Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 16(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38730612

RESUMEN

High-risk human papillomaviruses (HPVs) are the main cause of cervical, oropharyngeal, and anogenital cancers, which are all treated with definitive chemoradiation therapy when locally advanced. HPV proteins are known to exploit the host DNA damage response to enable viral replication and the epithelial differentiation protocol. This has far-reaching consequences for the host genome, as the DNA damage response is critical for the maintenance of genomic stability. HPV+ cells therefore have increased DNA damage, leading to widespread genomic instability, a hallmark of cancer, which can contribute to tumorigenesis. Following transformation, high-risk HPV oncoproteins induce chromosomal instability, or chromosome missegregation during mitosis, which is associated with a further increase in DNA damage, particularly due to micronuclei and double-strand break formation. Thus, HPV induces significant DNA damage and activation of the DNA damage response in multiple contexts, which likely affects radiation sensitivity and efficacy. Here, we review how HPV activates the DNA damage response, how it induces chromosome missegregation and micronuclei formation, and discuss how these factors may affect radiation response. Understanding how HPV affects the DNA damage response in the context of radiation therapy may help determine potential mechanisms to improve therapeutic response.

2.
Adv Sci (Weinh) ; 11(26): e2308690, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38682484

RESUMEN

Spindle assembly checkpoint (SAC) is a crucial safeguard mechanism of mitosis fidelity that ensures equal division of duplicated chromosomes to the two progeny cells. Impaired SAC can lead to chromosomal instability (CIN), a well-recognized hallmark of cancer that facilitates tumor progression; paradoxically, high CIN levels are associated with better therapeutic response and prognosis. However, the mechanism by which CIN determines tumor cell survival and therapeutic response remains poorly understood. Here, using a cross-omics approach, YY2 is identified as a mitotic regulator that promotes SAC activity by activating the transcription of budding uninhibited by benzimidazole 3 (BUB3), a component of SAC. While both conditions induce CIN, a defect in YY2/SAC activity enhances mitosis and tumor growth. Meanwhile, hyperactivation of SAC mediated by YY2/BUB3 triggers a delay in mitosis and suppresses growth. Furthermore, it is revealed that YY2/BUB3-mediated excessive CIN causes higher cell death rates and drug sensitivity, whereas residual tumor cells that survived DNA damage-based therapy have moderate CIN and increased drug resistance. These results provide insights into the role of SAC activity and CIN levels in influencing tumor cell survival and drug response, as well as suggest a novel anti-tumor therapeutic strategy that combines SAC activity modulators and DNA-damage agents.


Asunto(s)
Inestabilidad Cromosómica , Neoplasias Colorrectales , Progresión de la Enfermedad , Inestabilidad Cromosómica/genética , Humanos , Ratones , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Animales , Línea Celular Tumoral , Puntos de Control de la Fase M del Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Modelos Animales de Enfermedad
3.
Food Chem Toxicol ; 185: 114486, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38301995

RESUMEN

Ochratoxin A (OTA) is a renal carcinogen in rats, and repeated administration induces karyomegaly in proximal tubular epithelial cells (PTECs) of the outer stripe of the outer medulla (OSOM) before inducing proliferative lesions. To investigate whether OTA induces micronuclei (MN) in PTECs, we performed an in vitro MN assay using rat renal NRK-52E PTECs after treatment for ≤21 days, and an in vivo OSOM MN assay in rats treated with OTA, other renal carcinogens, or non-carcinogenic renal toxicants for 4 or 13 weeks. The in vitro assay revealed an increased frequency of micronucleated cells from the acceptable dose level for cell viability, even after 21 days of treatment. The in vivo assay also revealed a dose- and treatment period-dependent increase in PTECs with γ-H2AX+ MN. OTA-specific gene expression profiling by OSOM RNA sequencing after week 13 revealed the altered expression of genes related to microtubule-kinetochore binding, the kinesin superfamily, centriole assembly, DNA damage repair, and cell cycle regulation. MN formation was also observed with other renal carcinogens that induce karyomegaly similarly to OTA. These results imply that γ-H2AX+ MN formation by OTA treatment is related to the induction of chromosomal instability accompanying karyomegaly formation before proliferative lesions form, providing a new insight into the carcinogenic mechanism that may be relevant to humans.


Asunto(s)
Ocratoxinas , Humanos , Ratas , Animales , Ocratoxinas/toxicidad , Carcinógenos , Células Epiteliales , Inestabilidad Cromosómica
4.
Int J Mol Sci ; 25(2)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38256170

RESUMEN

Maintaining a balanced redox state within cells is crucial for the sustenance of life. The process involves continuous cytosolic disulfide reduction reactions to restore oxidized proteins to their reduced thiol forms. There are two main cellular antioxidant pathways-the thioredoxin (Trx) and glutathione (GSH)/glutaredoxin (Grx) systems. In the GSH/Grx system, glutathione reductase (GR; GSR) catalyses the reduction of GSH disulfide (GSSG) to its sulfhydryl form (GSH), which can then further reduce oxidized Grxs. GR is an essential enzyme that helps in maintaining the supply of reduced glutathione-GSH, which is a significant reducing thiol found in most cells and known for its antioxidant properties. Therefore, it can have a significant impact on cancer development. To investigate this further, we performed an immunohistochemical analysis of GR protein expression in colon adenocarcinoma samples collected from patients with primary colon adenocarcinoma (stage I and II) and patients with metastasis to regional lymph nodes (stage III). The results of our study revealed a significant relationship between the immunohistochemical expression of GR and tumour histological grade, depth of invasion, regional lymph node involvement, staging, and PCNA immunohistochemical expression. It was found that 95% of patients with stage I had low levels of GR expression, whereas 89% of patients with stage III had high levels of immunohistochemical expression. A high level of expression was also detected in the patients with stage II of the disease, where almost 63% were characterized by a high expression of GR. The Western blot method revealed that the highest level of expression was found in the LS 174T cell line, which corresponds to stage II. The results of our study indicate that the immunohistochemical expression of GR may act as an independent prognostic factor associated with colon adenocarcinoma patients' prognosis.


Asunto(s)
Adenocarcinoma , Neoplasias del Colon , Humanos , Glutatión Reductasa/genética , Pronóstico , Antioxidantes , Glutatión , Disulfuros , Compuestos de Sulfhidrilo
5.
Front Genet ; 14: 1264772, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37719707
6.
J Cancer Res Clin Oncol ; 149(17): 16157-16177, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37650995

RESUMEN

Multiple molecular mechanisms contribute to the development of colorectal cancer (CRC), with chromosomal instability (CIN) playing a significant role. CRC is influenced by mutations in several important genes, including APC, TP53, KRAS, PIK3CA, BRAF, and SMYD4. The three molecular subtypes of this disease are CIN, MSI-H, and CIMP (CpG-island phenotype). p53 dysfunction and aberrant Wnt signalling are common characteristics of CRC carcinogenesis. Despite advances in conventional therapy, metastatic CRC remains difficult to treat due to toxicity and resistance. Theranostics for cancer could significantly benefit from nanotechnology, as it would enable more targeted, individualised care with fewer side effects. Utilising functionalized nanoparticles has enabled MRI-guided gene therapy, magnetic hyperthermia, chemotherapy, immunotherapy, and photothermal/photodynamic therapy, thereby radically modifying the way cancer is treated. Active targeting using ligands or peptides on nanoparticles improves the delivery of drugs to cancer cells. Nanostructures such as drug peptide conjugates, chitosan nanoparticles, gold nanoparticles, carbon nanotubes, mesoporous silica-based nanoparticles, silver nanoparticles, hybrid lipid-polymer nanoparticles, iron oxide nanoparticles, and quantum dots may enable targeted drug delivery and enhanced therapeutic efficacy against CRC. Nanomedicines are presently being evaluated in clinical trials for the treatment of colorectal cancer, with the promise of more effective and individualised therapies. This article examines current nanomedicine patents for CRC, including the work of Delta-Fly, Merrimack, and Pfenning, Meaning & Partner, among others. In terms of future nanomedicine research and development, ligand production, particle size, and clearance are crucial factors. Lastly, the numerous nanostructures utilized in nanomedicine for targeted drug administration and diagnostics indicate optimistic prospects for enhancing CRC treatment. The successes of nanomedicine research and development for existing colon cancer treatments are also highlighted in this review.


Asunto(s)
Neoplasias Colorrectales , Nanopartículas del Metal , Nanotubos de Carbono , Humanos , Oro , Medicina de Precisión , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/terapia , Neoplasias Colorrectales/metabolismo , Plata , Mutación , Carcinogénesis , Inestabilidad Cromosómica
7.
Front Oncol ; 13: 1159899, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37554161

RESUMEN

Because of its chemical versatility and abundance in nature, aluminium is employed in a myriad of frequently used products - including cosmetics and food additives - and applications - drinking water purification procedures being an example. Despite what its widespread use might suggest, aluminium's harmlessness is a matter of debate in the scientific community. In this article we trace the lines of a growing questioning about the potential mutagenic effects of this metal, due to the data produced over the recent years, and with an eye to the discussions currently underway in this regard between the scientific community, industry, and regulatory bodies.

8.
Cancers (Basel) ; 15(10)2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37345120

RESUMEN

Chromosomal instability (CIN) is very frequent in gastroesophageal adenocarcinoma (GEA) and it is characterized by TP53 deletions/mutations resulting in p53 nuclear accumulation, as revealed by immunohistochemistry (IHC), which considers the cases with "high" staining levels to be positive. Aiming to improve aberrant TP53 detection, droplet digital PCR (ddPCR) was used to evaluate TP53 deletion in formalin-fixed, paraffin-embedded DNA (FFPE-DNA) and cell-free DNA (cfDNA). To further investigate the mutational TP53 profile, next-generation sequencing (NGS) was performed in a subset of FFPE samples. After combining "low" and "high" IHC staining level groups, the proportion of deletion events was significantly higher compared to the "intermediate" group (72.9% vs. 47.5%, p-value = 0.002). The ddPCR TP53 deletion assay was feasible for cfDNA but only had good agreement (72.7%, Cohen's kappa = 0.48) with the assay performed with FFPE-DNA of the "low-level" group. NGS analysis confirmed that, in the "low-level" group, a high percentage (66.7%) of cases were aberrant, with disruptive mutations that probably led to p53 loss. Data suggested that p53 IHC alone underestimates the CIN phenotype in GEA and that molecular analysis in both solid and liquid biopsies could be integrated with it; in particular, in cases of completely negative staining.

9.
J Cancer Res Clin Oncol ; 149(11): 8359-8367, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37079053

RESUMEN

PURPOSE: To investigate chromosomal instability (CIN) as a biomarker for glioma risk stratifications, with cost-effective, low-coverage whole-genome sequencing assay (WGS). METHODS: Thirty-five formalin-fixed paraffin-embedded glioma samples were collected from Huashan Hospital. DNA was sent for WGS by Illumina X10 at low (median) genome coverage of 1.86x (range: 1.03-3.17×), followed by copy number analyses, using a customized bioinformatics workflow-Ultrasensitive Copy number Aberration Detector. RESULTS: Among the 35 glioma patients, 12 were grade IV, 10 grade III, 11 grade II, and 2 Grade I cases, with high chromosomal instability (CIN +) in 24 (68.6%) of the glioma patients. The other 11 (31.4%) had lower chromosomal instability (CIN-). CIN significantly correlates with overall survival (P = 0.00029). Patients with CIN + /7p11.2 + (12 grade IV and 3 grade III) had the worst survival ratio (hazard ratio:16.2, 95% CI:6.3-41.6) with a median overall survival of 24 months. Ten (66.7%) patients died during the first two follow-up years. In the CIN + patients without 7p11.2 + (6 grade III, 3 grade II), 3 (33.3%) patients died during follow-up, and the estimated overall survival was around 65 months. No deaths were reported in the 11 CIN- patients (2 grade I, 8 grade II, 1 grade III) during the 80-month follow-up period. In this study, chromosomal instability served as a prognosis factor for gliomas independent of tumor grades. CONCLUSION: It is feasible to use cost-effective, low-coverage WGS for risk stratification of glioma. Elevated chromosomal instability is associated with poor prognosis.


Asunto(s)
Glioma , Humanos , Análisis Costo-Beneficio , Glioma/genética , Glioma/patología , Inestabilidad Cromosómica , Medición de Riesgo
10.
Cell Rep Med ; 4(2): 100937, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36787737

RESUMEN

Metastatic prostate cancer (PCa) inevitably acquires resistance to standard therapy preceding lethality. Here, we unveil a chromosomal instability (CIN) tolerance mechanism as a therapeutic vulnerability of therapy-refractory lethal PCa. Through genomic and transcriptomic analysis of patient datasets, we find that castration and chemotherapy-resistant tumors display the highest CIN and mitotic kinase levels. Functional genomics screening coupled with quantitative phosphoproteomics identify MASTL kinase as a survival vulnerability specific of chemotherapy-resistant PCa cells. Mechanistically, MASTL upregulation is driven by transcriptional rewiring mechanisms involving the non-canonical transcription factors androgen receptor splice variant 7 and E2F7 in a circuitry that restrains deleterious CIN and prevents cell death selectively in metastatic therapy-resistant PCa cells. Notably, MASTL pharmacological inhibition re-sensitizes tumors to standard therapy and improves survival of pre-clinical models. These results uncover a targetable mechanism promoting high CIN adaptation and survival of lethal PCa.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Inestabilidad Cromosómica , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/uso terapéutico , Proteínas Serina-Treonina Quinasas/genética
11.
J Thorac Dis ; 15(1): 112-122, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36794146

RESUMEN

Background: The usefulness of metagenomic next-generation sequencing (mNGS) in identifying the prognosis of lung cancer with chromosomal instability (CIN) remains unclear. We aimed to analyze clinical characteristics and prognosis of patients in patients harboring CIN. Methods: This retrospective cohort study included 668 patients diagnosed with suspected pulmonary infection or lung cancer whose samples underwent mNGS detection from January 2021 to January 2022. Difference between clinical characteristics were calculated by the Student's t-test and the chi-square test. The subjects were followed-up from registered to September 2022. Survival curves were analyzed by the Kaplan-Meier method. Results: Of 619 bronchoalveolar lavage fluid (BALF) samples collected by bronchoscopy, 30 CIN-positive samples were confirmed as malignant on histopathology, with a sensitivity of 61.22%, a specificity of 99.65%, and an 83.17% accuracy [cut-off values were established by the receiver operating characteristic (ROC) area under the curve (AUC) =0.804]. In 42 patients with lung cancer, mNGS detected 24 patients as CIN-positive and 18 as CIN-negative. There were no differences between two groups including ages, pathologic types, stage and metastases. In 25 cases, we detected 523 chromosomal copy number variants (CNVs) with forms including duplication (dup), deletion (del), mosaic (mos), and whole chromosome amplification or loss. A total of 243 duplication variants and 192 deletion variants occurred in all chromosomes. Duplications occurred in most chromosomes except for Chr9 and Chr13, in which CNV tended to delete. The median overall survival (OS) in patients with Chr5p15 duplication was 32.4 months [95% confidence interval (CI), 10.35-54.45 months]. The median OS differed significantly between the 5p15dup+ group and the combined group (32.4 vs. 8.63 months, P=0.049). In 29 patients with unresected lung cancer, the median OS of 18 cases in the CIN-positive group was 32.4 months (95% CI, 14.2-50.6 months) and the median OS of 11 cases in the CIN-negative group was 35.63 months (95% CI, 21.64-49.62 months; Wilcoxon, P=0.227). Conclusions: Various forms of CIN detected by mNGS may predict prognosis of patients with lung cancer differentially. CIN with duplication or deletion deserves further study to guide clinical treatment.

12.
Front Cell Dev Biol ; 11: 1353851, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38205267
13.
J Mol Biol ; 434(3): 167256, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34547328

RESUMEN

Chromosomal instability (CIN) is associated with the initiation and progression of gastrointestinal (GI) tract cancers. Cancers of the GI tract are typically characterized by altered chromosome numbers. While the dynamics of CIN have been extensively characterized in 2D monolayer cell cultures derived from GI tumors, the tumor microenvironment and 3D tumor architecture also contribute to the progression of CIN, which is not captured in 2D cell culture systems. To overcome these limitations, self-organizing cellular structures that retain organ-specific 3D architecture, namely organoids, have been derived from various tissues of the GI tract. Organoids derived from normal tissue and patient tumors serve as a useful paradigm to study the crosstalk between tumor cells in the context of a tissue microenvironment and its impact on chromosomal stability. Such a paradigm, therefore, has a considerable advantage over 2D cell culture systems in drug screening and personalized medicine. Here, we review the importance of patient-derived tumor organoids (PDTOs) as a model to study CIN in cancers of the GI tract.


Asunto(s)
Inestabilidad Cromosómica , Neoplasias Gastrointestinales , Organoides , Técnicas de Cultivo de Célula , Neoplasias Gastrointestinales/genética , Humanos , Microambiente Tumoral
14.
Cancers (Basel) ; 15(1)2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36612027

RESUMEN

Aneuploidy is the gain or loss of entire chromosomes, chromosome arms or fragments. Over 100 years ago, aneuploidy was described to be a feature of cancer and is now known to be present in 68-90% of malignancies. Aneuploidy promotes cancer growth, reduces therapy response and frequently worsens prognosis. Chromosomal instability (CIN) is recognized as the main cause of aneuploidy. CIN itself is a dynamic but stochastic process consisting of different DNA content-altering events. These can include impaired replication fidelity and insufficient clearance of DNA damage as well as chromosomal mis-segregation, micronuclei formation, chromothripsis or cytokinesis failure. All these events can disembogue in segmental, structural and numerical chromosome alterations. While low levels of CIN can foster malignant disease, high levels frequently trigger cell death, which supports the "aneuploidy paradox" that refers to the intrinsically negative impact of a highly aberrant karyotype on cellular fitness. Here, we review how the cellular response to CIN and aneuploidy can drive the clearance of karyotypically unstable cells through the induction of apoptosis. Furthermore, we discuss the different modes of p53 activation triggered in response to mitotic perturbations that can potentially trigger CIN and/or aneuploidy.

15.
Int J Mol Sci ; 22(22)2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34830134

RESUMEN

Many cancers develop as a consequence of genomic instability, which induces genomic rearrangements and nucleotide mutations. Failure to correct DNA damage in DNA repair defective cells, such as in BRCA1 and BRCA2 mutated backgrounds, is directly associated with increased cancer risk. Genomic rearrangement is generally a consequence of erroneous repair of DNA double-strand breaks (DSBs), though paradoxically, many cancers develop in the absence of DNA repair defects. DNA repair systems are essential for cell survival, and in cancers deficient in one repair pathway, other pathways can become upregulated. In this review, we examine the current literature on genomic alterations in cancer cells and the association between these alterations and DNA repair pathway inactivation and upregulation.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades/genética , Inestabilidad Genómica , Neoplasias/genética , Animales , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Humanos , Neoplasias/metabolismo , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Factores de Riesgo , Proteína 1 de Unión al Supresor Tumoral P53/genética , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo
16.
Dev Cell ; 56(13): 1976-1988.e4, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-34146466

RESUMEN

Ploidy variation is a cancer hallmark and is frequently associated with poor prognosis in high-grade cancers. Using a Drosophila solid-tumor model where oncogenic Notch drives tumorigenesis in a transition-zone microenvironment in the salivary gland imaginal ring, we find that the tumor-initiating cells normally undergo endoreplication to become polyploid. Upregulation of Notch signaling, however, induces these polyploid transition-zone cells to re-enter mitosis and undergo tumorigenesis. Growth and progression of the transition-zone tumor are fueled by a combination of polyploid mitosis, endoreplication, and depolyploidization. Both polyploid mitosis and depolyploidization are error prone, resulting in chromosomal copy-number variation and polyaneuploidy. Comparative RNA-seq and epistasis analysis reveal that the DNA-damage response genes, also active during meiosis, are upregulated in these tumors and are required for the ploidy-reduction division. Together, these findings suggest that polyploidy and associated cell-cycle variants are critical for increased tumor-cell heterogeneity and genome instability during cancer progression.


Asunto(s)
Carcinogénesis/genética , Inestabilidad Genómica/genética , Neoplasias/genética , Poliploidía , Animales , Ciclo Celular/genética , Drosophila melanogaster/genética , Epistasis Genética/genética , Dosificación de Gen/genética , Heterogeneidad Genética , Humanos , Meiosis/genética , Mitosis/genética , Neoplasias/patología , Ploidias , RNA-Seq , Receptores Notch/genética , Transducción de Señal
17.
Cancer Treat Rev ; 97: 102204, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33866225

RESUMEN

The concept of Cancer of Unknown Primary (CUP) has evolved with the advent of medical oncology. CUP can be difficult to diagnose and represents 2 to 5% of new cancers, therefore not exceptionally rare. Within CUPs can be identified a subset of favourable prognosis tumours, however the vast majority of CUP patients belongs to a poor prognosis group. CUP features significant oncological challenges, such as unravelling biological and transversal issues, and most importantly, improving patient's outcomes. In that regard, CUP patients' outcomes regrettably showed minimal improvement for decades and CUP remains a cancer group of very poor prognosis. The biology of CUP has two main hypotheses. One is that CUP is a subgroup of a given primary cancer, where the primary is present but cannot be seen due to its small size. The other, the "true" CUP hypothesis, states that CUP share features that make them a specific entity, whatever their tissue of origin. A true biological signature has not yet been described, but chromosomal instability is a hallmark of poor prognosis CUP group. Precision oncology, despite achieving identifying the putative origin of the CUP, so far failed to globally improve outcomes of patients. Targeting molecular pathways based on molecular analysis in CUP management is under investigation. Immunotherapy has not shown ground-breaking results, to date. Accrual is also a crucial issue in CUP trials. Herein we review CUP history, biological features and remaining questions in CUP biology, the two main approaches of molecular oncology in CUP management, in order to draw perspectives in the enormous challenge of improving CUP patient outcomes.


Asunto(s)
Antineoplásicos/uso terapéutico , Biomarcadores de Tumor/antagonistas & inhibidores , Terapia Molecular Dirigida , Neoplasias Primarias Desconocidas/tratamiento farmacológico , Medicina de Precisión , Biomarcadores de Tumor/genética , Ensayos Clínicos como Asunto , Perfilación de la Expresión Génica , Humanos , Neoplasias Primarias Desconocidas/genética , Neoplasias Primarias Desconocidas/patología , Pronóstico
18.
Cancers (Basel) ; 13(6)2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33801877

RESUMEN

Aneuploidy is a consequence of chromosomal instability (CIN) that affects prognosis. Gene expression levels associated with aneuploidy provide insight into the molecular mechanisms underlying CIN. Based on the gene signature whose expression was consistent with functional aneuploidy, the CIN70 score was established. We observed an association of CIN70 score and survival in 519 HNSCC patients in the TCGA dataset; the 15% patients with the lowest CIN70 score showed better survival (p = 0.11), but association was statistically non-significant. This correlated with the expression of 39 proteins of the major repair complexes. A positive association with survival was observed for MSH2, XRCC1, MRE11A, BRCA1, BRCA2, LIG1, DNA2, POLD1, MCM2, RAD54B, claspin, a negative for ERCC1, all related with replication. We hypothesized that expression of these factors leads to protection of replication through efficient repair and determines survival and resistance to therapy. Protein expression differences in HNSCC cell lines did not correlate with cellular sensitivity after treatment. Rather, it was observed that the stability of the DNA replication fork determined resistance, which was dependent on the ATR/CHK1-mediated S-phase signaling cascade. This suggests that it is not the expression of individual DNA repair proteins that causes therapy resistance, but rather a balanced expression and coordinated activation of corresponding signaling cascades.

19.
Molecules ; 26(8)2021 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-33917969

RESUMEN

We have shown previously that two cytoplasmic actin isoforms play different roles in neoplastic cell transformation. Namely, ß-cytoplasmic actin acts as a tumor suppressor, whereas γ-cytoplasmic actin enhances malignant features of tumor cells. The distinct participation of each cytoplasmic actin in the cell cycle driving was also observed. The goal of this study was to describe the diverse roles of cytoplasmic actins in the progression of chromosomal instability of MDA-MB-231 basal-like human carcinoma cell line. We performed traditional methods of chromosome visualization, as well as 3D-IF microscopy and western blotting for CENP-A detection/quantification, to investigate chromosome morphology. Downregulation of cytoplasmic actin isoforms alters the phenotype and karyotype of MDA-MB-231 breast cancer cells. Moreover, ß-actin depletion leads to the progression of chromosomal instability with endoreduplication and aneuploidy increase. On the contrary, γ-actin downregulation results not only in reduced percentage of mitotic carcinoma cells, but leads to chromosome stability, reduced polyploidy, and aneuploidy.


Asunto(s)
Actinas/metabolismo , Inestabilidad Cromosómica , Citoplasma/metabolismo , Glándulas Mamarias Humanas/metabolismo , Glándulas Mamarias Humanas/patología , Ciclo Celular , Línea Celular Tumoral , Regulación hacia Abajo , Femenino , Humanos , Cariotipo , Proteínas de Neoplasias/metabolismo , Fenotipo , Fosforilación , Isoformas de Proteínas/metabolismo , ARN Interferente Pequeño/metabolismo
20.
J Histochem Cytochem ; 68(4): 239-251, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32108534

RESUMEN

To preserve material for future genetic studies, human B-lymphocytes from whole blood samples are routinely transformed into lymphoblastoid cell lines (LCLs) by in vitro infection with Epstein-Barr virus. To determine the rate and frequency of chromosomal changes during long-term culture, we established 10 LCLs (from eight individuals). Before transformation, these cases showed a normal karyotype (three cases), a small supernumerary marker chromosome (three cases), or an aberrant karyotype (four cases). Chromosome analyses were performed at 8-week intervals over a period of at least 1 year, up to 3 years. Surprisingly, we demonstrate that chromosomal instability is the rule, rather than the exception, during long-term culture of LCLs. The most commonly observed acquired clonal aberration was trisomy 12, which emerged in all cell lines within 21 to 49 weeks after infection. Telomeric fusions indicating telomere shortening were found after ~21 weeks. After 1 year of cultivation, the proportion of cells with the original karyotype decreased to ≤10% in 7 of the 10 cell lines. To preserve cells with aberrant genomes, we conclude the cultivation time of LCLs must be restricted to the absolute minimum time required.


Asunto(s)
Inestabilidad Cromosómica/genética , Herpesvirus Humano 4/fisiología , Linfocitos B/metabolismo , Linfocitos B/virología , Células Cultivadas , Humanos , Hibridación Fluorescente in Situ , Cariotipificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA