Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Curr Biol ; 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39303712

RESUMEN

The brainstem is a hub for sensorimotor integration, which mediates crucial innate behaviors. This brain region is characterized by a rich population of GABAergic inhibitory neurons, required for the proper expression of these innate behaviors. However, what roles these inhibitory neurons play in innate behaviors and how they function are still not fully understood. Here, we show that inhibitory neurons in the nucleus of the optic tract and dorsal-terminal nuclei (NOT-DTN) of the mouse can modulate the innate eye movement optokinetic reflex (OKR) by shaping the tuning properties of excitatory NOT-DTN neurons. Specifically, we demonstrate that although these inhibitory neurons do not directly induce OKR, they enhance the visual feature selectivity of OKR behavior, which is mediated by the activity of excitatory NOT-DTN neurons. Moreover, consistent with the sharpening role of inhibitory neurons in OKR behavior, they have broader tuning relative to excitatory neurons. Last, we demonstrate that inhibitory NOT-DTN neurons directly provide synaptic inhibition to nearby excitatory neurons and sharpen their tuning in a sustained manner, accounting for the enhanced feature selectivity of OKR behavior. In summary, our findings uncover a fundamental principle underlying the computational role of inhibitory neurons in brainstem sensorimotor circuits.

2.
J Neurosci ; 44(16)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38413233

RESUMEN

Technical advances in artificial manipulation of neural activity have precipitated a surge in studying the causal contribution of brain circuits to cognition and behavior. However, complexities of neural circuits challenge interpretation of experimental results, necessitating new theoretical frameworks for reasoning about causal effects. Here, we take a step in this direction, through the lens of recurrent neural networks trained to perform perceptual decisions. We show that understanding the dynamical system structure that underlies network solutions provides a precise account for the magnitude of behavioral effects due to perturbations. Our framework explains past empirical observations by clarifying the most sensitive features of behavior, and how complex circuits compensate and adapt to perturbations. In the process, we also identify strategies that can improve the interpretability of inactivation experiments.


Asunto(s)
Aprendizaje , Neuronas , Neuronas/fisiología , Redes Neurales de la Computación , Cognición , Solución de Problemas
3.
J R Soc Interface ; 17(169): 20200500, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32781932

RESUMEN

Stem cells can precisely and robustly undergo cellular differentiation and lineage commitment, referred to as stemness. However, how the gene network underlying stemness regulation reliably specifies cell fates is not well understood. To address this question, we applied a recently developed computational method, random circuit perturbation (RACIPE), to a nine-component gene regulatory network (GRN) governing stemness, from which we identified robust gene states. Among them, four out of the five most probable gene states exhibit gene expression patterns observed in single mouse embryonic cells at 32-cell and 64-cell stages. These gene states can be robustly predicted by the stemness GRN but not by randomized versions of the stemness GRN. Strikingly, we found a hierarchical structure of the GRN with the Oct4/Cdx2 motif functioning as the first decision-making module followed by Gata6/Nanog. We propose that stem cell populations, instead of being viewed as all having a specific cellular state, can be regarded as a heterogeneous mixture including cells in various states. Upon perturbations by external signals, stem cells lose the capacity to access certain cellular states, thereby becoming differentiated. The new gene states and key parameters regulating transitions among gene states proposed by RACIPE can be used to guide experimental strategies to better understand differentiation and design reprogramming. The findings demonstrate that the functions of the stemness GRN is mainly determined by its well-evolved network topology rather than by detailed kinetic parameters.


Asunto(s)
Redes Reguladoras de Genes , Células Madre , Animales , Diferenciación Celular , Regulación de la Expresión Génica , Cinética , Ratones
4.
Elife ; 72018 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-29985132

RESUMEN

A goal of systems neuroscience is to discover the circuit mechanisms underlying brain function. Despite experimental advances that enable circuit-wide neural recording, the problem remains open in part because solving the 'inverse problem' of inferring circuity and mechanism by merely observing activity is hard. In the grid cell system, we show through modeling that a technique based on global circuit perturbation and examination of a novel theoretical object called the distribution of relative phase shifts (DRPS) could reveal the mechanisms of a cortical circuit at unprecedented detail using extremely sparse neural recordings. We establish feasibility, showing that the method can discriminate between recurrent versus feedforward mechanisms and amongst various recurrent mechanisms using recordings from a handful of cells. The proposed strategy demonstrates that sparse recording coupled with simple perturbation can reveal more about circuit mechanism than can full knowledge of network activity or the synaptic connectivity matrix.


Asunto(s)
Células de Red/fisiología , Red Nerviosa/fisiología , Simulación por Computador , Árboles de Decisión , Modelos Neurológicos , Inhibición Neural/fisiología , Dinámicas no Lineales , Incertidumbre
5.
BMC Syst Biol ; 12(1): 74, 2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29914482

RESUMEN

BACKGROUND: One of the major challenges in traditional mathematical modeling of gene regulatory circuits is the insufficient knowledge of kinetic parameters. These parameters are often inferred from existing experimental data and/or educated guesses, which can be time-consuming and error-prone, especially for large networks. RESULTS: We present a user-friendly computational tool for the community to use our newly developed method named random circuit perturbation (RACIPE), to explore the robust dynamical features of gene regulatory circuits without the requirement of detailed kinetic parameters. Taking the network topology as the only input, RACIPE generates an ensemble of circuit models with distinct randomized parameters and uniquely identifies robust dynamical properties by statistical analysis. Here, we discuss the implementation of the software and the statistical analysis methods of RACIPE-generated data to identify robust gene expression patterns and the functions of genes and regulatory links. Finally, we apply the tool on coupled toggle-switch circuits and a published circuit of B-lymphopoiesis. CONCLUSIONS: We expect our new computational tool to contribute to a more comprehensive and unbiased understanding of mechanisms underlying gene regulatory networks. RACIPE is a free open source software distributed under (Apache 2.0) license and can be downloaded from GitHub ( https://github.com/simonhb1990/RACIPE-1.0 ).


Asunto(s)
Redes Reguladoras de Genes , Modelos Genéticos , Linfocitos B/citología , Cinética , Linfopoyesis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA