Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Agric Food Chem ; 72(17): 9955-9966, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38628059

RESUMEN

Cold-adapted proteases are capable of efficient protein hydrolysis at reduced temperatures, which offer significant potential applications in the area of low temperature food processing. In this paper, we attempted to characterize cold-adapted proteases from Antarctic krill. Antarctic krill possesses an extremely active autolytic enzyme system in their bodies, and the production of peptides and free amino acids accompanies the rapid breakdown of muscle proteins following the death. The crucial role of trypsin in this process is recognized. A cold-adapted trypsin named OUC-Pp-20 from Antarctic krill genome was cloned and expressed in Pichia pastoris. Recombinant trypsin is a monomeric protein of 26.8 ± 1.0 kDa with optimum reaction temperature at 25 °C. In addition, the catalytic specificity of OUC-Pp-20 was assessed by identifying its hydrolysis sites through LC-MS/MS. OUC-Pp-20 appeared to prefer Gln and Asn at the P1 position, which is an amino acid with an amide group in its side chain. Hydrolysis reactions on milk and shrimp meat revealed that it can effectively degrade allergenic components in milk and arginine kinase in shrimp meat. These findings update the current knowledge of cold-adapted trypsin and demonstrate the potential application of OUC-Pp-20 in low temperature food processing.


Asunto(s)
Frío , Euphausiacea , Tripsina , Animales , Euphausiacea/química , Euphausiacea/enzimología , Euphausiacea/genética , Euphausiacea/metabolismo , Hidrólisis , Tripsina/metabolismo , Tripsina/química , Tripsina/genética , Especificidad por Sustrato , Secuencia de Aminoácidos , Espectrometría de Masas en Tándem , Estabilidad de Enzimas , Regiones Antárticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA