Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros











Intervalo de año de publicación
1.
Front Physiol ; 15: 1354530, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38440345

RESUMEN

The melon fly, Bactrocera cucurbitae (Coquillett) (Tephritidae: Diptera), is an invasive pest that poses a significant threat to agriculture in Africa and other regions. Flies are known to use their olfactory systems to recognise environmental chemical cues. However, the molecular components of the chemosensory system of B. cucurbitae are poorly characterised. To address this knowledge gap, we have used next-generation sequencing to analyse the antenna transcriptomes of sexually immature B. cucurbitae adults. The results have identified 160 potential chemosensory genes, including 35 odourant-binding proteins (OBPs), one chemosensory protein (CSP), three sensory neuron membrane proteins (SNMPs), 70 odourant receptors (ORs), 30 ionotropic receptors (IRs), and 21 gustatory receptors (GRs). Quantitative real-time polymerase chain reaction quantitative polymerase chain reaction was used to validate the results by assessing the expression profiles of 25 ORs and 15 OBPs. Notably, high expression levels for BcucOBP5/9/10/18/21/23/26 were observed in both the female and male antennae. Furthermore, BcucOROrco/6/7/9/13/15/25/27/28/42/62 exhibited biased expression in the male antennae, whereas BcucOR55 showed biased expression in the female antennae. This comprehensive investigation provides valuable insights into insect olfaction at the molecular level and will, thus, help to facilitate the development of enhanced pest management strategies in the future.

2.
G3 (Bethesda) ; 14(5)2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38498593

RESUMEN

Reception of chemical information from the environment is crucial for insects' survival and reproduction. The chemosensory reception mainly occurs by the antennae and mouth parts of the insect, when the stimulus contacts the chemoreceptors located within the sensilla. Chemosensory receptor genes have been well-studied in some social hymenopterans such as ants, honeybees, and wasps. However, although stingless bees are the most representative group of eusocial bees, little is known about their odorant, gustatory, and ionotropic receptor genes. Here, we analyze the transcriptome of the proboscis and antennae of the stingless bee Tetragonisca fiebrigi. We identified and annotated 9 gustatory and 15 ionotropic receptors. Regarding the odorant receptors, we identified 204, and we were able to annotate 161 of them. In addition, we compared the chemosensory receptor genes of T. fiebrigi with those annotated for other species of Hymenoptera. We found that T. fiebrigi showed the largest number of odorant receptors compared with other bees. Genetic expansions were identified in the subfamilies 9-exon, which was also expanded in ants and paper wasps; in G02A, including receptors potentially mediating social behavior; and in GUnC, which has been related to pollen and nectar scent detection. Our study provides the first report of chemosensory receptor genes in T. fiebrigi and represents a resource for future molecular and physiological research in this and other stingless bee species.


Asunto(s)
Receptores Odorantes , Animales , Abejas/genética , Abejas/fisiología , Receptores Odorantes/genética , Transcriptoma , Filogenia , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Genes de Insecto , Anotación de Secuencia Molecular , Perfilación de la Expresión Génica
3.
Genes (Basel) ; 14(12)2023 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-38136987

RESUMEN

The rice leaf folder, Cnaphalocrocis medinalis (Lepidoptera: Pyralidae), is a notorious pest of rice in Asia. The larvae and adults of C. medinalis utilize specialized chemosensory systems to adapt to different environmental odors and physiological behaviors. However, the differences in chemosensory genes between the olfactory organs of these two different developmental stages remain unclear. Here, we conducted a transcriptome analysis of larvae heads, male antennae, and female antennae in C. medinalis and identified 131 putative chemosensory genes, including 32 OBPs (8 novel OBPs), 23 CSPs (2 novel CSPs), 55 ORs (17 novel ORs), 19 IRs (5 novel IRs) and 2 SNMPs. Comparisons between larvae and adults of C. medinalis by transcriptome and RT-qPCR analysis revealed that the number and expression of chemosensory genes in larval heads were less than that of adult antennae. Only 17 chemosensory genes (7 OBPs and 10 CSPs) were specifically or preferentially expressed in the larval heads, while a total of 101 chemosensory genes (21 OBPs, 9 CSPs, 51 ORs, 18 IRs, and 2 SNMPs) were specifically or preferentially expressed in adult antennae. Our study found differences in chemosensory gene expression between larvae and adults, suggesting their specialized functions at different developmental stages of C. medinalis. These results provide a theoretical basis for screening chemosensory genes as potential molecular targets and developing novel management strategies to control C. medinalis.


Asunto(s)
Mariposas Nocturnas , Transcriptoma , Animales , Femenino , Masculino , Transcriptoma/genética , Larva/genética , Perfilación de la Expresión Génica , Mariposas Nocturnas/genética , Asia
4.
Insects ; 14(11)2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37999082

RESUMEN

Termites are eusocial insects. Chemical signals between colony members are crucial to the smooth running of colony operations, but little is known about their olfactory system and the roles played by various chemosensory genes in this process. Chemosensory genes are involved in basic olfactory perception in insects. Odontotermes formosanus (Shiraki) is one of the most damaging pests to agricultural crops, forests, and human-made structures. To better understand the olfactory system and the genes involved in olfactory processing in O. formosanus, we produced a transcriptome of worker termites. In this study, we identified 13 OforOBPs, 1 OforCSP, 15 OforORs, 9 OforGRs, and 4 OforSNMPs. Multiple sequence alignments were used in the phylogenetic study, which included data from other termite species and a wide variety of insect species. Moreover, we also investigated the mRNA expression levels using qRT-PCR. The significantly high expression levels of OforCSP1, OforOBP2, OforOR1, and OforSNMP1 suggest that these genes may play important roles in olfactory processing in termite social behavior, including caste differentiation, nestmate and non-nestmate discrimination, and the performance of colony operations among members. Our research establishes a foundation for future molecular-level functional studies of chemosensory genes in O. formosanus, which might lead to the identification of novel targets for termite integrated pest management.

5.
Proc Biol Sci ; 290(2008): 20231494, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37817592

RESUMEN

Supergenes, tightly linked sets of alleles, offer some of the most spectacular examples of polymorphism persisting under long-term balancing selection. However, we still do not understand their evolution and persistence, especially in the face of accumulation of deleterious elements. Here, we show that an overdominant supergene in seaweed flies, Coelopa frigida, modulates male traits, potentially facilitating disassortative mating and promoting intraspecific polymorphism. Across two continents, the Cf-Inv(1) supergene strongly affected the composition of male cuticular hydrocarbons (CHCs) but only weakly affected CHC composition in females. Using gas chromatography-electroantennographic detection, we show that females can sense male CHCs and that there may be differential perception between genotypes. Combining our phenotypic results with RNA-seq data, we show that candidate genes for CHC biosynthesis primarily show differential expression for Cf-Inv(1) in males but not females. Conversely, candidate genes for odorant detection were differentially expressed in both sexes but showed high levels of divergence between supergene haplotypes. We suggest that the reduced recombination between supergene haplotypes may have led to rapid divergence in mate preferences as well as increasing linkage between male traits, and overdominant loci. Together this probably helped to maintain the polymorphism despite deleterious effects in homozygotes.


Asunto(s)
Dípteros , Animales , Masculino , Femenino , Dípteros/genética , Polimorfismo Genético , Genotipo , Fenotipo , Hidrocarburos/metabolismo , Percepción
6.
Artículo en Inglés | MEDLINE | ID: mdl-37688975

RESUMEN

The flower bug Orius sauteri (Heteroptera: Anthocoridae), is a polyphagous predator and a natural enemy widely used in biological pest control to micro-pests including aphids, spider mites, thrips and so on. In the present study, the transcriptome analysis of adult heads in O. sauteri were performed and identified a total of 38 chemosensory genes including 24 odorant binding proteins (OBPs) and 14 chemosensory proteins (CSPs). Subsequently, we conducted quantitative real-time PCR to detect the tissue expression level of 18 OBPs and 8 CSPs. The results showed that almost all OsauOBPs and OsauCSPs have a high expression level in the adult heads of both sexes. In addition, 5 OsauOBPs (OBP1, OBP2, OBP3, OBP4 and OBP14) have a significantly higher expressed in male heads than female, indicating that these chemosensory proteins might be involved in the male-specific behaviors such as pheromone reception and mate-seeking. This study will provide helpful reference for subsequent understanding of chemoreception mechanism in O. sauteri.


Asunto(s)
Áfidos , Heterópteros , Receptores Odorantes , Femenino , Masculino , Animales , Odorantes , Heterópteros/genética , Heterópteros/metabolismo , Perfilación de la Expresión Génica , Áfidos/genética , Feromonas , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Transcriptoma , Antenas de Artrópodos/metabolismo , Filogenia
7.
Genome Biol Evol ; 15(3)2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36930539

RESUMEN

Drosophila gunungcola exhibits reproductive activities on the fresh flowers of several plant species and is an emerging model to study the co-option of morphological and behavioral traits in male courtship display. Here, we report a near-chromosome-level genome assembly that was constructed based on long-read PacBio sequencing data (with ∼66× coverage) and annotated with the assistant from RNA-seq transcriptome data of whole organisms at various developmental stages. A nuclear genome of 189 Mb with 13,950 protein-coding genes and a mitogenome of 17.5 kb were acquired. Few interchromosomal rearrangements were found in the comparisons of synteny with Drosophila elegans, its sister species, and Drosophila melanogaster, suggesting that the gene compositions on each Muller element are evolutionarily conserved. Loss events of several OR and IR genes in D. gunungcola and D. elegans were revealed when orthologous genomic regions were compared across species in the D. melanogaster species group. This high-quality reference genome will facilitate further comparative studies on traits related to the evolution of sexual behavior and diet specialization.


Asunto(s)
Drosophila melanogaster , Drosophila , Animales , Drosophila/genética , Drosophila melanogaster/genética , Genómica , Genoma , Anotación de Secuencia Molecular
8.
Int J Mol Sci ; 24(4)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36835417

RESUMEN

Tachycines meditationis (Orthoptera: Rhaphidophoridae: Tachycines) is a widely distributed insect in eastern Asia. This species is common in urban environments, and its unique omnivorous diet may contribute to its success in various habitats. However, molecular studies on the species are scarce. Here, we obtained the first transcriptome sequence of T. meditationis and performed preliminary analyses to test whether the evolution of coding sequences fits the expectations based on the species' ecology. We retrieved 476,495 effective transcripts and annotated 46,593 coding sequences (CDS). We analysed the codon usage and found that directional mutation pressure was the leading cause of codon usage bias in this species. This genome-wide relaxed codon usage pattern in T. meditationis is surprising, given the potentially large population size of this species. Moreover, despite the omnivorous diet, the chemosensory genes of this species do not exhibit codon usage deviating significantly from the genome-level pattern. They also do not seem to experience more gene family expansion than other cave cricket species do. A thorough search for rapidly evolved genes using the dN/dS value showed that genes associated with substance synthesis and metabolic pathways, such as retinol metabolism, aminoacyl-tRNA biosynthesis, and fatty acid metabolism, underwent species-specific positive selection. While some results seem to contradict the species ecology, our transcriptome assembly provides a valuable molecular resource for future studies on camel cricket evolution and molecular genetics for feeding ecology in insects, in general.


Asunto(s)
Gryllidae , Animales , Camelus , Transcriptoma , Insectos , Genoma
9.
Front Physiol ; 14: 1287353, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38187138

RESUMEN

Introduction: The moth species Athetis lepigone (Möschler) (Lepidoptera: Noctuidae), which has recently been identified as a pest of summer maize (Zea mays L.) in China, has demonstrated a rapid proliferation with in the Huang-Huai-Hai Plain region since its initial discovery in Hebei Province in 2005. It has become a prevalent pest of corn crops, and its ability to adapt quickly to its surroundings is currently being investigated. One of the key characteristics of its siphoning mouthparts is not only the feeding apparatus itself but also the chemosensory organs that enable the detection of chemical signals from the surrounding environment. However, there is a lack of comprehensive research on the genes responsible for chemosensory and metabolic mechanisms in the proboscises of male and female A. lepigone adults. Methods: In this study, we utilized transcriptome analysis to identify a total of fifty chemosensory genes from six distinct families, including 19 odorant-binding proteins (OBPs), 22 chemosensory proteins (CSPs), one co-receptor (Orco), six odorant receptors (ORs), four ionotropic receptors (IRs), and two sensory neuron membrane proteins (SNMPs) in the proboscis. Notably, seven OBPs, two CSPs, and one OR were discovered for the first time. Additionally, fourteen genes related to metabolism, including cytochrome P450 (CYPs) and carboxylesterases (CXEs), were also identified. Furthermore, a qualitative analysis was conducted on the relative transcript levels of eight related genes. The expression of 21 annotated chemosensory and metabolic genes was compared between A. lepigone adults and larvae using qRT-PCR, revealing tissue specificity. The majority of genes exhibited predominant expression in the antennae and proboscis during the adult stage, while showing slight expression in the combination of sixth-instar larval head oral appendages (maxilla, labium, and antenna) and pheromone gland-ovipositors of female adults. Results/discussion: Our study points to a new pest control strategies that these newly discovered genes have the potential to serve as targets for enhancing future pest control, including mating disruption and the use of food attractants. And it would be advantageous to ascertain the distribution of chemosensory gene expression and gain insights into the functionalities of these genes, thereby establishing a novel theoretical framework for the advancement of eco-friendly pesticides and efficient pest management strategies in the future.

10.
Insects ; 13(12)2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36555008

RESUMEN

Baryscapus dioryctriae is a pupal endoparasitoid of many Pyralidae pests and has been used as a biocontrol agent against insect pests that heavily damage the cone and seed of the Korean pine. The olfactory system of wasps plays an essential role in sensing the chemical signals during their foraging, mating, host location, etc., and the chemosensory genes are involved in detecting and transducing these signals. Many chemosensory genes have been identified from the antennae of Hymenoptera; however, there are few reports on the chemosensory genes of Eulophidae wasps. In this study, the transcriptome databases based on ten different tissues of B. dioryctriae were first constructed, and 274 putative chemosensory genes, consisting of 27 OBPs, 9 CSPs, 3 NPC2s, 155 ORs, 49 GRs, 23 IRs and 8 SNMPs genes, were identified based on the transcriptomes and manual annotation. Phylogenetic trees of the chemosensory genes were constructed to investigate the orthologs between B. dioryctriae and other insect species. Additionally, twenty-eight chemosensory genes showed female antennae- and ovipositor-biased expression, which was validated by RT-qPCR. These findings not only built a molecular basis for further research on the processes of chemosensory perception in B. dioryctriae, but also enriched the identification of chemosensory genes from various tissues of Eulophidae wasps.

11.
Front Physiol ; 13: 907694, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35846004

RESUMEN

Olfactory and gustatory systems play an irreplaceable role in all cycles of growth of insects, such as host location, mating, and oviposition. Many chemosensory genes in many nocturnal moths have been identified via omics technology, but knowledge of these genes in diurnal moths is lacking. In our recent studies, we reported two sex pheromone compounds and three host plant volatiles that play a vital role in attracting the diurnal moth, Phauda flammans. The antennal full-length transcriptome sequence of P. flammans was obtained using the Pacbio sequencing to further explore the process of sex pheromone and host plant volatile recognition in P. flammans. Transcriptome analysis identified 166 candidate olfactory and gustatory genes, including 58 odorant-binding proteins (OBPs), 19 chemosensory proteins (CSPs), 59 olfactory receptors (ORs), 16 ionotropic receptors (IRs), 14 gustatory receptors (GRs), and 2 sensory neuron membrane proteins (SNMPs). Subsequently, a phylogenetic tree was established using P. flammans and other lepidopteran species to investigate orthologs. Among the 17 candidate pheromone receptor (PR) genes, the expression levels of PflaOR21, PflaOR25, PflaOR35, PflaOR40, PflaOR41, PflaOR42, PflaOR44, PflaOR49, PflaOR51, PflaOR61, and PflaOR63 in the antennae were significantly higher than those in other non-antennae tissues. Among these PR genes, PflaOR21, PflaOR27, PflaOR29, PflaOR35, PflaOR37, PflaOR40, PflaOR42, PflaOR44, PflaOR60, and PflaOR62 showed male-biased expression, whereas PflaOR49, PflaOR61, and PflaOR63 revealed female-biased expression. The functions of related OR genes were also discussed. This research filled the gap of the chemosensory genes of P. flammans and provided basic data for future functional molecular mechanisms studies on P. flammans olfaction.

12.
Insects ; 13(7)2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35886773

RESUMEN

As one of the most destructive oligophagous pests, the chrysanthemum aphid (Macrosiphoniella sanborni) has seriously restricted the sustainable development of the chrysanthemum industry. Olfaction plays a critical role in the environmental perception of aphids, but very little is currently known about the chemosensory mechanism of M. sanborni. In this study, four MsanOBPs, four MsanCSPs, eight MsanORs, two MsanIRs and one MsanSNMP were identified among the 28,323 unigenes derived from the antennal transcriptome bioinformatic analysis of M. sanborni adults. Then, comprehensive phylogenetic analyses of these olfactory-related proteins in different aphid species were performed using multiple sequence alignment. Subsequently, the odor-specific and wing-specific expression profiles of these candidate chemosensory genes were investigated using quantitative real-time PCR. The data showed that most of these chemosensory genes exhibited higher expression levels in alate aphids. Among them, MsanOBP9, MsanOR2, MsanOR4, MsanOR43b-1, MsanCSP1, MsanCSP2, MsanCSP4, MsanIR25a and MsanIR40a in alate aphids showed remarkably higher expression levels than in apterous aphids under the effect of the host plant volatiles, indicating that these genes may take part in the specific behaviors of alate adults, such as host recognition, oviposition site selection and so on. This study lays the groundwork for future research into the molecular mechanism of olfactory recognition in M. sanborni.

13.
Front Physiol ; 13: 907667, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35711318

RESUMEN

Chemosensory genes play important roles in insect behaviors and have thus become potential molecular targets for pest control based on the manipulation of chemoreception-driven behaviors. The great gray weevil Sympiezomias velatus (Chevrolat) (Coleoptera: Curculionidae) is an important agricultural pest that causes serious economic losses to many crops in China, but its chemosensory genes have not been reported. Here we assembled the antennal transcriptomes of female and male adult S. velatus and revealed the major chemosensory genes necessary for olfaction. A total of 138 candidate chemosensory genes in six families were identified, including 41 encoding odorant-binding proteins (OBPs), 11 encoding chemosensory proteins (CSPs), 62 encoding odorant receptors (ORs), 15 encoding gustatory receptors (GRs), six encoding ionotropic receptors (IRs), and three encoding sensory neuron membrane proteins (SNMPs). We analyzed their phylogenetic relationship based on the amino acid sequences of these chemosensory-related protein families in S. velatus and other insects, and the expression profiles based on their antennal transcriptomes. Chemosensory genes that show antenna-abundant/specific or sex-biased expression were observed, suggesting that these genes might have functions in olfaction. Furthermore, we chose an antenna-abundant OBP belonging to ABPX subfamily, SvelOBP15, to investigate its binding property. The results showed that among 33 tested compounds, SvelOBP15 displayed high binding affinities (Ki = 7.36-12.94 µmol/L) with farnesol, nerolidol, limonene and diisobutyl phthalate, indicating that SvelOBP15 plays olfactory roles by binding and transporting specific plant volatiles. These findings will help us better understand the olfactory systems of S. velatus, and provide a basis for functional elucidation of these chemosensory genes.

14.
Front Physiol ; 13: 896793, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35615683

RESUMEN

The olfactory system plays a key role in regulating insect behaviors, such as locating host plants, spawning sites, and mating partners and avoiding predators. Chemosensory genes are required for olfactory recognition in insects. Curculio dieckmanni Faust. (Coleoptera: Curculionidae) damages hazelnuts and causes severe economic losses. There are no effective control measures, but understanding the olfaction mechanisms of this insect could lead to a new approach for population management. However, the genes that perform chemosensory functions in C. dieckmanni are still unclear. Using high-throughput sequencing, we assembled the antennal transcriptome of C. dieckmanni and annotated the major chemosensory gene families. Of the chemosensory gene families, we found 23 odorant-binding proteins, 15 chemosensory proteins, 2 sensory neuron membrane proteins, 15 odorant receptors, 23 ionotropic receptors, and nine gustatory receptors. Using Blast sequence alignment and phylogenetic analysis, the sequences of these proteins were identified. Male- and female-specific chemosensory genes involved in odorant detection and recognition were validated by qRT-PCR. Among the chemosensory genes, we found significant differences in the expression of CdieOBP8, CdieOBP9, CdieOBP19, CdieOBP20, CdieOBP21, CdieCSP15, CdieOR13, and CdieOR15 between adult male and female C. dieckmanni. A total of 87 expressed chemosensory proteins were found in C. dieckmanni. Investigating these proteins will help reveal the molecular mechanism of odorant recognition in C. dieckmanni and may aid the development of novel control strategies for this species.

15.
Front Physiol ; 13: 847895, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35295577

RESUMEN

The insect chemosensory system plays an important role in many aspects of insects' behaviors necessary for their survival. Despite the complexity of this system, an increasing number of studies have begun to understand its structure and function in different insect species. Nonetheless, the chemosensory system in the orange spiny whitefly Aleurocanthus spiniferus, as one of the most destructive insect pests of citrus in tropical Asia, has not been investigated yet. In this study, the sensillum types, morphologies and distributions of the male and female antennae of A. spiniferus were characterized using scanning electron microscopy. In both sexes, six different sensilla types were observed: trichodea sensilla, chaetica sensilla, microtrichia sensilla, coeloconic sensilla, basiconic sensilla, and finger-like sensilla. Moreover, we identified a total of 48 chemosensory genes, including 5 odorant-binding proteins (OBPs), 12 chemosensory proteins (CSPs), 3 sensory neuron membrane proteins (SNMPs), 6 odorant receptors (ORs), 8 gustatory receptors (GRs), and 14 ionotropic receptors (IRs) using transcriptome data analysis. Tissue-specific transcriptome analysis of these genes showed predominantly expression in the head (including antennae), whereas CSPs were broadly expressed in both head (including the antennae) and body tissue of adult A. spiniferus. In addition, the expression profiling of selected chemosensory genes at different developmental stages was examined by quantitative real time-PCR which was mapped to the transcriptome. We found that the majority of these genes were highly expressed in adults, while AspiORco, AspiGR1, AspiGR2, and AspiIR4 genes were only detected in the pupal stage. Together, this study provides a basis for future chemosensory and genomic studies in A. spiniferus and closely related species. Furthermore, this study not only provides insights for further research on the molecular mechanisms of A. spiniferus-plant interactions but also provides extensive potential targets for pest control.

16.
Front Physiol ; 13: 839559, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35295575

RESUMEN

Large numbers of chemosensory genes have been identified in the peripheral sensory organs of the pest Mythimna separata (Walker) to increase our understanding of chemoreception-related molecular mechanisms and to identify molecular targets for pest control. Chemosensory-related genes are expressed in various tissues, including non-sensory organs, and they play diverse roles. To better understand the functions of chemosensory-related genes in non-sensory organs, transcriptomic analyses of M. separata brains were performed. In total, 29 odorant-binding proteins (OBPs) and 16 chemosensory proteins (CSPs) putative genes were identified in the transcriptomic data set. The further examination of sex- and tissue-specific expression using RT-PCR suggested that eight OBPs (OBP5, -7, -11, -13, -16, -18, -21, and -24) and eight CSPs (CSP2-4, -8, CSP10-12, and -15) genes were expressed in the brain. Furthermore, bands representing most OBPs and CSPs could be detected in antennae, except for a few that underwent sex-biased expression in abdomens, legs, or wings. An RT-qPCR analysis of the expression profiles of six OBPs (OBP3-5, -9, -10, and -16) and two CSPs (CSP3 and CSP4) in different tissues and sexes indicated that OBP16 was highly expressed in male brain, and CSP3 and CSP4 were female-biased and highly expressed in brain. The expression levels of OBP5 and OBP10 in brain were not significantly different between the sexes. The findings expand our current understanding of the expression patterns of OBPs and CSPs in M. separata sensory and non-sensory tissues. These results provide valuable reference data for exploring novel functions of OBPs and CSPs in M. separata and may help in developing effective biological control strategies for managing this pest by exploring novel molecular targets.

17.
Mol Ecol Resour ; 22(3): 1120-1134, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34601821

RESUMEN

The cotton-melon aphid Aphis gossypii is a sap-sucking insect that is considered a serious global pest. The species is distributed over a large geographical range and uses a wide variety of hosts, with some populations being specialized to attack different plant species. Here, we provide de novo chromosome-level genome assemblies of a cotton specialist population (Hap1) and a cucurbit specialist population (Hap3). We achieved this by using a combination of third-generation sequencing platforms, namely Illumina and Hi-C sequencing technologies. We were able to anchor a total of 334.89 Mb (scaffold N50 of 89.13 Mb) and 359.95 Mb (scaffold N50 of 68.88 Mb) to four chromosomes for Hap1 and Hap3, respectively. Moreover, our results showed that the X-chromosome of Hap3 (113.01 Mb) was significantly longer than that of Hap1 (100.26 Mb), with a high level of sequence conservation between the aphid species. We also report variation in the number of protein-coding genes and repeat sequences between Hap1 and Hap3. In particular, olfactory and gustatory receptor genes underwent a high level of gene duplication and expansion events in A. gossypii, including between Hap1 and Hap3. Moreover, we identified two glutathione S-transferase genes which underwent single gene duplications in Hap3, and tandem duplication and inversion events affecting the cytochrome P450 monooxygenase between Hap1 and Hap3, all of which include the CYP3 family. Our results illustrate the variance in the genomic composition of two specialized A. gossypii populations and provide a helpful resource for the study of aphid population evolution, host adaption and insecticide resistance.


Asunto(s)
Áfidos , Cucurbitaceae , Animales , Áfidos/genética , Cromosomas , Cucurbitaceae/genética , Resistencia a los Insecticidas , Plantas/genética
18.
J Evol Biol ; 34(11): 1704-1721, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34570954

RESUMEN

Ecological speciation entails divergent selection on specific traits and ultimately on the developmental pathways responsible for these traits. Selection can act on gene sequences but also on regulatory regions responsible for gene expression. Mimetic butterflies are a relevant system for speciation studies because wing colour pattern (WCP) often diverges between closely related taxa and is thought to drive speciation through assortative mating and increased predation on hybrids. Here, we generate the first transcriptomic resources for a mimetic butterfly of the tribe Ithomiini, Melinaea marsaeus, to examine patterns of differential expression between two subspecies and between tissues that express traits that likely drive reproductive isolation; WCP and chemosensory genes. We sequenced whole transcriptomes of three life stages to cover a large catalogue of transcripts, and we investigated differential expression between subspecies in pupal wing discs and antennae. Eighteen known WCP genes were expressed in wing discs and 115 chemosensory genes were expressed in antennae, with a remarkable diversity of chemosensory protein genes. Many transcripts were differentially expressed between subspecies, including two WCP genes and one odorant receptor. Our results suggest that in M. marsaeus the same genes as in other mimetic butterflies are involved in traits causing reproductive isolation, and point at possible candidates for the differences in those traits between subspecies. Differential expression analyses of other developmental stages and body organs and functional studies are needed to confirm and expand these results. Our work provides key resources for comparative genomics in mimetic butterflies, and more generally in Lepidoptera.


Asunto(s)
Mariposas Diurnas , Animales , Mariposas Diurnas/genética , Perfilación de la Expresión Génica , Aislamiento Reproductivo , Transcriptoma , Alas de Animales
19.
Insects ; 12(8)2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34442228

RESUMEN

Aethina tumida is a parasite and predator of honeybee causing severe loss to the bee industry. No effective and environmentally friendly methods are available to control this pest at present. Chemosensory genes play key roles in insect behavior which can potentially be used as targets for developing environmentally friendly pest control agents. In this study, the putative chemosensory genes in antennae and forelegs of A. tumida involved in olfaction or contact chemical communication of adults were investigated using RNA transcriptome sequencing and PCR methods. Based on transcriptomic data, unigenes encoding 38 odorant receptors (ORs), 24 ionotropic receptors (IRs), 14 gustatory receptors (GRs), 3 sensory neuron membrane proteins (SNMPs), 29 odorant binding proteins (OBPs), and 22 chemosensory proteins (CSPs) were identified. The analyses of tissue expression profiles revealed that genes encoding 38 ORs, 13 antennal IRs, 11 GRs, 1 SNMP, 24 OBPs, and 12 CSPs were predominately expressed in antennae. No significant differences in expression levels of these genes were found between males and females. Genes encoding 5 non-NMDA iGluRs, 3 GRs, 2 SNMPs, 5 OBPs, and 12 CSPs were predominately expressed in forelegs. RT-PCR assays for SNMPs, OBPs and CSPs further revealed that 3 OBPs (AtumOBP3, 26 and 28) and 3 CSPs (AtumCSP7, 8 and 21) were highly expressed in antennae. Our results enrich the gene inventory of A. tumida and facilitate the discovery of potential novel targets for developing new pest control measures.

20.
Artículo en Inglés | MEDLINE | ID: mdl-34273642

RESUMEN

The endoparasitoid wasp, Aulacocentrum confusum (Hymenoptera: Braconidae), is a preponderant natural enemy of the larvae of Glyphodes pyloalis Walker (Lepidoptera: Pyralidae), which is a destructive pest of mulberry trees. We first constructed the antennal transcriptome database of A. confusum. In total, we obtained 48,262,304 clean reads from the dataset and assembled 24,324 unigenes. A total of 12,690 (52.17%) unigenes indicated significant similarity (E-value < 10-5) compared to known protein sequences of other species from the NCBI non-redundant protein database. Gene ontology (GO) and cluster of orthologous groups (COG) analyses were used to determine the functional categories of these genes. A total of 84 putative chemosensory genes were identified from the antennal transcriptome of A. confusum, including 11 putative odorant-binding protein (OBP) genes, six chemosensory protein (CSP) genes, 44 olfactory receptor (OR) genes (including one olfactory co-receptor, Orco), 19 ionotropic receptor (IR) genes, and four sensory neuron membrane protein (SNMP) genes. Results of qPCR assays indicated that among of 11 AconOBPs, nine AconOBP genes were significantly expressed in the antennae of A. confusum adults. AconOBP8 was significantly expressed in the abdomen and AconOBP10 was highly expressed in the thorax. These findings can build a basis for further study on the processes of chemosensory perception in A. confusum at the molecular level.


Asunto(s)
Mariposas Nocturnas , Receptores Odorantes , Avispas , Animales , Antenas de Artrópodos/metabolismo , Proteínas Portadoras , Perfilación de la Expresión Génica , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Mariposas Nocturnas/metabolismo , Odorantes , Filogenia , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Transcriptoma , Avispas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA