Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 16(10): 16690-16698, 2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36251358

RESUMEN

Nanoparticles with an anisotropic morphology and composition are flourishing in various scientific fields. Their morphology has a great impact on their functions, but the precise regulation of their growth and final morphology is still challenging. Here, flask-like Janus particles (FJPs) with different compositions segmented on the inner and outer surfaces were fabricated via a sol-gel process using different silane precursors. The neck length of the flask-like particles can be controllably regulated by employing different silane precursors. The Pt catalyst was selectively loaded in their cavities, and as-formed FJPs@Pt are employed as colloidal motors. Due to the adjustable neck length, the Janus colloidal motors have explicit directionality and tunable speeds (max diffusion coefficient is 18.2 µm2 s-1).

2.
Chemistry ; 28(67): e202202319, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36004450

RESUMEN

Chemotaxis plays a crucial role in the realization of various functions of human life such as fertilization, immune function, inflammatory response, regeneration processes, etc. Inspired by the natural chemotaxis, colloidal motors with chemotactic ability can realize intelligent sense and targeted navigation, which bring a revolutionary method to biomedical applications like precision medicine. However, the application in the biomedical field requires the colloidal motors with submicrometer scale, strong chemotactic ability and clear chemotactic mechanism. In this Concept article, we introduce the recent progress of chemotactic colloidal motors, covering the fundamental theory behind experimental advancements. Particularly, the torque-driven reorientation motion of the submicrometer-sized colloidal motors during chemotaxis is discussed, and also their underlying mechanism is proposed. With the continuous research on chemotactic colloidal motors, it is believed that the emerging chemotactic colloidal motors will broaden practical applications in the biomedical field.


Asunto(s)
Quimiotaxis , Humanos , Quimiotaxis/fisiología , Movimiento (Física)
3.
Chem Asian J ; 17(17): e202200560, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35761116

RESUMEN

Compartmentalization is a crucial natural methodology to enable multiple biocatalytic transformations to proceed efficiently. Herein, we report a biocompatible multicompartmental colloidal motor that can achieve autonomous movement in the biological environment through two-enzyme cascade reactions of immobilized enzymes. The colloidal motors with the heterogeneous multicompartment structure were prepared in one step by microfluidic technology, and the compartmentalized encapsulation of glucose oxidase (GOD) and catalase (CAT) was realized. The fabricated colloidal motor was size controllable by tuning the flow rates of the microfluidic system, and its autonomous movement can be triggered by good responsiveness to the alkaline environment. In glucose medium of pH 7.5, the pH-responsive alginate cores of the colloidal motor swell to facilitate fuel penetration and enzyme-catalyzed reactions. The enzyme cascade between GOD and CAT immobilized in the colloidal motor chamber results in the self-propulsion of the colloid motor in glucose medium. The compartmentalized encapsulation of immobilized enzyme improves the stability of the enzyme and enables multicompartmental colloidal motors to self-propel in an alkaline intestinal environment through an enzyme cascade reaction. These features indicate that such multicompartmental colloidal motors actuated by enzyme cascade reaction in biocompatible fuel have great potential for co-encapsulation and autonomous movement in different applications.


Asunto(s)
Enzimas Inmovilizadas , Glucosa Oxidasa , Biocatálisis , Enzimas Inmovilizadas/metabolismo , Glucosa/química , Glucosa Oxidasa/química , Microfluídica
4.
ACS Nano ; 16(6): 9317-9328, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35576530

RESUMEN

Utilizing bottom-up controllable molecular assembly, the bio-inspired polyelectrolyte multilayer conical nanoswimmers with gold-nanoshell functionalization on different segments are presented to achieve the optimal upstream propulsion performance. The experimental investigation reveals that the presence of the gold nanoshells on the big openings of the nanoswimmers could not only bestow efficient directional propulsion but could also minimize the impact from the external flow. The gold nanoshells at the big openings of nanoswimmers facilitate the acoustically powered propulsion against a flow velocity of up to 2.00 mm s-1, which is higher than the blood velocity in capillaries and thus provides a proof-of-concept design for upstream nanoswimmers.


Asunto(s)
Nanocáscaras , Polímeros , Oro
5.
J Colloid Interface Sci ; 612: 43-56, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-34974257

RESUMEN

Due to the highly flexible reconfiguration of swarms, collective behaviors have provided various natural organisms with a powerful adaptivity to the complex environment. To mimic these natural systems and construct artificial intelligent soft materials, self-propelled colloidal motors that can convert diverse forms of energy into swimming-like movement in fluids afford an ideal model system at the micro-/nanoscales. Through the coupling of local gradient fields, colloidal motors driven by chemical reactions or externally physical fields can assembly into swarms with adaptivity. Here, we summarize the progress on reconfigurable assembly of colloidal motors which is driven and modulated by chemical reactions and external fields (e.g., light, ultrasonic, electric, and magnetic fields). The adaptive reconfiguration behaviors and the corresponding mechanisms are discussed in detail. The future directions and challenges are also addressed for developing colloidal motor-based interactive soft matter materials and systems with adaptation and interactive functions comparable to that of natural systems.


Asunto(s)
Electricidad , Campos Magnéticos
6.
Angew Chem Int Ed Engl ; 60(30): 16674-16679, 2021 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-33973328

RESUMEN

We report robust control over the dynamic assembly, disassembly, and reconfiguration of light-activated molybdenum disulfide (MoS2 ) colloidal motor swarms with features not possible in equilibrium systems. A photochemical reaction produces chemical gradients across the MoS2 colloidal motors to drive them to move. Under illumination of a gradient light, these colloidal motors display a positive phototactic motion. Mesoscale simulations prove that the self-diffusiophoresis induced by the locally consumed oxygen gradient across MoS2 colloidal motors dominates the phototactic process. By programming the structured illumination, the collective migration and well-defined shapes of colloidal motor swarms can be externally regulated. The successful realization of programmable swarm transformation of colloidal motors like the emergent behaviors of living systems in nature provides a direct proof-of-concept for active soft materials and systems, with adaptive and interactive functions.

7.
ACS Nano ; 13(11): 12758-12766, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31621286

RESUMEN

Chemically driven colloidal motors capable of implementing different movements under a common environment are of great importance for various complex tasks. However, the key parameters underlying different motion behaviors are incompletely understood. Here, we demonstrate that carbonaceous nanoflask (CNF) motors move spontaneously in glucose powered by the cascade reaction of glucose oxidase and catalase, and their directional propulsion can be premeditated by controlling the surface wettability of nanomotors. The hydrophilic CNF motors move from the round-bottom to the opening neck (backward), whereas the hydrophobic CNF motors swim from the opening neck to the round-bottom (forward). We demonstrate that the backward motion of the hydrophilic CNF motors is driven by the local glucose gradient due to self-diffusiophoresis, and the forward movement of the hydrophobic CNF motors is caused by the locally produced glucose acid gradient. The fluid simulation reveals that the hydrophilic and hydrophobic CNF motors correspond to the puller and pusher models, respectively. Our study offers a minimal strategy to manipulate the direction of motion of motors for specific applications and to change the hydrodynamic behaviors of glucose-powered motors.


Asunto(s)
Glucosa/química , Nanopartículas/química , Catalasa/química , Catalasa/metabolismo , Coloides/química , Coloides/metabolismo , Glucosa/metabolismo , Glucosa Oxidasa/química , Glucosa Oxidasa/metabolismo , Nanopartículas/metabolismo , Propiedades de Superficie , Humectabilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA