significantly superior than the ITO/ZnO/PbS-FABr/PbS-EDT/NiO/Au solar cell device (PCE = 14.38%). This study is anticipated to offer a practical approach to develop ultrathin and compact ETL for highly efficient CQDSCs.

3.
ACS Nano ; 18(33): 21957-21965, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39101968

RESUMEN

Quantum dots (QDs) exhibit size-tunable optical properties, making them suitable for efficient light-sensing and light-emitting devices. Tandem devices that can convert near-infrared (NIR) to visible (Vis) signals can be fabricated by integrating an NIR-sensing QD device with a Vis electroluminescence (EL) QD device. However, these devices require delicate control of the QD layer during processing to prevent damage to the predeposited QD layers in tandem devices during the subsequent deposition of other functional layers. This has restricted attainable device structures for QD-based upconversion devices. Herein, we present a modular approach for fabricating QD-based optoelectric upconversion devices. This approach involves using NIR QD-absorbing (Abs) and Vis QD-EL units as building modules, both of which feature cross-linked functional layers that exhibit structural tolerance to dissolution during subsequent solution-based processes. Tandem devices are fabricated in both normal (EL unit on Abs unit) and inverted (Abs unit on EL unit) structures using the same set of NIR QD-Abs and Vis QD-EL units stacked in opposite sequences. The tandem device in the normal structure exhibits a high NIR photon-to-Vis-photon conversion efficiency of up to 1.9% in a practical transmissive mode. By extending our modular approach, we also demonstrate a three-stack tandem device that incorporates a single NIR-absorbing unit coupled with two EL units, achieving an even higher conversion efficiency of up to 3.2%.

4.
Nanomaterials (Basel) ; 14(16)2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39195366

RESUMEN

Colloidal quantum dots (CQDs) show unique properties that distinguish them from their bulk form, the so-called quantum confinement effects. This feature manifests in tunable size-dependent band gaps and discrete energy levels, resulting in distinct optical and electronic properties. The investigation direction of colloidal quantum dots (CQDs) materials has started switching from high-performing materials based on Pb and Cd, which raise concerns regarding their toxicity, to more environmentally friendly compounds, such as AgBiS2. After the first breakthrough in solar cell application in 2016, the development of AgBiS2 QDs has been relatively slow, and many of the fundamental physical and chemical properties of this material are still unknown. Investigating the growth of AgBiS2 QDs is essential to understanding the fundamental properties that can improve this material's performance. This review comprehensively summarizes the synthesis strategies, ligand choice, and solar cell fabrication of AgBiS2 QDs. The development of PbS QDs is also highlighted as the foundation for improving the quality and performance of AgBiS2 QD. Furthermore, we prospectively discuss the future direction of AgBiS2 QD and its use for solar cell applications.

5.
Nanomaterials (Basel) ; 14(16)2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39195392

RESUMEN

Colloidal quantum dots (CQDs) are valuable for their potential applications in optoelectronic devices. However, they are susceptible to thermal degradation during processing and while in use. Mitigating thermally induced sintering, which leads to absorption spectrum broadening and undesirable changes to thin film electrical properties, is necessary for the reliable design and manufacture of CQD-based optoelectronics. Here, low-temperature metal-oxide atomic layer deposition (ALD) was investigated as a method for mitigating sintering while preserving the optoelectronic properties of mercury telluride (HgTe) CQD films. ALD-coated films are subjected to temperatures up to 160 °C for up to 5 h and alumina (Al2O3) is found to be most effective at preserving the optical properties, demonstrating the feasibility of metal-oxide in-filling to protect against sintering. HgTe CQD film electrical properties were investigated before and after alumina ALD in-filling, which was found to increase the p-type doping and hole mobility of the films. The magnitude of these effects depended on the conditions used to prepare the HgTe CQDs. With further investigation into the interaction effects of CQD and ALD process factors, these results may be used to guide the design of CQD-ALD materials for their practical integration into useful optoelectronic devices.

6.
ChemSusChem ; : e202401298, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115637

RESUMEN

Photoelectrochemical (PEC) water splitting based on colloidal quantum dots (QDs) presents a promising approach for utilizing solar energy to produce green hydrogen energy. Previous research has been mainly focused on the single-photoelectrode QDs-PEC device operated under external bias, while the investigation of dual-photoelectrode configuration for self-biased QDs-PEC system is still lacking. In this work, two types of eco-friendly Cu-AISe/ZnSe:Cu (CZAC) and Mn-AIS/ZnS@Cu (MAZC) QDs were used to respectively sensitize the semiconductor n-type TiO2 and p-type Cu2O photoelectrodes, which acted as the photoanode and photocathode to build a heavy metal-free QDs-based bias-free solar water splitting cell, yielding a maximum photocurrent density of 0.47 mA cm-2 and a solar-to-hydrogen (STH) efficiency of 0.4% under 1 sun AM 1.5G illumination (100 mW cm-2). Moreover, approximate 692 nmol of H2 and 355 nmol of O2 with molar ratio of ~2:1 was detected after two hours of continuous light illumination, demonstrating the effective overall water splitting. This work indicates a significant advancement towards the realization of a cost-effective, efficient and "green" QDs-based artificial solar-to-fuel conversion system.

7.
Nano Lett ; 24(35): 10908-10914, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39168468

RESUMEN

Colloidal quantum dots (cQDs), semiconductor materials with widely tunable properties, can be printed in submicrometer patterns through electrohydrodynamic printing, avoiding aggressive photolithography steps. Postprinting ligand exchange determines the final optoelectronic properties of the cQD structures. However, achieving a complete bulk exchange is challenging, and the conventional vibrational analysis lacks the required spatial resolution. Infrared nanospectroscopy enables quantitative analysis of vibrational signals and structural topography on the nanometer scale upon ligand substitution on lead sulfide cQDs. A solution of ethanedithiol led to rapid (∼60 s) exchange of ≤90% of the ligands, in structures up to ∼750 nm thick. Prolonged exposures (>1 h) caused the degradation of the microstructures, with a systematic removal of cQDs regulated by surface:bulk ratios and solvent interactions. This study establishes a method for the development of devices through a combination of tunable photoactive materials, additive manufacturing of microstructures, and their quantitative nanometer-scale analysis.

8.
ACS Appl Mater Interfaces ; 16(35): 46454-46460, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39169757

RESUMEN

Event-based imaging represents a new paradigm in visual information processing that addresses the speed and energy efficiency shortcomings inherently present in the current complementary metal oxide semiconductor-based machine vision. Realizing such imaging systems has previously been sought using very large-scale integration technologies that have complex circuitries consisting of many photodiodes, differential amplifiers, capacitors, and resistors. Here, we demonstrate that event-driven sensing can be achieved using a simple one-resistor, one-capacitor (1R1C) circuit, where the capacitor is modified with colloidal quantum dots (CQDs) to have a photoresponse. This sensory circuit emulates the motion-tracking function of the biological retina, in which the amacrine cells in the bipolar-to-ganglion synaptic pathway produce a transient spiking signal only in response to changes in light intensity but remain inactive under constant illumination. When extended to a 2D imaging array, the individual sensors work independently and output signals only when a change in the light intensity is detected; hence, the concept of the frame in image processing is thereby removed. In this work, we present the fabrication and characterization of a CQD photocapacitor-based 1R1C circuit that has a spectral response at 1550 nm in the short-wave infrared (SWIR). We report on the key performance parameters including peak responsivity, noise, and optical noise equivalent power and discuss the operating mechanism that is responsible for spiking responses in these artificial retinal circuits. The present work sets the foundation for expanding the bioinspired vision sensor capability toward midwave infrared (MWIR) and long-wave infrared (LWIR) spectral regions that are invisible to human eyes and mainstream semiconductor technologies.


Asunto(s)
Células Amacrinas , Puntos Cuánticos , Células Amacrinas/fisiología , Puntos Cuánticos/química , Retina/fisiología , Semiconductores , Humanos
9.
Nano Lett ; 24(31): 9583-9590, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39041791

RESUMEN

Thanks to their tunable infrared absorption, solution processability, and low fabrication costs, HgTe colloidal quantum dots (CQDs) are promising for optoelectronic devices. Despite advancements in device design, their potential for imaging applications remains underexplored. For integration with Si-based readout integrated circuits (ROICs), top illumination is necessary for simultaneous light absorption and signal acquisition. However, most high-performing traditional HgTe CQD photodiodes are p-on-n stack and bottom-illuminated. Herein, we report top-illuminated inverted n-on-p HgTe CQD photodiodes using a robust p-type CQD layer and a thermally evaporated Bi2S3 electron transport layer. The p-type CQD solid is achieved by exploring the synergism in binary HgTe and Ag2Te CQDs. These photodetectors show a room-temperature detectivity of 3.4 × 1011 jones and an EQE of ∼44% at ∼1.7 µm wavelength, comparable to the p-on-n HgTe CQD photodiodes. A top-illuminated HgTe CQD short-wave infrared imager (640 × 512 pixels) was fabricated, demonstrating successful infrared imaging.

10.
ACS Nano ; 18(29): 19124-19136, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38954751

RESUMEN

Lead chalcogenide colloidal quantum dots are one of the most promising materials to revolutionize the field of short-wavelength infrared optoelectronics due to their bandgap tunability and strong absorption. By self-assembling these quantum dots into ordered superlattices, mobilities approaching those of the bulk counterparts can be achieved while still retaining their original optical properties. The recent literature focused mostly on PbSe-based superlattices, but PbS quantum dots have several advantages, including higher stability. In this work, we demonstrate highly ordered 3D superlattices of PbS quantum dots with tunable thickness up to 200 nm and high coherent ordering, both in-plane and along the thickness. We show that we can successfully exchange the ligands throughout the film without compromising the ordering. The superlattices as the active material of an ion gel-gated field-effect transistor achieve electron mobilities up to 220 cm2 V-1 s-1. To further improve the device performance, we performed a postdeposition passivation with PbI2, which noticeably reduced the subthreshold swing making it reach the Boltzmann limit. We believe this is an important proof of concept showing that it is possible to overcome the problem of high trap densities in quantum dot superlattices enabling their application in optoelectronic devices.

11.
ACS Nano ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39037050

RESUMEN

While semiconductor nanocrystals provide versatile fluorescent materials for light-emitting devices, their brightness suffers from the "dark exciton"─an optically inactive electronic state into which nanocrystals relax before emitting. Recently, a theoretical mechanism, the Rashba effect, was discovered that can overcome this limitation by inverting the lowest-lying levels and creating a bright excitonic ground state. However, no methodology is available to systematically identify materials that exhibit this inversion, hindering the development of superbright nanocrystals and their devices. Here, based on a detailed understanding of the Rashba mechanism, we demonstrate a procedure that reveals previously unknown "bright-exciton" nanocrystals. We first define physical criteria to reduce over 500,000 known solids to 173 targets. Higher-level first-principles calculations then refine this list to 28 candidates. From these, we select five with high oscillator strength and develop effective-mass models to determine the nature of their lowest excitonic state. We confirm that four of the five solids yield bright ground-state excitons in nanocrystals. Thus, our results provide a badly needed roadmap for experimental investigation of bright-exciton nanomaterials.

12.
Nano Lett ; 24(30): 9385-9390, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39037851

RESUMEN

The performance of lead sulfide (PbS) quantum-dot-based up-conversion photodetectors is greatly limited owing to a large potential barrier at the interconnection layer between the photodetecting (PD) unit and light-emitting (LED) unit. Thus, very high driving voltage is required, rendering high energy consumption and poor working stability. By introducing azetidinium iodide (AzI) at the PD/LED interface, zero-barrier interconnection was achieved for the PbS-based infrared up-conversion photodetectors. The turn-on voltage under infrared illumination was greatly reduced to 1.2 V and a high photon-to-photon conversion efficiency (ηpp) of ∼3% was obtained at 3 V, showing a 10-fold enhancement compared to those previously reported devices. The mechanism for the regulation of interface energy level alignments was related to the self-assembly of the AzI dipole molecules, resulting from the van der Waals force between the S atoms in the ligands of PbS and the protonated H atoms around N atoms in AzI.

13.
Nanomaterials (Basel) ; 14(11)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38869563

RESUMEN

A special micro LED whose light emitting area is laid out in a U-like shape is fabricated and integrated with colloidal quantum dots (CQDs). An inkjet-type machine directly dispenses the CQD layer to the central courtyard-like area of this U-shape micro LED. The blue photons emitted by the U-shape mesa with InGaN/GaN quantum wells can excite the CQDs at the central courtyard area and be converted into green or red ones. The U-shape micro LEDs are coated with Al2O3 by an atomic layer deposition system and exhibit moderate external quantum efficiency (6.51% max.) and high surface recombination because of their long peripheries. Low-temperature measurement also confirms the recovery of the external quantum efficiency due to lower non-radiative recombination from the exposed surfaces. The color conversion efficiency brought by the CQD layer can be as high as 33.90%. A further continuous CQD aging test, which was evaluated by the strength of the CQD emission, under current densities of 100 A/cm2 and 200 A/cm2 injected into the micro LED, showed a lifetime extension of the unprotected CQD emission up to 1321 min in the U-shape device compared to a 39 min lifetime in the traditional case, where the same CQD layer was placed on the top surface of a squared LED.

14.
Adv Sci (Weinh) ; 11(26): e2402756, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38696647

RESUMEN

Colloidal quantum dots (CQDs) are promising optoelectronic materials for solution-processed thin film optoelectronic devices. However, the large surface area with abundant surface defects of CQDs and trap-assisted non-radiative recombination losses at the interface between CQDs and charge-transport layer limit their optoelectronic performance. To address this issue, an interface heterojunction strategy is proposed to protect the CQDs interface by incorporating a thin layer of polyethyleneimine (PEIE) to suppress trap-assisted non-radiative recombination losses. This thin layer not only acts as a protective barrier but also modulates carrier recombination and extraction dynamics by forming heterojunctions at the buried interface between CQDs and charge-transport layer, thereby enhancing the interface charge extraction efficiency. This enhancement is demonstrated by the shortened lifetime of carrier extraction from 0.72 to 0.46 ps. As a result, the resultant PbS CQD solar cells achieve a power-conversion-efficiency (PCE) of 13.4% compared to 12.2% without the heterojunction.

15.
ACS Appl Mater Interfaces ; 16(19): 24889-24898, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38700233

RESUMEN

The high surface-area-to-volume ratio of colloidal quantum dots (QDs) positions them as promising materials for high-performance supercapacitor electrodes. However, the challenge lies in achieving a highly accessible surface area, while maintaining good electrical conductivity. An efficient supercapacitor demands a dense yet highly porous structure that facilitates efficient ion-surface interactions and supports fast charge mobility. Here we demonstrate the successful development of additive-free ultrahigh energy density electric double-layer capacitors based on quantum dot hierarchical nanopore (QDHN) structures. Lead sulfide QDs are assembled into QDHN structures that strike a balance between electrical conductivity and efficient ion diffusion by employing meticulous control over inter-QD distances without any additives. Using ionic liquid as the electrolyte, the high-voltage ultrathin-film microsupercapacitors achieve a remarkable combination of volumetric energy density (95.6 mWh cm-3) and power density (13.5 W cm-3). This achievement is attributed to the intrinsic capability of QDHN structures to accumulate charge carriers efficiently. These findings introduce innovative concepts for leveraging colloidal nanomaterials in the advancement of high-performance energy storage devices.

16.
ACS Appl Mater Interfaces ; 16(19): 25511-25518, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38703111

RESUMEN

Colloidal quantum dots (QDs) are promising candidates for next-generation display technology because of their unique optical properties and have already appeared in the market as a high-end product. On the basis of their extraordinary properties, QD emissions with a given chemical composition can be tailored in a wide spectral window due to quantum size effects, which constitutes a key advantage of QDs in the display field. Specifically, investigations of structure-dependent and composition-dependent characterizations outside the quantum confinement effect have become an important part of practical applications. Therefore, from the perspective of designing nanostructures with well-defined heterointerfaces, strong quantum confinement effects with effective carrier confinement are desirable. Our results show that the photoluminescence (PL) intensity of CdSe/CdZnS core-shell QDs was enhanced 5.7 times compared with that of the CdSe core QDs. Supplementary analytical techniques involving transmission electron microscopy revealed the heterointerface configuration and composition distribution of the core and shell materials. The effects of the heterointerface on carrier dynamics in core-shell QDs were revealed by monitoring wavelength-dependent time-resolved PL. To further develop the QD light-emitting diodes (QD-LEDs), we produced an all-solution processed inverted QD-LEDs using CdSe/CdZnS core-shell QDs as the emitter. The electroluminescence spectrum of deep-red emissive QD-LEDs with CIE chromaticity coordinates of (0.68, 0.32) exhibited a peak at 638 nm.

17.
Small ; : e2400380, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38564784

RESUMEN

Thermal annealing (TA) of colloidal quantum dot (CQD) films is considered an important process for recent high-performing CQD solar cells (SCs) due to its beneficial effects on CQD solids, including enhanced electrical conductivity, denser packing of CQD films, and the removal of organic residues and solvents. However, the conventional TA for CQDs, which requires several  minutes, leads to hydroxylation and oxidation on the CQD surface, resulting in the formation of trap states and a subsequent decline in SC performance. To address these challenges, this study introduces a flashlight annealing (FLA) technique that significantly reduces the annealing time to the millisecond scale. Through the FLA approach, it successfully suppressed hydroxylation and oxidation, resulting in decreased trap states within the CQD solids while simultaneously preserving their charge transport properties. As a result, CQD SCs treated with FLA exhibited a notable improvement, achieving an open-circuit voltage of 0.66 V compared to 0.63 V in TA-treated devices, leading to an increase in power conversion efficiency from 12.71% to 13.50%.

18.
Adv Mater ; 36(28): e2402002, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38657973

RESUMEN

Ultrafast short-wavelength infrared (SWIR) photodetection is of great interest for emerging automated vision and spatial mapping technologies. Colloidal quantum dots (QDs) stand out for SWIR photodetection compared to epitaxial (In,Ga)As or (Hg,Cd)Te semiconductors by their combining a size-tunable bandgap and a suitability for cost-effective, solution-based processing. However, achieving ultrafast, nanosecond-level response time has remained an outstanding challenge for QD-based SWIR photodiodes (QDPDs). Here, record 4 ns response time in PbS-based QDPDs that operate at SWIR wavelengths is reported, a result reaching the requirement of SWIR light detection and ranging based on colloidal QDs. These ultrafast QDPDs combine a thin active layer to reduce the carrier transport time and a small area to inhibit slow capacitive discharging. By implementing a concentration gradient ligand exchange method, high-quality p-n junctions are fabricated in these ultrathin QDPDs. Moreover, these ultrathin QDPDs attain an external quantum efficiency of 42% at 1330 nm, due to a 2.5-fold enhanced light absorption through the formation of a Fabry-Perot cavity within the QDPD and the highly efficient extraction (98%) of photogenerated charge carriers. Based on these results, it is estimated that a further increase of the charge-carrier mobility can lead to PbS QDPDs with sub-nanosecond response time.

19.
Artículo en Inglés | MEDLINE | ID: mdl-38669621

RESUMEN

HgTe colloidal quantum dots (CQDs) are one of few materials that can realize near-to-midwave infrared photodetection. And the quality of HgTe CQD directly affects the performance of photodetection. In this work, we optimize the method of synthesizing HgTe CQDs to reduce the defect concentration, therefore improving the photoelectric properties. The photodetector based on HeTe CQD can respond to the light from the visible to mid-infrared band. Notably, a photoresponse to 4000 nm light at room temperature is realized. The responsivity and detectivity are 90.6 mA W-1 and 6.9 × 107 Jones under 1550 nm light illumination, which are better than these of most reported HgTe CQD photodetectors. The response speed reaches a magnitude of microseconds with a rising time of τr = 1.9 µs and a falling time of τf = 1.5 µs at 10 kHz under 1550 nm light illumination.

20.
ACS Nano ; 18(12): 8952-8960, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38466148

RESUMEN

Using a metal/insulator/metal (MIM) structure with a gold nanoantenna array made by electron beam lithography, the responsivity of a HgTe colloidal quantum dot film is enhanced in the mid-infrared. Simulations indicate that the spatially averaged peak spectral absorption of an 80 nm film is 60%, enhanced 23-fold compared to that of the same film on a bare sapphire substrate. The field intensity enhancement is focused near the antenna tips, being 20-fold 100 nm away, which represents only 1% of the total area and up to 1000-fold at the tips. The simulated polarized absorption spectra are in good agreement with the experiments, with a strong resonance around 4 µm. A responsivity of 0.6 A/W is obtained at a 1 V bias. Noise measurements separate the 1/f noise from the generation-recombination white noise and give a spatially averaged photoconductive gain of 0.3 at 1 V bias. The spatially averaged peak detectivity is improved 15-fold compared to the same film on a sapphire substrate without an MIM structure. The experimental peak detectivity reaches 9 × 109 Jones at 2650 cm-1 and 80 kHz, decreasing at lower frequencies. The MIM structure also enhances the spatially averaged peak photoluminescence of the CQD film by 16-fold, which is a potential Purcell enhancement. The good agreement between simulations and measurements confirms the viability of lithographically designed nanoantenna structures for vastly improving the performance of mid-IR colloidal quantum dot photoconductors. Further improvements will be possible by matching the optically enhanced and current collection areas.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA