Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros











Intervalo de año de publicación
1.
aBIOTECH ; 5(2): 231-238, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38974871

RESUMEN

Some 20 years ago, the EU introduced complex regulatory rules for the growth of transgenic crops, which resulted in a de facto ban to grow these plants in fields within most European countries. With the rise of novel genome editing technologies, it has become possible to improve crops genetically in a directed way without the need for incorporation of foreign genes. Unfortunately, in 2018, the European Court of Justice ruled that such gene-edited plants are to be regulated like transgenic plants. Since then, European scientists and breeders have challenged this decision and requested a revision of this outdated law. Finally, after 5 years, the European Commission has now published a proposal on how, in the future, to regulate crops produced by new breeding technologies. The proposal tries to find a balance between the different interest groups in Europe. On one side, genetically modified plants, which cannot be discerned from their natural counterparts, will exclusively be used for food and feed and are-besides a registration step-not to be regulated at all. On the other side, plants expressing herbicide resistance are to be excluded from this regulation, a concession to the strong environmental associations and NGOs in Europe. Moreover, edited crops are to be excluded from organic farming to protect the business interests of the strong organic sector in Europe. Nevertheless, if this law passes European parliament and council, unchanged, it will present a big step forward toward establishing a more sustainable European agricultural system. Thus, it might soon be possible to develop and grow crops that are more adapted to global warming and whose cultivation will require lower amounts of pesticides. However, there is still a long way to go until the law is passed. Too often, the storm of arguments raised by the opponents, based on irrational fears of mutations and a naive understanding of nature, has fallen on fruitful ground in Europe.

2.
J Exp Bot ; 75(5): 1347-1363, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-37991105

RESUMEN

Breeding for disease resistance in major crops is of crucial importance for global food security and sustainability. However, common biotechnologies such as traditional transgenesis or genome editing do not provide an ideal solution, whereas transgenic crops free of selection markers such as cisgenic/intragenic crops might be suitable. In this study, after cloning and functional verification of the Rcr1 gene for resistance to clubroot (Plasmodiophora brassicae), we confirmed that the genes Rcr1, Rcr2, Rcr4, and CRa from Brassica rapa crops and the resistance gene from B. napus oilseed rape cv. 'Mendel' on chromosome A03 were identical in their coding regions. We also determined that Rcr1 has a wide distribution in Brassica breeding materials and renders potent resistance against multiple representative clubroot strains in Canada. We then modified a CRISPR/Cas9-based cisgenic vector system and found that it enabled the fast breeding of selection-marker-free transgenic crops with add-on traits, with selection-marker-free canola (B. napus) germplasms with Rcr1-rendered stable resistance to clubroot disease being successfully developed within 2 years. In the B. napus background, the intragenic vector system was able to remove unwanted residue sequences from the final product with high editing efficiency, and off-target mutations were not detected. Our study demonstrates the potential of applying this breeding strategy to other crops that can be transformed by Agrobacterium. Following the streamlined working procedure, intragenic germplasms can be developed within two generations, which could significantly reduce the breeding time and labor compared to traditional introgression whilst still achieving comparable or even better breeding results.


Asunto(s)
Brassica napus , Brassica rapa , Brassica , Sistemas CRISPR-Cas , Fitomejoramiento , Brassica napus/genética , Brassica/genética , Brassica rapa/genética
4.
Plant Biotechnol J ; 21(12): 2683-2697, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37749961

RESUMEN

Higher dietary intakes of flavonoids may have a beneficial role in cardiovascular disease prevention. Additionally, supplementation of branched-chain amino acids (BCAAs) in vegan diets can reduce risks associated to their deficiency, particularly in older adults, which can cause loss of skeletal muscle strength and mass. Most plant-derived foods contain only small amounts of BCAAs, and those plants with high levels of flavonoids are not eaten broadly. Here we describe the generation of metabolically engineered cisgenic tomatoes enriched in both flavonoids and BCAAs. In this approach, coding and regulatory DNA elements, all derived from the tomato genome, were combined to obtain a herbicide-resistant version of an acetolactate synthase (mSlALS) gene expressed broadly and a MYB12-like transcription factor (SlMYB12) expressed in a fruit-specific manner. The mSlALS played a dual role, as a selectable marker as well as being key enzyme in BCAA enrichment. The resulting cisgenic tomatoes were highly enriched in Leucine (21-fold compared to wild-type levels), Valine (ninefold) and Isoleucine (threefold) and concomitantly biofortified in several antioxidant flavonoids including kaempferol (64-fold) and quercetin (45-fold). Comprehensive metabolomic and transcriptomic analysis of the biofortified cisgenic tomatoes revealed marked differences to wild type and could serve to evaluate the safety of these biofortified fruits for human consumption.


Asunto(s)
Aminoácidos de Cadena Ramificada , Solanum lycopersicum , Humanos , Aminoácidos de Cadena Ramificada/metabolismo , Solanum lycopersicum/genética , Flavonoides , Leucina , Frutas/genética , Frutas/metabolismo , Isoleucina/metabolismo
5.
Trends Biotechnol ; 41(8): 1027-1040, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37419837

RESUMEN

Significant shares of harvests are lost to pests and diseases, therefore, minimizing these losses could solve part of the supply constraints to feed the world. Cisgenesis is defined as the insertion of genetic material into a recipient organism from a donor that is sexually compatible. Here, we review (i) conventional plant breeding, (ii) cisgenesis, (iii) current pesticide-based disease management, (iv) potential economic implications of cultivating cisgenic crops with durable disease resistances, and (v) potential environmental implications of cultivating such crops; focusing mostly on potatoes, but also apples, with resistances to Phytophthora infestans and Venturia inaequalis, respectively. Adopting cisgenic varieties could provide benefits to farmers and to the environment through lower pesticide use, thus contributing to the European Green Deal target.


Asunto(s)
Resistencia a la Enfermedad , Plaguicidas , Plantas Modificadas Genéticamente/genética , Resistencia a la Enfermedad/genética , Fitomejoramiento , Productos Agrícolas/genética
6.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36674493

RESUMEN

Climate change is deeply impacting the food chain production, lowering quality and yield. In this context, the international scientific community has dedicated many efforts to enhancing resilience and sustainability in agriculture. Italy is among the main European producers of several fruit trees; therefore, national research centers and universities undertook several initiatives to maintain the specificity of the 'Made in Italy' label. Despite their importance, fruit crops are suffering from difficulties associated with the conventional breeding approaches, especially in terms of financial commitment, land resources availability, and long generation times. The 'new genomic techniques' (NGTs), renamed in Italy as 'technologies for assisted evolution' (TEAs), reduce the time required to obtain genetically improved cultivars while precisely targeting specific DNA sequences. This review aims to illustrate the role of the Italian scientific community in the use of NGTs, with a specific focus on Citrus, grapevine, apple, pear, chestnut, strawberry, peach, and kiwifruit. For each crop, the key genes and traits on which the scientific community is working, as well as the technological improvements and advancements on the regeneration of local varieties, are presented. Lastly, a focus is placed on the legal aspects in the European and in Italian contexts.


Asunto(s)
Frutas , Árboles , Árboles/genética , Frutas/genética , Fitomejoramiento/métodos , Genoma de Planta , Genómica
7.
J Exp Bot ; 74(5): 1309-1330, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36520499

RESUMEN

The production of high-quality wines is strictly related to the correct management of the vineyard, which guarantees good yields and grapes with the right characteristics required for subsequent vinification. Winegrowers face a variety of challenges during the grapevine cultivation cycle: the most notorious are fungal and oomycete diseases such as downy mildew, powdery mildew, and gray mold. If not properly addressed, these diseases can irremediably compromise the harvest, with disastrous consequences for the production and wine economy. Conventional defense methods used in the past involved chemical pesticides. However, such approaches are in conflict with the growing attention to environmental sustainability and shifts from the uncontrolled use of chemicals to the use of integrated approaches for crop protection. Improvements in genetic knowledge and the availability of novel biotechnologies have created new scenarios for possibly producing grapes with a reduced, if not almost zero, impact. Here, the main approaches used to protect grapevines from fungal and oomycete diseases are reviewed, starting from conventional breeding, which allowed the establishment of new resistant varieties, followed by biotechnological methods, such as transgenesis, cisgenesis, intragenesis, and genome editing, and ending with more recent perspectives concerning the application of new products based on RNAi technology. Evidence of their effectiveness, as well as potential risks and limitations based on the current legislative situation, are critically discussed.


Asunto(s)
Oomicetos , Vitis , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Fitomejoramiento , Vitis/genética , Vitis/microbiología
8.
EFSA J ; 20(10): e07621, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36274982

RESUMEN

In 2012, EFSA issued an opinion on plants developed through cisgenesis and intragenesis. With the development of New Genomic Techniques (NGTs) in the last decade, cisgenic and intragenic plants can now be obtained with the insertion of a desired sequence in a precise location of the genome. EFSA has been requested by European Commission to provide an updated scientific opinion on the safety and the risk assessment of plants developed through cisgenesis and intragenesis, in order to (i) identify potential risks, comparing them with those posed by plants obtained by conventional breeding and Established Genomic Techniques (EGTs) and (ii) to determine the applicability of current guidelines for the risk assessment of cisgenic and intragenic plants. The conclusions of the previous EFSA opinion were reviewed, taking into consideration the new guidelines and the recent literature. The GMO panel concludes that no new risks are identified in cisgenic and intragenic plants obtained with NGTs, as compared with those already considered for plants obtained with conventional breeding and EGTs. There are no new data since the publication of the 2012 EFSA opinion that would challenge the conclusions raised in that document. The conclusions of the EFSA 2012 Scientific Opinion remain valid. The EFSA GMO Panel reiterates from these conclusions that with respect to the source of DNA and the safety of the gene product, the hazards arising from the use of a related plant-derived gene by cisgenesis are similar to those from conventional plant breeding, whereas additional hazards may arise for intragenic plants. Furthermore, the EFSA GMO Panel considers that cisgenesis and intragenesis make use of the same transformation techniques as transgenesis, and therefore, with respect to the alterations to the host genome, cisgenic, intragenic and transgenic plants obtained by random insertion do not cause different hazards. Compared to that, the use of NGTs reduces the risks associated with potential unintended modifications of the host genome. Thus, fewer requirements may be needed for the assessment of cisgenic and intragenic plants obtained through NGTs, due to site-directed integration of the added genetic material. Moreover, the GMO panel concludes that the current guidelines are partially applicable and sufficient. On a case-by-case basis, a lesser amount of data might be needed for the risk assessment of cisgenic or intragenic plants obtained through NGTs.

9.
EFSA J ; 20(10): e07618, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36274984

RESUMEN

EFSA was asked by the european Commission to develop criteria as advice for consideration for the risk assessment of plants produced by targeted mutagenesis, cisgenesis and intragenesis. EFSA proposes in this statement six main criteria to assist the risk assessment of these plants. The first four criteria are related to the molecular characterisation of the genetic modification introduced in the recipient plant. The four criteria evaluate whether any exogenous DNA sequence(s) is/are present (Criterion 1), whether such sequence derives from the breeders' gene pool (Criterion 2), the type of integration (Criterion 3) and whether any endogenous plant gene is interrupted (Criterion 4). Depending on the evaluation of the above criteria, the product can be a genome edited plant where no exogenous DNA sequence is present, or a cisgenic or intragenic plant where the cisgenic and intragenic sequence are introduced by targeted insertion and no plant endogenous genes are interrupted. In these cases, two more criteria are assessed to evaluate the history of safe use (Criterion 5) and the structure and function of the new allele (Criterion 6). If cisgenic and intragenic sequence are introduced by random integration without interruption of an endogenous gene, or when no risk is identified when an endogenous gene is interrupted, the criteria 5 and 6 will also be assessed. Evaluating the history of safe use is an important part of the proportionate risk assessment of cisgenic, intragenic and genome-edited plants since the newly introduced allele may already be present in nature. However, when the history of safe use cannot be sufficiently demonstrated, the function and structure of the introduced allele should be carefully assessed. Recommendations are also included on the aspects that need further elaboration for full applicability of the criteria proposed herein are also included.

10.
Funct Integr Genomics ; 22(6): 1315-1330, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35931837

RESUMEN

Apple scab is caused by an ascomycete fungus, Venturia inaequalis (Cke.) Wint., which is one of the most severe disease of apple (Malus × Domestica Borkh.) worldwide. The disease results in 30-40% fruit loss annually and even complete loss in some places. Owing to the evolving susceptibility of resistant apple genotypes harboring R-genes to new variants of V. inaequalis, a comparative transcriptome analysis using Illumina (HiSeq) platform of three scab-resistant (Florina, Prima, and White Dotted Red) and three susceptible (Ambri, Vista Bella, and Red Delicious) apple genotypes was carried out to mine new scab resistance genes. The study led to the identification of 822 differentially expressed genes in the tested scab-resistant and scab-susceptible apple genotypes. The most upregulated genes uniformly expressed in resistant varieties compared to susceptible ones were those coding for 17.3 kDa class II heat shock protein-like, chaperone protein ClpB1, glutathione S-transferase L3-like protein, B3 domain-containing protein At3g18960-like, transcription factor bHLH7, zinc finger MYM-type protein 1-like, and nine uncharacterized proteins, besides three lncRNAs. The genes that were downregulated in susceptible and upregulated in resistant cultivars were those coding for non-specific lipid transfer protein GPI-anchored 1, rust resistance kinase Lr10-like, disease resistance protein RPS6-like, and many uncharacterized proteins. DESeq2 analysis too revealed 20 DEGs that were upregulated in scab-resistant cultivars. Furthermore, a total of 361 genes were significantly upregulated in scab-susceptible variety, while 461 were found downregulated (P value < 0.05 and Log2 (FC) > 1). The differentially expressed genes (DEGs) were related to various pathways, i.e., metabolic, protein processing, biosynthesis of secondary metabolites, plant hormone signal transduction, autophagy, ubiquitin-mediated proteolysis, plant-pathogen interaction, lipid metabolism, and protein modification pathways. Real-time expression of a set of selected twelve DEGs further validated the results obtained from RNA-seq. Overall, these findings lay the foundation for investigating the genetic basis of apple scab resistance and defense pathways that might have a plausible role in governing scab resistance in apple against V. inaequalis.


Asunto(s)
Ascomicetos , Malus , Malus/genética , Malus/metabolismo , Malus/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Transcriptoma , Ascomicetos/genética , Resistencia a la Enfermedad/genética , Proteínas/genética
11.
Int J Mol Sci ; 23(10)2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35628407

RESUMEN

Transgenic or genetically modified crops have great potential in modern agriculture but still suffer from heavy regulations worldwide due to biosafety concerns. As a promising alternative route, cisgenic crops have received higher public acceptance and better reviews by governing authorities. To serve the purpose of cisgenic plant breeding, we have developed a CRISPR/Cas9-based vector system, which is capable of delivering target gene-of-interest (GOI) into recipient plants while removing undesired genetic traces in the plants. The new system features a controllable auto-excision feature, which is realized by a core design of embedded multi-clonal sequence and the use of inducible promoters controlling the expression of Cas9 nuclease. In the current proof-of-concept study in Arabidopsis thaliana (L.) Heynh., we have successfully incorporated a GOI into the plant and removed the selection marker and CRISPR/Cas9 components from the final product. Following the designed workflow, we have demonstrated that novel cisgenic plant germplasms with desired traits could be developed within one to two generations. Further characterizations of the vector system have shown that heat treatment at 37 °C could significantly improve the editing efficiency (up to 100%), and no off-target mutations were identified in the Arabidopsis background. This novel vector system is the first CRISPR/Cas9-based genome editing tool for cisgenic plant breeding and should prove powerful for other similar applications in the bright future of precision molecular breeding.


Asunto(s)
Arabidopsis , Sistemas CRISPR-Cas , Arabidopsis/genética , Productos Agrícolas/genética , Edición Génica , Fitomejoramiento , Plantas Modificadas Genéticamente/genética
12.
Int J Mol Sci ; 23(6)2022 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-35328507

RESUMEN

Crop breeding has mainly been focused on increasing productivity, either directly or by decreasing the losses caused by biotic and abiotic stresses (that is, incorporating resistance to diseases and enhancing tolerance to adverse conditions, respectively). Quite the opposite, little attention has been paid to improve the nutritional value of crops. It has not been until recently that crop biofortification has become an objective within breeding programs, through either conventional methods or genetic engineering. There are many steps along this long path, from the initial evaluation of germplasm for the content of nutrients and health-promoting compounds to the development of biofortified varieties, with the available and future genomic tools assisting scientists and breeders in reaching their objectives as well as speeding up the process. This review offers a compendium of the genomic technologies used to explore and create biodiversity, to associate the traits of interest to the genome, and to transfer the genomic regions responsible for the desirable characteristics into potential new varieties. Finally, a glimpse of future perspectives and challenges in this emerging area is offered by taking the present scenario and the slow progress of the regulatory framework as the starting point.


Asunto(s)
Biofortificación , Fitomejoramiento , Biofortificación/métodos , Productos Agrícolas/genética , Ingeniería Genética/métodos , Fitomejoramiento/métodos , Plantas Modificadas Genéticamente/genética
13.
Front Plant Sci ; 12: 768197, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34917104

RESUMEN

Citrus are among the most prevailing fruit crops produced worldwide. The implementation of effective and reliable breeding programs is essential for coping with the increasing demands of satisfactory yield and quality of the fruit as well as to deal with the negative impact of fast-spreading diseases. Conventional methods are time-consuming and of difficult application because of inherent factors of citrus biology, such as their prolonged juvenile period and a complex reproductive stage, sometimes presenting infertility, self-incompatibility, parthenocarpy, or polyembryony. Moreover, certain desirable traits are absent from cultivated or wild citrus genotypes. All these features are challenging for the incorporation of the desirable traits. In this regard, genetic engineering technologies offer a series of alternative approaches that allow overcoming the difficulties of conventional breeding programs. This review gives a detailed overview of the currently used strategies for the development of genetically modified citrus. We describe different aspects regarding genotype varieties used, including elite cultivars or extensively used scions and rootstocks. Furthermore, we discuss technical aspects of citrus genetic transformation procedures via Agrobacterium, regular physical methods, and magnetofection. Finally, we describe the selection of explants considering young and mature tissues, protoplast isolation, etc. We also address current protocols and novel approaches for improving the in vitro regeneration process, which is an important bottleneck for citrus genetic transformation. This review also explores alternative emerging transformation strategies applied to citrus species such as transient and tissue localized transformation. New breeding technologies, including cisgenesis, intragenesis, and genome editing by clustered regularly interspaced short palindromic repeats (CRISPR), are also discussed. Other relevant aspects comprising new promoters and reporter genes, marker-free systems, and strategies for induction of early flowering, are also addressed. We provided a future perspective on the use of current and new technologies in citrus and its potential impact on regulatory processes.

14.
Plant Biotechnol J ; 19(8): 1495-1510, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33945200

RESUMEN

Traditional breeding or genetically modified organisms (GMOs) have for a long time been the sole approaches to effectively cope with biotic and abiotic stresses and implement the quality traits of crops. However, emerging diseases as well as unpredictable climate changes affecting agriculture over the entire globe force scientists to find alternative solutions required to quickly overcome seasonal crises. In this review, we first focus on cisgenesis and genome editing as challenging biotechnological approaches for breeding crops more tolerant to biotic and abiotic stresses. In addition, we take into consideration a toolbox of new techniques based on applications of RNA interference and epigenome modifications, which can be adopted for improving plant resilience. Recent advances in these biotechnological applications are mainly reported for non-model plants and woody crops in particular. Indeed, the characterization of RNAi machinery in plants is fundamental to transform available information into biologically or biotechnologically applicable knowledge. Finally, here we discuss how these innovative and environmentally friendly techniques combined with traditional breeding can sustain a modern agriculture and be of potential contribution to climate change mitigation.


Asunto(s)
Protección de Cultivos , Fitomejoramiento , Productos Agrícolas/genética , Edición Génica , Plantas Modificadas Genéticamente/genética
15.
EFSA J ; 19(4): e06314, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33968240

RESUMEN

The European Commission requested EFSA to provide an overview on the risk assessment of plants developed through new genomic techniques (NGTs), taking into account its previous scientific opinions, its ongoing work on the topic as well as opinions published by competent authorities and national institutions since 2012, where available. In this report, NGTs are defined as techniques capable to change the genetic material of an organism and have emerged or developed since the adoption of the 2001 genetically modified organism (GMO) legislation. EFSA considered 16 scientific opinions issued by European member states ('MS opinions') as well as three EFSA GMO Panel scientific opinions on NGTs. A procurement to evaluate and summarise the MS opinions was conducted. Relevant information on the description of each NGT and information on the risk assessment of plants developed through one or a combination of the defined NGTs was extracted and summarised. The baseline for the types and nature of NGTs to be included in this report was defined based on the JRC, 2011 report on new plant breeding techniques as well as on the Explanatory Note on New Techniques in Agricultural Biotechnology from the European Commissioner for Health and Food Safety (EC-SAM, 2017) for some more recently developed NGTs, taking into account the NGT definition provided by the European Commission for this mandate. EFSA was not requested to develop new opinions on plants developed through specific NGTs, and thus, no critical appraisal of the reviewed scientific opinions was carried out.

16.
Plants (Basel) ; 10(3)2021 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-33801499

RESUMEN

Anthocyanins extracted from black carrots have received increased interest as natural colorants in recent years. The reason is mainly their high content of acylated anthocyanins that stabilizes the color and thereby increases the shelf-life of products colored with black carrot anthocyanins. Still, the main type of anthocyanins synthesized in all black carrot cultivars is cyanidin limiting their use as colorants due to the narrow color variation. Additionally, in order to be competitive against synthetic colors, a higher percentage of acylated anthocyanins and an increased anthocyanin content in black carrots are needed. However, along with the increased interest in black carrots there has also been an interest in identifying the structural and regulatory genes associated with anthocyanin biosynthesis in black carrots. Thus, huge progress in the identification of genes involved in anthocyanin biosynthesis has recently been achieved. Given this information it is now possible to attempt to modulate anthocyanin compositions in black carrots through genetic modifications. In this review we look into genetic modification opportunities for generating taproots of black carrots with extended color palettes, with a higher percentage of acylated anthocyanins or a higher total content of anthocyanins.

17.
Front Plant Sci ; 11: 1234, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32922420

RESUMEN

New plant breeding techniques (NPBTs) aim to overcome traditional breeding limits for fruit tree species, in order to obtain new varieties with improved organoleptic traits and resistance to biotic and abiotic stress, and to maintain fruit quality achieved over centuries by (clonal) selection. Knowledge on the gene(s) controlling a specific trait is essential for the use of NPBTs, such as genome editing and cisgenesis. In the framework of the international scientific community working on fruit tree species, including citrus, NPBTs have mainly been applied to address pathogen threats. Citrus could take advantage of NPBTs because of its complex species biology (seedlessness, apomixis, high heterozygosity, and long juvenility phase) and aptitude for in vitro manipulation. To our knowledge, genome editing in citrus via transgenesis has successful for induced resistance to Citrus bacterial canker in sweet orange and grapefruit using the resistance gene CsLOB1. In the future, NPBTs will also be used to improve fruit traits, making them healthier. The regeneration of plants following the application of NPBTs is a bottleneck, making it necessary to optimize the efficiency of current protocols. The strengths and weaknesses of using explants from young in vitro plantlets, and from mature plants, will be discussed. Other major issues addressed in this review are related to the requirement for marker-free systems and shortening the long juvenility phase. This review aims to summarize methods and approaches available in the literature that are suitable to citrus, focusing on the principles observed before the use of NPBTs.

18.
Planta ; 251(4): 91, 2020 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-32236850

RESUMEN

MAIN CONCLUSION: While transgenic technology has heralded a new era in crop improvement, several concerns have precluded their widespread acceptance. Alternative technologies, such as cisgenesis and genome-editing may address many of such issues and facilitate the development of genetically engineered crop varieties with multiple favourable traits. Genetic engineering and plant transformation have played a pivotal role in crop improvement via introducing beneficial foreign gene(s) or silencing the expression of endogenous gene(s) in crop plants. Genetically modified crops possess one or more useful traits, such as, herbicide tolerance, insect resistance, abiotic stress tolerance, disease resistance, and nutritional improvement. To date, nearly 525 different transgenic events in 32 crops have been approved for cultivation in different parts of the world. The adoption of transgenic technology has been shown to increase crop yields, reduce pesticide and insecticide use, reduce CO2 emissions, and decrease the cost of crop production. However, widespread adoption of transgenic crops carrying foreign genes faces roadblocks due to concerns of potential toxicity and allergenicity to human beings, potential environmental risks, such as chances of gene flow, adverse effects on non-target organisms, evolution of resistance in weeds and insects etc. These concerns have prompted the adoption of alternative technologies like cisgenesis, intragenesis, and most recently, genome editing. Some of these alternative technologies can be utilized to develop crop plants that are free from any foreign gene hence, it is expected that such crops might achieve higher consumer acceptance as compared to the transgenic crops and would get faster regulatory approvals. In this review, we present a comprehensive update on the current status of the genetically modified (GM) crops under cultivation. We also discuss the issues affecting widespread adoption of transgenic GM crops and comment upon the recent tools and techniques developed to address some of these concerns.


Asunto(s)
Productos Agrícolas/genética , Plantas Modificadas Genéticamente/genética , Animales , Resistencia a la Enfermedad/genética , Edición Génica , Flujo Génico , Ingeniería Genética/métodos , Resistencia a los Herbicidas/genética , Insectos , Nutrientes , Malezas , Estrés Fisiológico/genética
19.
Plant Biotechnol J ; 17(7): 1209-1221, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30525274

RESUMEN

Cytosolic glutamine synthetase (GS1) plays a central role in nitrogen (N) metabolism. The importance of GS1 in N remobilization during reproductive growth has been reported in cereal species but attempts to improve N utilization efficiency (NUE) by overexpressing GS1 have yielded inconsistent results. Here, we demonstrate that transformation of barley (Hordeum vulgare L.) plants using a cisgenic strategy to express an extra copy of native HvGS1-1 lead to increased HvGS1.1 expression and GS1 enzyme activity. GS1 overexpressing lines exhibited higher grain yields and NUE than wild-type plants when grown under three different N supplies and two levels of atmospheric CO2 . In contrast with the wild-type, the grain protein concentration in the GS1 overexpressing lines did not decline when plants were exposed to elevated (800-900 µL/L) atmospheric CO2 . We conclude that an increase in GS1 activity obtained through cisgenic overexpression of HvGS1-1 can improve grain yield and NUE in barley. The extra capacity for N assimilation obtained by GS1 overexpression may also provide a means to prevent declining grain protein levels under elevated atmospheric CO2 .


Asunto(s)
Dióxido de Carbono/química , Glutamato-Amoníaco Ligasa/metabolismo , Proteínas de Granos/metabolismo , Hordeum/metabolismo , Nitrógeno/metabolismo , Regulación de la Expresión Génica de las Plantas , Glutamato-Amoníaco Ligasa/genética , Hordeum/genética , Plantas Modificadas Genéticamente/metabolismo
20.
Genes (Basel) ; 8(12)2017 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-29257124

RESUMEN

Genome editing tools have the potential to change the genomic architecture of a genome at precise locations, with desired accuracy. These tools have been efficiently used for trait discovery and for the generation of plants with high crop yields and resistance to biotic and abiotic stresses. Due to complex genomic architecture, it is challenging to edit all of the genes/genomes using a particular genome editing tool. Therefore, to overcome this challenging task, several genome editing tools have been developed to facilitate efficient genome editing. Some of the major genome editing tools used to edit plant genomes are: Homologous recombination (HR), zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), pentatricopeptide repeat proteins (PPRs), the CRISPR/Cas9 system, RNA interference (RNAi), cisgenesis, and intragenesis. In addition, site-directed sequence editing and oligonucleotide-directed mutagenesis have the potential to edit the genome at the single-nucleotide level. Recently, adenine base editors (ABEs) have been developed to mutate A-T base pairs to G-C base pairs. ABEs use deoxyadeninedeaminase (TadA) with catalytically impaired Cas9 nickase to mutate A-T base pairs to G-C base pairs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA