Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Oncol Lett ; 28(5): 528, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39290954

RESUMEN

Collecting duct carcinoma (CDC) is a rare disease associated with a high mortality rate. The present study describes the case of a recipient of a kidney transplant with metastatic allograft CDC whose treatment was successful. The patient underwent nephrectomy, and chemotherapy with gemcitabine and cisplatin, while undergoing haemodialysis treatment and remained in remission after 6 years of follow-up. There is a lack of information about the treatment and clinical management of CDC; however, the combination of gemcitabine and cisplatin remains as first-line therapy. The challenge of this case was integrating chemotherapy sessions with dialysis therapy to maintain the effectiveness, tolerability and safety of the oncological treatment. In the present case report, the success of chemotherapy with gemcitabine and cisplatin was demonstrated in a metastatic renal allograft CDC in a patient with end-stage renal disease, with few side effects and no recurrence of the disease 6 years after the end of treatment.

2.
J Cell Physiol ; 237(10): 3883-3899, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35908199

RESUMEN

The renal collecting ducts (CD) are formed by a fully differentiated epithelium, and their tissue organization and function require the presence of mature cell adhesion structures. In certain circumstances, the cells can undergo de-differentiation by a process called epithelial-mesenchymal transition (EMT), in which the cells lose their epithelial phenotype and acquire the characteristics of the mesenchymal cells, which includes loss of cell-cell adhesion. We have previously shown that in renal papillary CD cells, cell adhesion structures are located in sphingomyelin (SM)-enriched plasma membrane microdomains and the inhibition of SM synthase 1 activity induced CD cells to undergo an EMT process. In the present study, we evaluated the influence of SM metabolism during the EMT of the cells that form the CD of the renal papilla during aging. To this end, primary cultures of renal papillary CD cells from young, middle-, and aged-rats were performed. By combining biochemical and immunofluorescence studies, we found experimental evidence that CD cells undergo an increase in spontaneous and reversible EMT during aging and that at least one of the reasons for this phenomenon is the decrease in SM content due to the combination of decreased SM synthase activity and an increase in SM degradation mediated by neutral sphingomyelinase. Age is a risk factor for many diseases, among which renal fibrosis is included. Our findings highlight the importance of sphingolipids and particularly SM as a modulator of the fate of CD cells and probably contribute to the development of treatments to avoid or reverse renal fibrosis during aging.


Asunto(s)
Transición Epitelial-Mesenquimal , Enfermedades Renales , Animales , Células Epiteliales/metabolismo , Fibrosis , Médula Renal/metabolismo , Ratas , Esfingomielina Fosfodiesterasa/genética , Esfingomielinas/metabolismo
3.
Front Cardiovasc Med ; 8: 644797, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34179130

RESUMEN

Diabetes mellitus (DM) causes high glucose (HG) levels in the plasma and urine. The (pro)renin receptor (PRR) is a key regulator of renal Na+ handling. PRR is expressed in intercalated (IC) cells of the collecting duct (CD) and binds renin to promote angiotensin (Ang) II formation, thereby contributing to Na+ reabsorption. In DM, the Kreb's cycle is in a state of suppression in most tissues. However, in the CD, expression of glucose transporters is augmented, boosting the Kreb's cycle and consequently causing α-ketoglutarate (αKG) accumulation. The αKG receptor 1 (OXGR1) is a Gq-coupled receptor expressed on the apical membrane of IC cells of the CD. We hypothesize that HG causes αKG secretion and activation of OXGR1, which increases PRR expression in CD cells. This effect then promotes intratubular AngII formation and Na+ reabsorption. To test this hypothesis, streptozotocin (STZ)-induced diabetic mice were treated with or without montelukast (ML), an OXGR1 antagonist, for 6 days. STZ mice had higher urinary αKG and PRR expression along with augmented urinary AngII levels and Na+ retention. Treatment with ML prevented all these effects. Similarly, primary cultured inner medullary CD cells treated with HG showed increased PRR expression, while OXGR1 antagonist prevented this effect. αKG increases PRR expression, while treatments with ML, PKC inhibition, or intracellular Ca2+ depletion impair this effect. In silico analysis suggested that αKG binds to mouse OXGR1. These results indicate that HG conditions promote increased levels of intratubular αKG and OXGR1-dependent PRR upregulation, which impact AngII formation and Na+ reabsorption.

4.
Heliyon ; 5(12): e02932, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31867458

RESUMEN

ODF1 has been described as an exclusively expressed testicular protein and is located in the outer dense fibers along the sperm tail. ODF1 has been involved in the sperm motility and in the development of the flagellum, but the function of ODF1 is not already clear. Other ODF proteins, such as ODF2 have been characterized in other tissues like the basal body of the kidney primary cilium, but so far only the mRNA of ODF1 has been described in other tissues. These observations let us to hypothesize that the expression of the protein ODF1 could not be limited to the testis. Therefore, in the present work we proposed to evaluate if the ODF1 protein could also be present in tissues other than the testis. Here we demonstrated through western blot, immunofluorescence, and RT-PCR techniques that the protein and mRNA of ODF1 have been identified in the rat kidney. Finally, the presence of ODF1 in kidney has also been confirmed through proteomic analysis using mass spectrometry. The results derived from these different complementary approaches indicate that, to our knowledge and for the first time, ODF1 is demonstrated to be present in an additional organ different to testis. This results raise new questions about potential other functions and locations of the ODF1 protein.

5.
Front Pharmacol ; 10: 803, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31396082

RESUMEN

The binding of prorenin to the (pro)renin receptor (PRR) triggers the activation of MAPK/ERK1/2 pathway, induction of cyclooxygenase-2 (COX-2), NOX-4-dependent production of reactive oxygen species (ROS), and the induction of transforming growth factor ß (TGF-ß) and profibrotic factors connecting tissue growth factor (CTGF) and plasminogen activator inhibitor (PAI-I) in collecting duct (CD) cells. However, the role of COX-2 and the intracellular pathways involved are not clear. We hypothesized that the PRR activation increases profibrotic factors through COX-2-mediated PGE2 activation of E prostanoid receptor 4 (EP4), upregulation of NOX-4/ROS production, and activation of Smad pathway in mouse CD cells. Recombinant prorenin increased ROS production and protein levels of CTGF, PAI-I, and TGF-ß in M-1 CD cell line. Inhibition of MAPK, NOX-4, and COX-2 prevented this effect. Inhibition of MEK, COX-2, and EP4 also prevented the upregulation of NOX-4. Because TGF-ß activates Smad pathway, we evaluate the phosphorylation of Smad2 and 3. COX-2 inhibition or EP4 antagonism significantly prevented phosphorylation of Smad 2/3. Mice that were infused with recombinant prorenin showed an induction in the expression of CTGF, PAI-I, TGF-ß, fibronectin, and collagen I in isolated collecting ducts as well as the expression of alpha smooth muscle actin (α-SMA) in renal tissues. COX-2 inhibition prevented this induction. These results indicate that the induction of TGF-ß, CTGF, PAI-I, and ROS occurs through PRR-dependent activation of MAPK and NOX-4; however, this mechanism depends on COX-2-derived PGE2 production and the activation of EP4 and Smad pathway.

6.
J Cell Physiol ; 234(12): 22809-22818, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31131896

RESUMEN

Diabetes mellitus and its complications have become a major health concern in Western countries. Increased activity of the intrarenal renin-angiotensin system (RAS) contributes to diabetic nephropathy (DN). We previously reported that in mesangial cells, the high glucose concentration (HG) leads to upregulation of angiotensin-converting enzyme (ACE) messenger RNA, suggesting that ACE was modulated by angiotensin II (Ang II) release. However, this relation in the collecting duct has not yet been studied. We, therefore, aimed to evaluate RAS modulation in inner medullary collecting duct cells (IMCD) exposed to HG. The IMCD were divided into normal glucose (5 mM D-glucose, NG), high glucose (30 mM, HG), and mannitol (30 mM, M) groups. The cells were cultured 48 hr in their respective media. The intracellular and extracellular ACE activity was measured using hippuryl-His-Leu as substrate via a fluorimetric assay and expression was analyzed using western blot analysis. ACE activity, intracellular (27%) and extracellular (22%), was significantly lower in the HG group than in NG and M. ACE2 activity and Ang 1-7 levels were higher in the intracellular compartment. Our data suggest that the HG cannot modify ACE synthesis in IMCD cells but can modulate its activity. The decrease in ACE activity may result in decreased levels of Ang II to protect the IMCD against proliferative and inflammatory deleterious effects of this peptide. Conversely, the increase of ACE2 generating high levels of Ang 1-7, a vasodilator peptide, suggesting that this peptide can induce glucose uptake and protect cells against oxidative stress, which can elicit insulin resistance.


Asunto(s)
Glucosa/toxicidad , Túbulos Renales Colectores/efectos de los fármacos , Sistema Renina-Angiotensina/efectos de los fármacos , Angiotensina I/metabolismo , Angiotensina II/metabolismo , Enzima Convertidora de Angiotensina 2 , Animales , Línea Celular , Túbulos Renales Colectores/metabolismo , Túbulos Renales Colectores/patología , Ratones , Fragmentos de Péptidos/metabolismo , Peptidil-Dipeptidasa A/metabolismo
7.
J Cell Physiol ; 234(8): 13387-13402, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30624780

RESUMEN

We have previously demonstrated that kidney embryonic structures are present in rats, and are still developing until postnatal Day 20. Consequently, at postnatal Day 10, the rat renal papilla contains newly formed collecting duct (CD) cells and others in a more mature stage. Performing primary cultures, combined with immunocytochemical and time-lapse analysis, we investigate the cellular mechanisms that mediate the postnatal CD formation. CD cells acquired a greater degree of differentiation, as we observed that they gradually lose the ability to bind BSL-I lectin, and acquire the capacity to bind Dolichos biflorus. Because CD cells retain the same behavior in culture than in vivo, and by using DBA and BSL-I as markers of cellular lineage besides specific markers of epithelial/mesenchymal phenotype, the experimental results strongly suggest the existence of mesenchymal cell insertion into the epithelial CD sheet. We propose such a mechanism as an alternative strategy for CD growing and development.


Asunto(s)
Túbulos Renales Colectores/citología , Túbulos Renales Colectores/crecimiento & desarrollo , Animales , Acuaporina 2/metabolismo , Diferenciación Celular , Movimiento Celular , Células Cultivadas , Células Epiteliales/citología , Células Epiteliales/metabolismo , Glicoconjugados/metabolismo , Imagenología Tridimensional , Médula Renal/citología , Médula Renal/crecimiento & desarrollo , Médula Renal/metabolismo , Túbulos Renales Colectores/metabolismo , Masculino , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Lectinas de Plantas/metabolismo , Ratas , Ratas Wistar , Receptor de Bradiquinina B2/metabolismo , Imagen de Lapso de Tiempo
8.
J Cell Physiol ; 233(8): 6173-6195, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29330844

RESUMEN

It is known that bradykinin (BK) B2 receptor (B2R) is expressed in the collecting duct (CD) cells of the newborn rat kidney, but little is known about its role during early postnatal life. Therefore, we hypothesize that BK could participate in the mechanisms that mediate CD formation during the postnatal renal development. Performing primary cultures, combined with biochemical, immunocytochemical, and time-lapse analysis, we studied the role of BK in CD cell behavior isolated from renal papilla of neonatal rats. A reverse relationship was observed between B2R expression and the degree of CD epithelial cell sheet maturation. BK stimulation induced CD cell association upon B2R activation. The lack of B2R expression in cells showing mature adherens junctions suggested that BK is mostly involved in early adhesive events, thus favoring the initial formation of CD during development. Time-lapse analysis revealed that BK induced a high protrusive activity of CD cells, denoted by ruffle formation and lamellipodia extension. PI3K was involved in the BK-induced CD cell-cell association and the acquisition of the migratory phenotype since, when inhibited, membrane ruffles, and filopodia between cells diminished. Results indicate that the actions of BK mediated by PI3K activation were due to the downstream Akt and Rac pathways. This study, performed with CD cells that were not genetically manipulated, provides new experimental evidence supporting a novel role of BK in rat renal CD organization. As B2R blockade results in abnormal tubular differentiation, our results contribute to better understanding the etiology of human congenital renal malformation and diseases.


Asunto(s)
Bradiquinina/metabolismo , Receptor de Bradiquinina B2/metabolismo , Animales , Células Cultivadas , Células Epiteliales/metabolismo , Femenino , Masculino , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Wistar , Transducción de Señal/fisiología
9.
Biochim Biophys Acta Mol Cell Res ; 1865(2): 309-322, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29128370

RESUMEN

Epithelial tissue requires that cells attach to each other and to the extracellular matrix by the assembly of adherens junctions (AJ) and focal adhesions (FA) respectively. We have previously shown that, in renal papillary collecting duct (CD) cells, both AJ and FA are located in sphingomyelin (SM)-enriched plasma membrane microdomains. In the present work, we investigated the involvement of SM metabolism in the preservation of the epithelial cell phenotype and tissue organization. To this end, primary cultures of renal papillary CD cells were performed. Cultured cells preserved the fully differentiated epithelial phenotype as reflected by the presence of primary cilia. Cells were then incubated for 24h with increasing concentrations of D609, a SM synthase (SMS) inhibitor. Knock-down experiments silencing SMS 1 and 2 were also performed. By combining biochemical and immunofluorescence studies, we found experimental evidences suggesting that, in CD cells, SMS 1 activity is essential for the preservation of cell-cell adhesion structures and therefore for the maintenance of CD tissue/tubular organization. The inhibition of SMS 1 activity induced CD cells to lose their epithelial phenotype and to undergo an epithelial-mesenchymal transition (EMT) process.


Asunto(s)
Células Epiteliales/enzimología , Transición Epitelial-Mesenquimal , Túbulos Renales Colectores/enzimología , Transferasas (Grupos de Otros Fosfatos Sustitutos)/antagonistas & inhibidores , Animales , Adhesión Celular , Células Epiteliales/citología , Túbulos Renales Colectores/citología , Masculino , Ratas , Ratas Wistar , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo
10.
Am J Med Sci ; 354(3): 310-318, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28918839

RESUMEN

BACKGROUND: Prostaglandin E2 (PGE2) regulates renin expression in renal juxtaglomerular cells. PGE2 acts through E-prostanoid (EP) receptors in the renal collecting duct (CD) to regulate sodium and water balance. CD cells express EP1 and EP4, which are linked to protein kinase C (PKC) and PKA downstream pathways, respectively. Previous studies showed that the presence of renin in the CD, and that of PKC and PKA pathways, activate its expression. The (pro)renin receptor (PRR) is also expressed in CD cells, and its activation enhances cyclooxygenase-2 (COX-2) through extracellular signal-regulated kinase (ERK). We hypothesized that PGE2 stimulates prorenin and renin synthesis leading to subsequent activation of PRR and upregulation of COX-2. METHODS: We used a mouse M-1 CD cell line that expresses EP1, EP3 and EP4 but not EP2. RESULTS: PGE2 (10-6M) treatment increased prorenin and renin protein levels at 4 and 8 hours. No differences were found at 12-hour after PGE2 treatment. Phospho-ERK was significantly augmented after 12 hours. COX-2 expression was decreased after 4 hours of PGE2 treatment, but increased after 12 hours. Interestingly, the full-length form of the PRR was upregulated only at 12 hours. PGE2-mediated phospho-ERK and COX-2 upregulation was suppressed by PRR silencing. CONCLUSIONS: Our results suggest that PGE2 induces biphasic regulation of COX-2 through renin-dependent PRR activation via EP1 and EP4 receptors. PRR-mediated increases in COX-2 expression may enhance PGE2 synthesis in CD cells serving as a buffer mechanism in conditions of activated renin-angiotensin system.


Asunto(s)
Ciclooxigenasa 2/biosíntesis , Dinoprostona/farmacología , Túbulos Renales Colectores/efectos de los fármacos , Receptores de Superficie Celular/metabolismo , Renina/metabolismo , Animales , Western Blotting , Técnicas de Cultivo de Célula , Línea Celular , Técnicas de Silenciamiento del Gen , Túbulos Renales Colectores/citología , Túbulos Renales Colectores/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Fosforilación , Receptores de Superficie Celular/genética , Receptores de Prostaglandina E/biosíntesis , Factores de Tiempo , Regulación hacia Arriba , Receptor de Prorenina
11.
Clin Exp Pharmacol Physiol ; 44(11): 1134-1144, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28696542

RESUMEN

Recent studies suggested that activation of the PRR upregulates profibrotic markers through reactive oxygen species (ROS) formation; however, the exact mechanisms have not been investigated in CD cells. We hypothesized that activation of the PRR increases the expression of profibrotic markers through MAPK-dependent ROS formation in CD cells. Mouse renal CD cell line (M-1) was treated with recombinant prorenin plus ROS or MAPK inhibitors and PRR-shRNA to evaluate their effect on the expression of profibrotic markers. PRR immunostaining revealed plasma membrane and intracellular localization. Recombinant prorenin increases ROS formation (6.0 ± 0.5 vs 3.9 ± 0.1 nmol/L DCF/µg total protein, P < .05) and expression of profibrotic markers CTGF (149 ± 12%, P < .05), α-SMA (160 ± 20%, P < .05), and PAI-I (153 ± 13%, P < .05) at 10-8  mol/L. Recombinant prorenin-induced phospho ERK 1/2 (p44 and p42) at 10-8 and 10-6  mol/L after 20 minutes. Prorenin-dependent ROS formation and augmentation of profibrotic factors were blunted by ROS scavengers (trolox, p-coumaric acid, ascorbic acid), the MEK inhibitor PD98059 and PRR transfections with PRR-shRNA. No effects were observed in the presence of antioxidants alone. Prorenin-induced upregulation of collagen I and fibronectin was blunted by ROS scavenging or MEK inhibition independently. PRR-shRNA partially prevented this induction. After 24 hours prorenin treatment M-1 cells undergo to epithelial-mesenchymal transition phenotype, however MEK inhibitor PD98059 and PRR knockdown prevented this effect. These results suggest that PRR might have a significant role in tubular damage during conditions of high prorenin-renin secretion in the CD.


Asunto(s)
Fibroblastos/citología , Fibroblastos/patología , Riñón/citología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores de Superficie Celular/metabolismo , Animales , Biomarcadores/metabolismo , Línea Celular , Fibroblastos/metabolismo , Fibrosis , Riñón/patología , Ratones , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fosforilación , Receptor de Prorenina
12.
Clin Exp Pharmacol Physiol ; 42(1): 14-21, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25371190

RESUMEN

The intrarenal renin-angiotensin system (RAS) plays a critical role in the pathogenesis and progression of hypertension and kidney disease. In angiotensin (Ang) II-dependent hypertension, collecting duct renin synthesis and secretion are stimulated despite suppression of juxtaglomerular (JG) renin. This effect is mediated by the AngII type I receptor (AT1 R), independent of blood pressure. Although the regulation of JG renin has been extensively studied, the mechanisms by which renin is regulated in the collecting duct remain unclear. The augmentation of renin synthesis and activity in the collecting duct may provide a pathway for additional generation of intrarenal and intratubular AngII formation due to the presence of angiotensinogen substrate and angiotensin-converting enzyme in the nephron. The recently described (pro)renin receptor ((P)RR) binds renin or prorenin, enhancing renin activity and fully activating the biologically inactive prorenin peptide. Stimulation of (P)RR also activates intracellular pathways related to fibrosis. Renin and the (P)RR are augmented in renal tissues of AngII-dependent hypertensive rats. However, the functional contribution of the (P)RR to enhanced renin activity in the collecting duct and its contribution to the development of hypertension and kidney disease have not been well elucidated. This review focuses on recent evidence demonstrating the mechanism of renin regulation in the collecting ducts and its interaction with the (P)RR. The data suggest that renin-(P)RR interactions may induce stimulation of intracellular pathways associated with the development of hypertension and kidney disease.


Asunto(s)
Hipertensión/fisiopatología , Túbulos Renales Colectores/fisiopatología , Receptores de Superficie Celular/fisiología , ATPasas de Translocación de Protón Vacuolares/fisiología , Animales , Humanos , Hipertensión/diagnóstico , Renina/fisiología , Sistema Renina-Angiotensina/fisiología
13.
Rev. Col. Bras. Cir ; 29(3): 184-186, maio-jun. 2002. ilus
Artículo en Portugués | LILACS | ID: lil-496405

RESUMEN

Two types primary epithelial tumours of the kidney have been distinguished, such as renal cell carcinoma (hypernephroma or Grawitz) deriving from proximal tubules and carcinoma arising in the urothelium of the kidney's collecting system. Mancilla-Jimenez e cols were the first to describe in 1976 an atypical papillary carcinoma of the kidney deriving from collecting duct system-Bellini duct carcinoma (BDC). In the World Healthy Organization classification it is listed as a rare carcinoma ( 1 percent of the renal malignancies) originating in the renal medulla. Histologic examination shows both tubular and papillary architeture, which can lead to misinterpretation as renal cell or transitional cell carcinoma. Renal cell carcinoma originates from the metanephrogenic blastema and collecting duct carcinoma derived embryologicaly from the mesonephron Wolff duct. Renal cell carcinoma has been shown to express both cytokeratins and vimetin, whereas the distal convoluted tubule expresses only cytokeratins. BDC can be considered as a renal malignancy with a very bad prognosis compared to the other renal cell carcinoma. The best treatment is radical nephrectomy. A case of BDC is reported in a young black man, 27 year old with only history of light left back pain. Ultrasound and other image examinations showed a tumour about 6 cm in the middle and low left kidney. Patient was submitted to extraperitoneal radical nephectomy. Microscopic evaluation revealed kidney's collecting duct carcinoma with metastasis on two retroperitoneal lymphy nodes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA