Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Cancer ; 20(1): 103, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34412652

RESUMEN

BACKGROUND: Constitutive activation of nuclear factor-κB (NF-κB) signaling plays a key role in the development and progression of colorectal carcinoma (CRC). However, the underlying mechanisms of excessive activation of NF-κB signaling remain largely unknown. METHODS: We used high throughput RNA sequencing to identify differentially expressed circular RNAs (circRNAs) between normal human intestinal epithelial cell lines and CRC cell lines. The identification of protein encoded by circPLCE1 was performed using LC-MS. The function of novel protein was validated in vitro and in vivo by gain or loss of function assays. Mechanistic results were concluded by immunoprecipitation analyses. RESULTS: A novel protein circPLCE1-411 encoded by circular RNA circPLCE1 was identified as a crucial player in the NF-κB activation of CRC. Mechanistically, circPLCE1-411 promoted the ubiquitin-dependent degradation of the critical NF-κB regulator RPS3 via directly binding the HSP90α/RPS3 complex to facilitate the dissociation of RPS3 from the complex, thereby reducing NF-κB nuclear translocation in CRC cells. Functionally, circPLCE1 inhibited tumor proliferation and metastasis in CRC cells, as well as patient-derived xenograft and orthotopic xenograft tumor models. Clinically, circPLCE1 was downregulated in CRC tissues and correlated with advanced clinical stages and poor survival. CONCLUSIONS: circPLCE1 presents an epigenetic mechanism which disrupts NF-κB nuclear translocation and serves as a novel and promising therapeutic target and prognostic marker.


Asunto(s)
Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , FN-kappa B/metabolismo , Fosfoinositido Fosfolipasa C/genética , ARN Circular , Proteínas Ribosómicas/metabolismo , Animales , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Cromatografía Liquida , Neoplasias Colorrectales/patología , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Modelos Biológicos , Proteolisis , Proteómica/métodos , Transducción de Señal , Espectrometría de Masas en Tándem , Ubiquitina/metabolismo , Ubiquitinación
2.
J Cell Mol Med ; 25(15): 7244-7256, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34173324

RESUMEN

Studies have demonstrated that circular RNAs (circRNAs) play important roles in various types of cancer; however, the mechanisms of circRNAs located in the nucleus have rarely been explored. Here, we report a novel circular RNA circPLCE1 (hsa_circ_0019230) that facilitates the malignant progression of colorectal cancer (CRC) by repressing serine/arginine-rich splicing factor 2 (SRSF2)-dependent phospholipase C epsilon 1 (PLCE1) pre-RNA splicing. Quantitative real-time polymerase chain reaction was used to determine the expression of circPLCE1 in CRC tissues and cells. Cell Counting Kit-8, Transwell and flow cytometric assays were used to assess the role of circPLE1 in CRC cell proliferation, migration and apoptosis, respectively. An animal study was conducted to test the role of circPLCE1 in vivo. Furthermore, catRAPID and RPISeq were used to predict the possible binding proteins of circPLCE1. RNA fractionation and RNA immunoprecipitation assays were used to confirm the RNA-protein interaction. In this study, we found that circPLCE1 was more significantly down-regulated in CRC tissues compared with that in adjacent normal tissues. However, circPLCE1 knockdown suppressed CRC cell proliferation, migration and invasion and increased apoptosis. Nude mouse experiments showed that ectopic expression of circPLCE1 dramatically increased tumour growth in vivo. Mechanistically, circPLCE1 directly bound to the SRSF2 protein, repressing SRSF2-dependent PLCE1 pre-RNA splicing, resulting in the progression of CRC. Individually mutating the binding sites of circPLCE1 abolished the inhibition of PLCE1 mRNA production. Our study revealed a novel molecular mechanism in the regulation of PLCE1 and suggested a new function of circular RNA.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Fosfoinositido Fosfolipasa C/genética , Empalme del ARN , ARN Circular/genética , Factores de Empalme Serina-Arginina/metabolismo , Anciano , Animales , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Regulación hacia Abajo , Femenino , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Células HT29 , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Persona de Mediana Edad , Fosfoinositido Fosfolipasa C/metabolismo , ARN Circular/metabolismo , Factores de Empalme Serina-Arginina/genética , Carga Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA