Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros











Intervalo de año de publicación
1.
3 Biotech ; 14(10): 232, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39280801

RESUMEN

The prevalence of psychological disorders has surged since the 1990s, posing a significant global health burden with depressed individuals averaging six lost hours per week and contributing to over 20% of all missed workdays. Current antidepressants, while effective for some, have limited efficacy, dietary restrictions, and adverse effects, including liver damage and hypertension. Natural remedies offer promising therapeutic potential with minimal side effects. Tamarindus indica (TI) is a plant that grows in the shape of a tree. Network pharmacology of TI revealed the key targets MAPK, D1-6, 5HT, DAT, MAO, COMT, PKA, PKC, AKT, and VMAT, which are linked to prominent key pathways such as dopaminergic and serotonergic. The cell viability assays on SH-Sy5y cells indicated a favourable safety profile with an IC50 of 573.99 µg/ml and further, the in vivo efficacy was observed through Chronic Unpredictable Mild Stress (CUMS) model in mice. The hydroalcoholic extract of TI demonstrated antidepressant effects, significantly reducing immobility time in the Tail Suspension Test (TST) and Forced Swim Test (FST). Additionally, locomotor activity, assessed via the Open Field Test (OFT), was significantly increased in the treatment group compared to CUMS mice. Biochemical analyses revealed elevated Brain Derived Neurotropic Factor (BDNF), decreased cortisol levels, and reduced catechol-O-methyltransferase (COMT) concentration in TI-treated (50 mg/kg) groups. These findings underscore the potential of TI as a natural antidepressant, offering a promising avenue for further therapeutic development in depression management. The current study did not evaluate the level of neurotransmitters in the brain, which will be evaluated in future studies.

2.
Front Nutr ; 11: 1421007, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39224184

RESUMEN

Introduction: Several studies indicated that depression is associated with liver injury. The role of probiotics in alleviating depression is focused on improving the abnormalities of the central nervous system through the gut-brain axis, while the effect on liver injury is still unclear. The aim of this study was to elucidate the potential link between the antidepressant effect of a potential probiotic strain Bifidobacterium pseudocatenulatum W112 and its effect on alleviating liver injury. Methods: The 4-week-old Kunming mice were exposed to chronic stress for 4 weeks to establish a depression model. Results: The depression-like behavior and related biomakers in chronic unpredictable mild stress (CUMS) mice were altered by supplemented with W112 for 2 weeks. Meanwhile, the modulation effect of W112 the gut microbiota in CUMS mice also result in an increase in the abundance of beneficial bacteria and a decrease in the abundance of harmful bacteria. Significantly, liver injury was observed in CUMS model mice. W112 improved liver injury by reducing AST/ALT in serum. Quantitative PCR results indicated that the mechanism of action of W112 in ameliorating liver injury was that the altered gut microbiota affected hepatic phospholipid metabolism and bile acid metabolism. Discussion: In short, W112 could significantly improve the depressive and liver injury symptoms caused by CUMS. The gut-liver-brain axis is a potential connecting pathway between the antidepressant effects of W112 and its alleviation of liver injury.

3.
Behav Brain Res ; 468: 115039, 2024 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-38718877

RESUMEN

Chronic unpredictable mild stress (CUMS) method has been introduced as a rodent model of depression. On the other hand, olanzapine, as an antipsychotic, can induce antidepressant and antipsychotic effects. Also, olanzapine may improve cognitive functions. Both CUMS and olanzapine can also affect the expression level of brain-derived neurotrophic factor (BDNF) and synaptophysin, the molecular factors involved in synaptic function, and learning and memory. In this study, we investigated the effect of olanzapine on locomotor activity (using open field test), pain threshold (using hot plate), depressive-like behavior (using forced swim test), spatial learning and memory (using Morris water maze), and BDNF and synaptophysin hippocampal expression (using real-time PCR) in both male and female CUMS rats. CUMS was performed for three consecutive weeks. Olanzapine was also injected intraperitoneally at the dose of 5 mg/kg. Our data showed that olanzapine can reverse the effects of CUMS on behavioral functions and BDNF and synaptophysin expression levels in the hippocampus of both males and females. It was also shown that olanzapine effects on spatial memory, pain perception, and BDNF and synaptophysin level were stronger in females than males. In conclusion, we suggested that the therapeutic effects of olanzapine in CUMS rats may be closely related to the function of BDNF and synaptophysin. Also, the therapeutic effects of olanzapine may be stronger in females. Therefore, and for the first time, we showed that there may be a sex difference in the effects of olanzapine on behavioral and molecular changes following CUMS.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Depresión , Modelos Animales de Enfermedad , Hipocampo , Olanzapina , Percepción del Dolor , Memoria Espacial , Estrés Psicológico , Sinaptofisina , Animales , Femenino , Masculino , Ratas , Antipsicóticos/farmacología , Conducta Animal/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/efectos de los fármacos , Depresión/tratamiento farmacológico , Depresión/metabolismo , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/metabolismo , Olanzapina/farmacología , Percepción del Dolor/efectos de los fármacos , Percepción del Dolor/fisiología , Memoria Espacial/efectos de los fármacos , Estrés Psicológico/metabolismo , Estrés Psicológico/tratamiento farmacológico , Sinaptofisina/metabolismo , Ratas Wistar
4.
Int. j. morphol ; 42(2): 470-478, abr. 2024. ilus
Artículo en Inglés | LILACS | ID: biblio-1558149

RESUMEN

SUMMARY: We evaluated the role and mechanism of acteoside in the regulation of memory impairment induced by chronic unpredictable mild stress (CUMS). CUMS was used to induce depression in rats and the successful establishment of CUMS model were verified by forced swimming test and sucrose preference test. The Y-maze test and novel object recognition test assessed memory functions. The structural changes in the cortex and hippocampus were observed by hematoxylin and eosin (HE) staining. Immunofluorescence staining and western blotting determined the protein levels. Y-maze test and novel object recognition test showed that there was memory performance impairment in rats of CUMS group, which was improved by the acteoside treatment. HE staining showed that CUMS exposure damaged the structure in the cortex and hippocampus, while the acteoside treatment alleviated the structural changes. Compared with the control group, the levels of BNDF and CREB in the cortex and hippocampus of the CUMS group were significantly decreased. Acteoside significantly reversed the expressions of these proteins in CUMS rats. Meanwhile, compared with the control group, the levels of p-mTOR and p- P70S6K in the cortex and hippocampus of the CUMS group were significantly increased, and these changes were significantly reversed by acteoside. Nevertheless, the effect of acteoside on mTOR signaling was markedly blocked by rapamycin, a specific inhibitor of mTOR signaling. Acteoside can attenuate memory impairment and ameliorate neuronal damage and synaptic plasticity in depression rats probably via inhibiting the mTOR signaling pathway. Acteoside may serve as a novel reagent for the prevention of depression.


Evaluamos el papel y el mecanismo del acteoside en la regulación del deterioro de la memoria inducido por estrés leve crónico impredecible (ELCI). Se utilizó ELCI para inducir depresión en ratas y el establecimiento exitoso del modelo ELCI se verificó mediante una prueba de natación forzada y una prueba de preferencia de sacarosa. La prueba del laberinto en Y y la prueba de reconocimiento de objetos novedosos evaluaron las funciones de la memoria. Los cambios estructurales en la corteza y el hipocampo se observaron mediante tinción con hematoxilina y eosina (HE). La tinción por inmunofluorescencia y la transferencia Western determinaron los niveles de proteína. La prueba del laberinto en Y y la prueba de reconocimiento de objetos novedosos mostraron que había un deterioro del rendimiento de la memoria en ratas del grupo ELCI, que mejoró con el tratamiento con acteósidos. La tinción con HE mostró que la exposición a ELCI dañó la estructura de la corteza y el hipocampo, mientras que el tratamiento con actósidos alivió los cambios estructurales. En comparación con el grupo de control, los niveles de BNDF y CREB en la corteza y el hipocampo del grupo ELCI disminuyeron significativamente. Acteoside revirtió significativamente las expresiones de estas proteínas en ratas ELCI. Mientras tanto, en comparación con el grupo control, los niveles de p-mTOR y p-P70S6K en la corteza y el hipocampo del grupo ELCI aumentaron significativamente, y estos cambios fueron revertidos significativamente ELCI por el acteoside. Sin embargo, el efecto del acteoside sobre la señalización de mTOR fue notablemente bloqueado por la rapamicina, un inhibidor específico de la señalización de mTOR. El acteoside puede atenuar el deterioro de la memoria y mejorar el daño neuronal y la plasticidad sináptica en ratas con depresión, probablemente mediante la inhibición de la vía de señalización mTOR. Acteoside puede servir como un reactivo novedoso para la prevención de la depresión.


Asunto(s)
Animales , Ratas , Depresión/tratamiento farmacológico , Polifenoles/administración & dosificación , Glucósidos/administración & dosificación , Trastornos de la Memoria/tratamiento farmacológico , Estrés Psicológico/complicaciones , Western Blotting , Técnica del Anticuerpo Fluorescente , Ratas Sprague-Dawley , Aprendizaje por Laberinto , Reconocimiento en Psicología/efectos de los fármacos , Modelos Animales de Enfermedad , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Polifenoles/uso terapéutico , Escala de Evaluación de la Conducta , Inhibidores mTOR , Glucósidos/uso terapéutico , Plasticidad Neuronal/efectos de los fármacos , Neuronas
5.
Mol Neurobiol ; 61(2): 821-834, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37668965

RESUMEN

Accumulating evidence has suggested that the gut microbiome plays an important role in depression. Akkermansia muciniphila (AKK), a next-generation probiotic, shows a beneficial effect on immune and metabolic homeostasis. The relative abundance of AKK was found negatively correlated with depressive symptoms in both clinical and pre-clinical studies. To evaluate the potential antidepressant effect of AKK and explore the possible mechanism, we used chronic alcohol exposure and chronic unpredictable mild stress (CUMS) to induce depressive-like behaviors in mice. We found that oral AKK administration significantly reduced the immobility time in the force swimming test (FST) and tail suspension test (TST) in the mice with chronic alcohol exposure and the CUMS mice. The sucrose preference in the mice receiving AKK was significantly increased in the sucrose preference test (SPT). More importantly, AKK implantation significantly increased the level of 5-HT in the gut and PFC of both the alcohol exposure mice and the CUMS mice. Furthermore, AKK had inhibited the expression of SERT in the gut but not in the brain for both NIAAA and the CUMS model mice. Interestingly, the expression of cFos in enteric nerves in the gut significantly decreased after AKK administration. In conclusion, our study demonstrated the antidepressant effect of AKK in mice exposed to alcohol exposure and CUMS, with the potential mechanism that AKK implantation might lead to an increased level of 5-HT and inhibited SERT expression in the gut, and might alter the gut-to-brain signal through suppression of enteric nerves activation.


Asunto(s)
Depresión , Serotonina , Ratones , Animales , Depresión/tratamiento farmacológico , Depresión/metabolismo , Serotonina/metabolismo , Encéfalo/metabolismo , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Antidepresivos/metabolismo , Sacarosa/metabolismo , Sacarosa/farmacología , Estrés Psicológico/complicaciones , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/metabolismo , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Akkermansia
6.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1006267

RESUMEN

ObjectiveTo investigate the mechanism of Baihuan Xiaoyao Decoction (Xiaoyaosan added with Lilii Bulbus and Albiziae Cortex) in alleviating depression-like behaviors of juvenile rats by regulating the polarization of microglia. MethodSixty juvenile SD rats were randomized into normal control, model, fluoxetine, and low-, medium-, and high-dose (5.36, 10.71, 21.42 g·kg-1, respectively) Baihuan Xiaoyao decoction groups. The rat model of juvenile depression was established by chronic unpredictable mild stress (CUMS). The sucrose preference test (SPT) was carried out to examine the sucrose preference of rats. Forced swimming test (FST) was carried out to measure the immobility time of rats. The open field test (OFT) was conducted to measure the total distance, the central distance, the number of horizontal crossings, and the frequency of rearing. Morris water maze (MWM) was used to measure the escape latency and the number of crossing the platform. The immunofluorescence assay was employed to detect the expression of inducible nitric oxide synthase (iNOS, the polarization marker of M1 microglia) and CD206 (the polarization marker of M2 microglia). Real-time polymerase chain reaction was employed to determine the mRNA levels of iNOS, CD206, pro-inflammatory cytokines [tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6] and anti-inflammatory cytokines (IL-4 and IL-10) in the hippocampus. Western blotting was employed to determine the protein levels of iNOS and CD206 in the hippocampus. The levels of IL-4 and IL-6 in the hippocampus were detected by enzyme-linked immunosorbent assay. ResultCompared with the normal control group, the model rats showed a reduction in sucrose preference (P<0.05), an increase in immobility time (P<0.05), decreased motor and exploratory behaviors (P<0.05), and weakened learning and spatial memory (P<0.05). In addition, the model rats showed up-regulated mRNA and protein levels of iNOS and mRNA levels of IL-1β, IL-6, and TNF-α (P<0.05). Compared with the model group, Baihuan Xiaoyao decoction increased the sucrose preference value (P<0.05), shortened the immobility time (P<0.01), increased the motor and exploratory behaviors (P<0.05), and improved the learning and spatial memory (P<0.01). Furthermore, the decoction down-regulated the positive expression and protein level of iNOS, lowered the levels of TNF-α, IL-1β, and IL-6 (P<0.01), promoted the positive expression of CD206, and elevated the levels of IL-4 and IL-10 (P<0.01) in the hippocampus of the high dose group. Moreover, the high-dose Baihuan Xiaoyao decoction group had higher sucrose preference value (P<0.01), shorter immobility time (P<0.01), longer central distance (P<0.01), stronger learning and spatial memory (P<0.01), higher positive expression and protein level of iNOS (P<0.01), lower levels of TNF-α, IL-1β, and IL-6 (P<0.05, P<0.01), lower positive expression and mRNA level of iNOS (P<0.05), and higher levels of IL-4 and IL-10 (P<0.05, P<0.01) than the fluoxetine group. ConclusionBaihuan Xiaoyao decoction can improve the depression-like behavior of juvenile rats by inhibiting the M1 polarization and promoting the M2 polarization of microglia in the hippocampus.

7.
Metab Brain Dis ; 38(8): 2849-2864, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37906393

RESUMEN

INTRODUCTION: Chaigui granules are a novel manufactured traditional Chinese antidepressant medicine, which is originated from the ancient classical prescription of Xiaoyaosan. It ameliorated depression-like behavior and concomitant symptoms in animal models. But its antidepressant mechanism is still unclear. Therefore, network pharmacology and molecular biology were used to explore underlying antidepressant mechanism in this study. METHODS: Firstly, network pharmacology was used to screen main active ingredients and potential targets in the treatment of depression with Chaigui granules, and to perform pathway enrichment analysis. Secondly, chronic and unpredictable mild stress-induced depression model rats were used, and behavioral tests were used to evaluate the antidepressant effect of Chaigui granules. Finally, the core targets and key pathways predicted by network pharmacology were validated by qRT-PCR and Western blot to determine the relevant gene and protein expression levels in rat hippocampus. RESULTS: The results of network pharmacology indicated that the PI3K/Akt signaling pathway may play a key role in antidepressant of Chaigui granules. The results of animal experiments showed that Chaigui granules significantly modulated behavioral indicators. Subsequently, the upregulation of relative mRNA levels of mTOR, Akt and PI3K and downregulation of GSK-3ß and FoxO3a were observed in rat hippocampus by molecular biology diagnosis. In addition, the decreased expression of Akt and mTOR in CUMS rats hippocampus was significantly reversed, and the expression levels of GSK-3ß and FoxO3a were upregulated. CONCLUSIONS: Based on the results of network pharmacology and animal experiment validation, Chaigui granules may reverse CUMS-induced depression-like behavior in rats through PI3K/Akt/mTOR signaling pathway.


Asunto(s)
Depresión , Proteínas Proto-Oncogénicas c-akt , Ratas , Animales , Depresión/tratamiento farmacológico , Depresión/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Farmacología en Red , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Antidepresivos/farmacología , Antidepresivos/uso terapéutico
8.
Nutrients ; 15(16)2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37630692

RESUMEN

Depression is often considered one of the prevalent neuropsychiatric symptoms of Alzheimer's disease (AD). ß-amyloid (Aß) metabolism disorders and impaired microglia phagocytosis are potential pathological mechanisms between depression and AD. Folate deficiency (FD) is a risk factor for depression and AD. In this study, we used a chronic unpredictable mild stress (CUMS) rat model and a model of Aß phagocytosis by BV2 cells to explore the potential mechanisms by which FD affects depression and AD. The results revealed that FD exacerbated depressive behavior and activated microglia in CUMS rats, leading to an increase in intracellular Aß and phagocytosis-related receptors for advanced glycation end products (RAGE). Then, in vitro results showed that the expression of the RAGE receptor and M2 phenotype marker (CD206) were upregulated by FD treatment in BV2 cells, leading to an increase in Aß phagocytosis. However, there was no significant difference in the expression of toll-like receptor 4 (TLR4) and clathrin heavy chain (CHC). Furthermore, when using the RAGE-specific inhibitor FPS-ZM1, there was no significant difference in Aß uptake between folate-normal (FN) and FD BV2 cell groups. In conclusion, these findings suggest FD may promote microglia phagocytosis Aß via regulating the expression of RAGE or microglia phenotype under Aß treatment.


Asunto(s)
Enfermedad de Alzheimer , Deficiencia de Ácido Fólico , Animales , Ratas , Microglía , Péptidos beta-Amiloides , Fagocitosis , Deficiencia de Ácido Fólico/complicaciones , Receptor para Productos Finales de Glicación Avanzada , Ácido Fólico/farmacología
9.
Zhongguo Zhong Yao Za Zhi ; 48(8): 2184-2192, 2023 Apr.
Artículo en Chino | MEDLINE | ID: mdl-37282906

RESUMEN

To investigate the antidepressant mechanism of Shenling Kaixin Granules(SLKX) in treating chronic unpredictable mild stress(CUMS) model rats. Ninety male SD rats were randomly divided into control group, model group, Shugan Jieyu Capsules(110 mg·kg~(-1)) group and SLKX low-(90 mg·kg~(-1)), medium-(180 mg·kg~(-1)), and high-dose(360 mg·kg~(-1)) groups. Depression rat model was replicated by CUMS method. After treatment, the behavioral changes of rats were evaluated by sugar preference, open field, elevated cross maze and forced swimming experiments. The contents of interleukin 1 beta(IL-1ß), tumor necrosis factor α(TNF-α), brain-derived neurotrophic factor(BDNF) and 5-hydroxytryptamine(5-HT) in serum were determined by enzyme linked immunosorbent assay(ELISA), and the activities of superoxide dismutase(SOD) and catalase(CAT) in hippocampal CA1 region were also detected. Pathological changes in hippocampal CA1 region were detected by hematoxylin-eosin(HE) staining, and Western blot was used to determine the expression of nerve growth factor(NGF), BDNF, phospho-tyrosine kinase receptor(p-TrkB)/TrkB, phospho-cAMP-response element binding protein(p-CREB)/CREB, nuclear factor E2 related factor 2(Nrf2), heme oxygenase 1(HO-1), B-cell lymphoma-2(Bcl-2)/Bcl-2 associated X protein(Bax) and caspase-3 in hippocampal CA1 region. RESULTS:: showed that compared with the control group, the model group had decreased sugar preference, reduced number of entries and time spent in the center of open field and shortened total distance of movement, reduced number of entries and proportion of time spent in open arm, and increased number and time of immobility in forced swimming experiment. Additionally, the serum contents of IL-1ß and TNF-α and the expression of caspase-3 were higher, while the contents of BDNF and 5-HT, the activities of SOD and CAT in hippocampal CA1 region, the expressions of NGF, BDNF, p-TrkB/TrkB, p-CREB/CREB, HO-1 and Bcl-2/Bax, and the Nrf2 nuclear translocation were lower in model group than in control group. Compared with the conditions in model group, the sugar preference, the number of entries and time spent in the center of open, total distance of movement, and the number of entries and proportion of time spent in open arm in treatment groups were increased while the number and time of immobility in forced swimming experiment were decreased; the serum contents of IL-1ß and TNF-α and the expression of caspase-3 were down regulated, while the contents of BDNF and 5-HT, the activities of SOD and CAT in hippocampal CA1 region, the expressions of NGF, BDNF, p-TrkB/TrkB, p-CREB/CREB, HO-1, Bcl-2/Bax, and Nrf2 nuclear translocation were enhanced. In conclusion, SLKX might regulate the Nrf2 nucleus translocation by activating BDNF/TrkB/CREB pathway, lower oxidative stress damage in hippocampus, inhibit caspase-3 activity, and reduce apoptosis of hippocampal nerve cells, thereby playing an antidepressant role.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Factor de Crecimiento Nervioso , Ratas , Masculino , Animales , Proteína X Asociada a bcl-2/metabolismo , Caspasa 3/metabolismo , Factor de Crecimiento Nervioso/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo , Serotonina/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Ratas Sprague-Dawley , Antidepresivos/farmacología , Hipocampo/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Azúcares/farmacología , Depresión/tratamiento farmacológico , Depresión/genética , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/metabolismo
10.
Brain Sci ; 13(3)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36979246

RESUMEN

Depression is a complex clinical disorder associated with poor outcomes. Electroacupuncture (EA) has been demonstrated to have an important role in both clinical and pre-clinical depression investigations. Evidence has suggested that the P2X7 receptor (P2X7R), NLRP3, and IL-1ß play an important role in depressive disorder. Our study is aimed at exploring the role of EA in alleviating depression-like behaviors in rats. We therefore investigated the effects of EA on the prefrontal cortex and liver of rats subjected to chronic unpredictable mild stress (CUMS) through behavior tests, transmission electron microscopy, Nissl staining, HE staining, immunohistochemistry and Western blotting. Five weeks after exposure to CUMS, Sprague-Dawley (SD) rats showed depression-like behavior. Three weeks after treatment with brilliant blue G (BBG) or EA, depressive symptoms were significantly improved. Liver cells and microglia showed regular morphology and orderly arrangement in the BBG and EA groups compared with the CUMS group. Here we show that EA downregulated P2X7R/NLRP3/IL-1ß expression and relieved depression-like behavior. In summary, our findings demonstrated the efficacy of EA in alleviating depression-like behaviors induced by CUMS in rats. This suggests that EA may serve as an adjunctive therapy in clinical practice, and that P2X7R may be a promising target for EA intervention on the liver-brain axis in treatment of depression.

11.
J Affect Disord ; 329: 30-41, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36842645

RESUMEN

BACKGROUND: Chronic unpredictable mild stress (CUMS) can induce depressive behaviours and alter the composition of the gut microbiome. Although modulating gut microbiota can improve depression-like behaviour in rats, the mechanism of action is unclear. Additionally, gut microbiota can affect brain function through the neuroendocrine pathway. This pathway may function by regulating the secretion of neurotransmitters such as tryptophan (TRP). Metabolites of TRP, such as 5-hydroxytryptamine (5-HT) and kynurenine (KYN), are related to the pathophysiological process of depression. Indoleamine-2, 3-dioxygenase-1 (IDO1) and Tryptophan hydroxylase 2 (TPH2) are the key rate-limiting enzymes in TRP metabolism and play an important role in KYN and 5-HT metabolism. METHODS: Rats were subjected to four weeks of CUMS and given rifaximin150 mg/kg by oral gavage daily. After modelling, we investigated the rat's behaviours, composition of the faecal microbiome, neurotransmitter metabolism and key metabolic enzymes of the TRP pathway in the hippocampus (HIP). RESULTS: Rifaximin administration improved depressive behaviour in rats, corrected intestinal microbiota disorders and HIP TRP metabolism and regulated the expression of IDO1 and TPH2 in the HIP. CONCLUSIONS: Rifaximin improves depression-like behaviour in CUMS rats by influencing the gut microbiota and tryptophan metabolism.


Asunto(s)
Microbioma Gastrointestinal , Triptófano , Ratas , Animales , Triptófano/metabolismo , Depresión , Rifaximina/uso terapéutico , Serotonina/metabolismo , Quinurenina/metabolismo , Hipocampo/metabolismo , Estrés Psicológico
12.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-981349

RESUMEN

To investigate the antidepressant mechanism of Shenling Kaixin Granules(SLKX) in treating chronic unpredictable mild stress(CUMS) model rats. Ninety male SD rats were randomly divided into control group, model group, Shugan Jieyu Capsules(110 mg·kg~(-1)) group and SLKX low-(90 mg·kg~(-1)), medium-(180 mg·kg~(-1)), and high-dose(360 mg·kg~(-1)) groups. Depression rat model was replicated by CUMS method. After treatment, the behavioral changes of rats were evaluated by sugar preference, open field, elevated cross maze and forced swimming experiments. The contents of interleukin 1 beta(IL-1β), tumor necrosis factor α(TNF-α), brain-derived neurotrophic factor(BDNF) and 5-hydroxytryptamine(5-HT) in serum were determined by enzyme linked immunosorbent assay(ELISA), and the activities of superoxide dismutase(SOD) and catalase(CAT) in hippocampal CA1 region were also detected. Pathological changes in hippocampal CA1 region were detected by hematoxylin-eosin(HE) staining, and Western blot was used to determine the expression of nerve growth factor(NGF), BDNF, phospho-tyrosine kinase receptor(p-TrkB)/TrkB, phospho-cAMP-response element binding protein(p-CREB)/CREB, nuclear factor E2 related factor 2(Nrf2), heme oxygenase 1(HO-1), B-cell lymphoma-2(Bcl-2)/Bcl-2 associated X protein(Bax) and caspase-3 in hippocampal CA1 region. RESULTS:: showed that compared with the control group, the model group had decreased sugar preference, reduced number of entries and time spent in the center of open field and shortened total distance of movement, reduced number of entries and proportion of time spent in open arm, and increased number and time of immobility in forced swimming experiment. Additionally, the serum contents of IL-1β and TNF-α and the expression of caspase-3 were higher, while the contents of BDNF and 5-HT, the activities of SOD and CAT in hippocampal CA1 region, the expressions of NGF, BDNF, p-TrkB/TrkB, p-CREB/CREB, HO-1 and Bcl-2/Bax, and the Nrf2 nuclear translocation were lower in model group than in control group. Compared with the conditions in model group, the sugar preference, the number of entries and time spent in the center of open, total distance of movement, and the number of entries and proportion of time spent in open arm in treatment groups were increased while the number and time of immobility in forced swimming experiment were decreased; the serum contents of IL-1β and TNF-α and the expression of caspase-3 were down regulated, while the contents of BDNF and 5-HT, the activities of SOD and CAT in hippocampal CA1 region, the expressions of NGF, BDNF, p-TrkB/TrkB, p-CREB/CREB, HO-1, Bcl-2/Bax, and Nrf2 nuclear translocation were enhanced. In conclusion, SLKX might regulate the Nrf2 nucleus translocation by activating BDNF/TrkB/CREB pathway, lower oxidative stress damage in hippocampus, inhibit caspase-3 activity, and reduce apoptosis of hippocampal nerve cells, thereby playing an antidepressant role.


Asunto(s)
Ratas , Masculino , Animales , Proteína X Asociada a bcl-2/metabolismo , Caspasa 3/metabolismo , Factor de Crecimiento Nervioso/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo , Serotonina/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Ratas Sprague-Dawley , Antidepresivos/farmacología , Hipocampo/metabolismo , Superóxido Dismutasa/metabolismo , Azúcares/farmacología , Depresión/genética , Estrés Psicológico/metabolismo
13.
Phytother Res ; 37(5): 1823-1838, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36581492

RESUMEN

Total saponins of Panax ginseng (TSPG) have antidepressant effects. However, the underlying antidepressant mechanism of TSPG remains not clear. This study aimed to predict the mechanism of TSPG by bioinformatics analysis and to verify it experimentally. Bioinformatics analysis showed that the antidepressant effects of TSPG may be related to inflammation, and CX3CL1/CX3CR1 may play a key mediating role. Wistar rats were exposed to chronic unpredictable mild stress (CUMS) for 6 weeks, and TSPG (50 mg/kg/d, 100 mg/kg/d) was administered throughout the modeling period. It was found that TSPG improves depressive behavior and reduces neuropathic damage in the hippocampus in rats. Meanwhile, TSPG decreased mRNA and protein expression of pro-inflammatory cytokines and CX3CL1/CX3CR1 and inhibited P38 and JNK protein phosphorylation in the hippocampus. Rat astrocytes were employed to explore further the potential mechanism of TSPG in regulating CX3CL1/CX3CR1. The results showed that CX3CL1 small interfering RNA (siRNA-CX3CL1) and CX3CR1 inhibitor (JMS-17-2) had similar effects to TSPG, that is, reduced inflammatory response, reactive oxygen species (ROS), and phosphorylation of P38 and JNK proteins, while overexpression of CX3CL1 (pcDNA-CX3CL1) counteracted the above effects of TSPG. It is suggested that the antidepressant effect of TSPG may be achieved through inhibition of CX3CL1/CX3CR1.


Asunto(s)
Panax , Saponinas , Ratas , Animales , Saponinas/farmacología , Enfermedades Neuroinflamatorias , Panax/metabolismo , Ratas Wistar , Citocinas/metabolismo , Quimiocina CX3CL1 , Receptor 1 de Quimiocinas CX3C/metabolismo
14.
Brain Sci ; 12(12)2022 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-36552159

RESUMEN

This study aimed to investigate the potential therapeutic effects of nicotinamide phosphoribosyltransferase (NAMPT)-mediated adenine dinucleotide (NAD) biosynthesis in depression models in vivo. Namptflox/flox mice were used to evaluate the role of NAMPT in depression. NAMPT and NAD levels in the prefrontal cortex (PFC) were measured, and depression-associated behavior, cognitive function, and social interaction were evaluated. The expression levels of BDNF, pCREB, CREB, monoamine neurotransmitters, and corticosterone (CORT) were also detected in the PFC. The contents of NAMPT and NAD decreased in the PFC in Namptflox/flox mice. Namptflox/flox mice showed depression-like behaviors, cognitive function deterioration, decreased social ability, and decreased dominance. Meanwhile, there were decreased expression levels of the pCREB/CREB ratio, but not BDNF, in the PFC. Levels of DA, 5-HT, and NE were decreased, and CORT was activated in the PFC of Namptflox/flox mice. Additionally, the role of NAMPT-NAD was examined in rats treated with nicotinamide riboside (NR) after being exposed to chronic unexpected mild stress (CUMS). NR reversed the decreased NAMPT expression in the PFC and HIP, and the NAD content in the PFC, but not HIP in rats with CUMS-induced depression. NR also improved depressive- and anxiolytic-like behaviors, locomotor activity, and cognitive function. BDNF expression and the pCREB/CREB ratio were significantly increased in both the PFC and HIP after NR treatment. The activation of CORT and decreased content of DA were reversed after NR treatment in the PFC. There was no difference in the 5-HT content among groups in both the PFC and HIP. Taken together, NAD synthesis induced by NAMPT could be associated with depression-like behaviors in mice, and the elevated NAD level by NR improved depression in rats.

15.
Metab Brain Dis ; 37(8): 2883-2901, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36181653

RESUMEN

Cherry leaves (Prunus pseudocerasus Lindl. [Rosaceae]), a traditional Chinese herbal medicine, can regulate the factors closely related to depression including inflammatory cytokines, oxidative stress and blood glucose level. However, the antidepressant effects of cherry leaves and underlying neuromodulatory mechanisms remain relatively have not been elucidated explicitly. The present study investigated the antidepressant effects of cherry leaf decoction (CLD). The underlying neuromodulatory mechanism was explored by examining the glutamate (Glu)/γ-aminobutyric acid (GABA)-glutamine (Gln) metabolic loop. The chronic unpredictable mild stress (CUMS) rodent model was used in this study. The main flavonoids components of CLD were identified using high-performance liquid chromatography (HPLC). The antidepressant effects of CLD were assessed throughout behavioural tests including the bodyweight, sucrose preference test (SPT), forced swimming test (FPT) and tail suspension test (TST). Moreover, The baseline levels of serum adrenocorticotropic hormone (ACTH) and corticosterone (CORT) were quantified. The expression of proteins integrally involved in the Glu/GABA-Gln metabolic loop were observed and quantified by Western blotting, reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry. This study found that CLD ameliorated depressive-like behaviours induced by CUMS. The increase of serum ACTH and CORT baseline levels induced by CUMS was also reversed after CLD intervention. Furthermore, CUMS reduced the expression of GAD65, GAD67, GLT-1, GS and GABAA and increased NMDAR1 levels in the rat hippocampus, which was normalized by CLD treatment. The findings demonstrated that CLD could ameliorate the depression-like behaviours induced by CUMS, potentially through the inhibition of hypothalamic-pituitary-adrenal (HPA) axis hyperactivity and the regulation of Glu/GABA-Gln metabolic loop.


Asunto(s)
Depresión , Estrés Psicológico , Ratas , Animales , Depresión/metabolismo , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/metabolismo , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Corticosterona , Hipocampo/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Hojas de la Planta , Hormona Adrenocorticotrópica , Modelos Animales de Enfermedad
16.
Zhongguo Zhong Yao Za Zhi ; 47(17): 4691-4697, 2022 Sep.
Artículo en Chino | MEDLINE | ID: mdl-36164876

RESUMEN

To investigate the effect of Rehmanniae Radix on depression-like behavior and monoamine neurotransmitters of chronic unpredictable mild stress(CUMS) model rats. CUMS combined with isolated feeding was used to induce the depression model of rats. The depression-like behavior of rats was evaluated by sucrose preference test, open field test, and forced swim test. Hematoxylin-Eosin(HE) staining was used to investigate the pathological changes of neurons in the CA1 and CA3 area of hippocampus. Ultra performance liquid chromatography-tandem mass spectrometry(UPLC-MS) was used to detect the contents of 5-hydroxytryptamine(5-HT), 5-hydroxyindoleacetic acid(5-HIAA), dopamine(DA), 3,4-dihydroxyphenylacetic acid(DOPAC), homovanillic acid(HVA), norepinephrine(NE), and 3-methoxy-4-hydroxyphenyl glycol(MHPG) in rats. Western blot was used to detect the protein expressions of tryptophan hydroxylase 2(TPH2), serotonin transporter(SERT), and monoamine oxidase A(MAO-A) in the hippocampus of rats. Compared with the normal group, depressive-like behavior of rats was obvious in the model group. The arrangements of neurons in the CA1 and CA3 area of hippocampus were loose and disorderly. The levels of 5-HT, 5-HIAA, and 5-HT/5-HIAA in the hippocampal area were decreased(P<0.01). The protein expression of TPH2 was decreased(P<0.01), but those of SERT and MAO-A were increased(P<0.01). In the Rehmanniae Radix groups with 1.8 g·kg~(-1) and 7.2 g·kg~(-1), the depression-like behavior of CUMS rats and pathological changes of neurons in CA1, CA3 area of hippocampus were improved. The protein expression of TPH2(P<0.05, P<0.01) was increased, and those of SERT and MAO-A were down-regulated(P<0.05, P<0.01). The levels of 5-HT, 5-HIAA, and 5-HT/5-HIAA in hippocampus were increased(P<0.05, P<0.01). The changes in DA, DOPAC, HVA, DA/(DOPAC +HVA), NE, DHPG, and NE/DHPG were not statistically significant. The results suggested that Rehmanniae Radix improved depression-like behavior of CUMS rats, and the mechanism might be related to the regulation of synthesis, transportation, and metabolism of 5-HT neurotransmitter in the hippocampus.


Asunto(s)
Antidepresivos , Depresión , Hipocampo , Ácido Hidroxiindolacético , Rehmannia , Serotonina , Ácido 3,4-Dihidroxifenilacético/metabolismo , Ácido 3,4-Dihidroxifenilacético/farmacología , Animales , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Cromatografía Liquida , Depresión/tratamiento farmacológico , Modelos Animales de Enfermedad , Dopamina , Eosina Amarillenta-(YS)/metabolismo , Eosina Amarillenta-(YS)/farmacología , Hematoxilina/metabolismo , Hematoxilina/farmacología , Hipocampo/metabolismo , Ácido Homovanílico/metabolismo , Ácido Homovanílico/farmacología , Ácido Hidroxiindolacético/metabolismo , Metoxihidroxifenilglicol/análogos & derivados , Metoxihidroxifenilglicol/metabolismo , Metoxihidroxifenilglicol/farmacología , Monoaminooxidasa/metabolismo , Neurotransmisores/metabolismo , Norepinefrina/metabolismo , Norepinefrina/farmacología , Extractos Vegetales , Ratas , Rehmannia/química , Serotonina/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/farmacología , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/metabolismo , Espectrometría de Masas en Tándem , Triptófano Hidroxilasa/metabolismo
17.
Neurochem Res ; 47(11): 3464-3475, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35939172

RESUMEN

Epigallocatechin 3-gallate (EGCG) is a natural polyphenolic antioxidant in green tea leaves with well-known health-promoting properties. However, the influence of EGCG on a chronic animal model of depression remains to be fully investigated, and the details of the molecular and cellular changes are still unclear. Therefore, the present study aimed to investigate the antidepressant effect of EGCG in mice subjected to chronic unpredictable mild stress (CUMS). After eight consecutive weeks of CUMS, the mice were treated with EGCG (200 mg/kg b.w.) by oral gavage for two weeks. A forced swimming test (FST) was used to assess depressive symptoms. EGCG administration significantly alleviated CUMS-induced depression-like behavior in mice. EGCG also effectively decreased serum interleukin-1ß (IL-1ß) and increased the mRNA expression levels of brain-derived neurotrophic factor (BDNF) in the hippocampal CA3 region of CUMS mice. Furthermore, electron microscopic examination of CA3 neurons in CUMS mice showed morphological features of apoptosis, loss or disruption of the myelin sheath, and degenerating synapses. These neuronal injuries were diminished with the administration of EGCG. The treatment effect of EGCG in CUMS-induced behavioral alterations was comparable with that of clomipramine hydrochloride (Anafranil), a tricyclic antidepressant drug. In conclusion, our study demonstrates that the antidepressive action of EGCG involves downregulation of serum IL-1ß, upregulation of BDNF mRNA in the hippocampus, and reduction of CA3 neuronal lesions.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Depresión , Interleucina-1beta , Animales , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Antidepresivos Tricíclicos/farmacología , Antioxidantes/farmacología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Catequina/análogos & derivados , Clomipramina/farmacología , Depresión/tratamiento farmacológico , Depresión/etiología , Depresión/metabolismo , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Interleucina-1beta/metabolismo , Ratones , ARN Mensajero/metabolismo , Estrés Psicológico/complicaciones , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/metabolismo , Té/metabolismo
18.
Brain Res Bull ; 187: 75-84, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35779818

RESUMEN

Depression has several negative effects on emotion as well as learning and memory abilities. Previous studies showed that depression could exacerbate inflammation, which in turn further aggravated depression. Deferoxamine (DFO) is a chelating agent binding iron and aluminium, and is clinically applied to treat acute ion poisoning and hemochromatosis. Researches showed that it could reduce inflammation via increasing the expression of hypoxia-inducible factor-1alpha (HIF-1α). Here, we established a chronic unpredictable mild stress (CUMS) model to investigate whether DFO exerted a neuroprotective function in depression. The results demonstrated that CUMS (4 weeks) effectively induced depression-like behaviors in mice based on sucrose preference test (SPT), forced swim test (FST), tail suspension test (TST), open field test (OFT), and elevated plus-maze test (EPT). It also brought cognitive deficits based on Morris water maze (MWM) test and the impairment of synaptic plasticity based on in vivo electrophysiological recordings. Additionally, CUMS exposure significantly decreased the expression of hippocampal synapse related proteins and the spine density of neurons in the DG region, accompanied by increasing the expression of hippocampal inflammatory cytokines, and promoted the activation of microglia in the hippocampus. The expression of HIF-1α was down-regulated as expected. However, DFO distinctly reversed the CUMS-induced impairments. The mechanism is associated with the DFO inhibition of inflammation by upregulating HIF-1 expression, thereby alleviating a series of pathology changes. Together, these findings suggest that DFO likely plays a protective role in cognitive impairments and synaptic plasticity deficits resulting from depression.


Asunto(s)
Disfunción Cognitiva , Depresión , Animales , Conducta Animal , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Depresión/tratamiento farmacológico , Depresión/etiología , Depresión/metabolismo , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Inflamación/metabolismo , Ratones , Estrés Psicológico/metabolismo
19.
Cancer Lett ; 543: 215781, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35688263

RESUMEN

Triple-negative breast cancer (TNBC) is a rapidly recurring and highly metastatic malignancy with high heterogeneity and chemoradiotherapy resistance. Chronic unpredictable mild stress (CUMS) can induce the occurrence of tumors and enhance lymphatic infiltration and distant metastasis through direct interaction with the sympathetic nervous system; however, its relevance in TNBC is yet to be clarified. In this study, DARS-AS1, a newly reported CUMS-responsive lncRNA, was found to be enriched in TNBC clinical tumors and cells and positively correlated with late clinical stage in patients with TNBC. DARS-AS1 overexpression significantly enhanced the migration and invasion of TNBC tumors by inhibiting miR-129-2-3p and upregulated CDK1 to activate the NF-κB/STAT3 signaling pathway both in vitro and in vivo. Treatment with DARS-AS1 siRNA-loaded exosomes (EXOs) substantially slowed CUMS-induced TNBC cell growth and liver metastasis. Therefore, DARS-AS1 represents a potential therapeutic target for metastatic TNBC, and EXOs may serve as siRNA delivery carriers in clinical therapy.


Asunto(s)
Exosomas , MicroARNs , ARN Largo no Codificante , Neoplasias de la Mama Triple Negativas , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular/genética , Exosomas/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/genética , Recurrencia Local de Neoplasia/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Interferente Pequeño , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología
20.
J Affect Disord ; 310: 459-471, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35568321

RESUMEN

BACKGROUND: Puerarin has been shown to have a good antidepressant effect, and our previous study found that it can remedy stress-induced dysbiosis. However, its gut microbiota-related mechanism has not been fully elucidated. Therefore, this study aimed to investigate the potential link between puerarin on gut microbiota and inflammatory responses in depressed rats. METHODS: A chronic unpredictable mild stress (CUMS) rat model of depression was established, open field test (OFT), sucrose preference test (SPT) and forced swimming test (FST) were used to evaluate its antidepressant effect. 16S rRNA sequencing was performed to identify the rat fecal microflora. At the same time, inflammatory cytokines, colonic histopathological changes, and brain-derived neurotrophic factor (BDNF), nuclear factor kappa-B (NF-κB), inhibitor a of NF-κB (IκB-α) protein expression were detected. RESULTS: Puerarin attenuated CUMS-induced depressive-like behavior and gut microbiota dysregulation in rats, significantly reducing the abundance of harmful bacteria such as Desulfovibrio, Verrucomicrobiae, and Verrucomicrobia. In addition, puerarin can also reduce the pro-inflammatory factors and increase the level of anti-inflammatory factors in depressed rats, improve the damaged colon tissue, enhance the expression of BDNF and IκB-α in the hippocampus and inhibit the expression of NF-κB. LIMITATIONS: Direct evidence that puerarin improves depressive-like behaviors via gut microbiota is lacking. CONCLUSION: The underlying mechanism of puerarin's antidepressant-like effect is closely related to the bidirectional communication of the microbiota-gut-brain axis by regulating the inflammatory response.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Depresión , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Eje Cerebro-Intestino , Depresión/tratamiento farmacológico , Depresión/metabolismo , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Humanos , Isoflavonas , Inhibidor NF-kappaB alfa/metabolismo , FN-kappa B/metabolismo , ARN Ribosómico 16S , Ratas , Estrés Psicológico/complicaciones , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA