Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chemphyschem ; : e202400149, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39015100

RESUMEN

The heavy metal selenophosphate Pb2P2Se6emerges as a promising room-temperature X-ray/γ-ray detectors due to its high resistivity, robust radiation-blocking capability, and outstanding carrier mobility-lifetime product, etc. However, the high activity of phosphides poses significant impediment to the synthesis and single crystal growth. In this work, we have prepared high-quality Pb2P2Se6 single crystals with using the chemical vapor transport (CVT) method. The XRD analysis combined with EDS result confirmed the uniform composition of the resulting as-grown single crystals, while UV-Vis-NIR transmittance spectra revealed the bandgap of 1.89 eV. Selected area electron diffraction patterns indicated the crystal belonged to the P21/c(14) space group. Additionally, the Au/Pb2P2Se6/Au device is fabricated, which exhibits a robust X-ray response with a sensitivity of 648.61 µC·Gy-1·cm-2 at 400 V·mm-1 under 50 kVp. Notably, the device also excels in alpha particle detection, boasting a resolution of ~14.48% under a bias of 400 V bias. The hole mobility-lifetime product (µτ)h of Pb2P2Se6 is estimated to be ~2.58×10-5 cm2·V-1. The results underscore potential applications of Pb2P2Se6 crystal is in the field of the semiconductor radiation detectors.

2.
ChemSusChem ; : e202400785, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39051452

RESUMEN

Elemental Te and Cd are successfully recovered from CdTe via a combinatorial process involving chemical vapor transport (CVT) using sulfur as transport agent giving elemental Te being deposited. Separation is successfully enabled by the first process for CVT of Te starting with CdTe. Cd is subsequently recovered by an oxidation of the formed CdS to CdO followed by reduction to Cd metal with natural gas, in which Cd can also be separated via the gas phase. Hereby, the process addresses the main critical elements of the active material in thin film CdTe solar cells regarding both, scarcity and toxicity. Both, closed and open systems were investigated displaying more or less thermodynamic control of the system. Transport rates were determined for the closed system as well as for an open system working with sulfur vapour at moderate temperatures below and close to the boiling point of sulfur. Excellent purity of tellurium was achieved already by the initial transport, leading to low Cd2+ concentrations in the obtained Te being below the quantification limit of microwave plasma-atomic emission spectroscopy (MP-AES) (<< 0.05 wt%).

3.
Small ; 20(30): e2310276, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38431964

RESUMEN

Violet phosphorus (VP) has attracted a lot of attention for its unique physicochemical properties and emerging potential in photoelectronic applications. Although VP has a van der Waals (vdW) structure similar to that of other 2D semiconductors, direct synthesis of VP on a substrate is still challenging. Moreover, optoelectronic devices composed of transfer-free VP flakes have not been demonstrated. Herein, a bismuth-assisted vapor phase transport technique is designed to grow uniform single-crystal VP flakes on the SiO2/Si substrate directly. The size of the crystalline VP flakes is an order of magnitude larger than that of previous liquid-exfoliated samples. The photodetector fabricated with the VP flakes shows a high responsivity of 12.5 A W-1 and response/recovery time of 3.82/3.03 ms upon exposure to 532 nm light. Furthermore, the photodetector shows a small dark current (<1 pA) that is beneficial to high-sensitivity photodetection. As a result, the detectivity is 1.38 × 1013 Jones that is comparable with that of the vdW p-n heterojunction detector. The results reveal the great potential of VP in optoelectronic devices as well as the CVT technique for the growth of single-crystal semiconductor thin films.

4.
Adv Mater ; 36(18): e2311022, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38290153

RESUMEN

2D van der Waals (vdW) ferromagnetic crystals are a promising platform for innovative spintronic devices based on magnetic skyrmions, thanks to their high flexibility and atomic thickness stability. However, room-temperature skyrmion-hosting vdW materials are scarce, which poses a challenge for practical applications. In this study, a chemical vapor transport (CVT) approach is employed to synthesize Fe3GaTe2 crystals and room-temperature Néel skyrmions are observed in Fe3GaTe2 nanoflakes above 58 nm in thickness through in situ Lorentz transmission electron microscopy (L-TEM). Upon an optimized field cooling procedure, zero-field hexagonal skyrmion lattices are successfully generated in nanoflakes with an extended thickness range (30-180 nm). Significantly, these skyrmion lattices remain stable up to 355 K, setting a new record for the highest temperature at which skyrmions can be hosted. The research establishes Fe3GaTe2 as an emerging above-room-temperature skyrmion-hosting vdW material, holding great promise for future spintronics.

5.
Heliyon ; 9(11): e22533, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38074888

RESUMEN

Single crystals of Cu2ZnGeSe4 and Cu2ZnGeS4 solid solutions were developed and successfully obtained using the chemical vapor transfer method, with iodine acting as a transporter. The structure, compositional dependences of lattice parameters, pycnometric and X-ray densities and microhardness were determined. The chemical composition determined by the X-ray microanalysis satisfactorily corresponds to the nominal one with a tolerance of ±5 %. The XRD analysis showed that all the obtained compounds and their solid solutions have unit cell described by tetragonal symmetry. The attice parameters were found to be а = 5.342 ± 0.005 Å, с = 10.51 ± 0.01 Å for the Сu2ZnGeS4 compound and а = 5.607 ± 0.005 Å, с = 11.04 ± 0.01 Å for the Cu2ZnGeSe4, respectively. Structural studies confirmed the validity of the Vegard's law in relation to the obtained samples. The pycnometric densities of ∼4.28 g/cm3 for the Cu2ZnGeS4 and ∼5.46 g/cm3 for the Cu2ZnGeSe4 were found to be slightly less than their X-ray densities of ∼4.32 g/cm3 and ∼5.52 g/cm3, respectively. The maximum microhardness of ∼398 kg/mm2 for these solid solutions corresponds to x = 0.60. The melt point of the solid solutions increases from ∼1180 °C for the Сu2ZnGeSe4 up to ∼1400 °C for the Сu2ZnGeS4. Based on X-ray fluorescence analysis and DTA data, the phase diagram of the Cu2ZnGeSe4-Cu2ZnGeS4 system was constructed. Analysis of the obtained diagram indicates its first type according to Rozbom's classification.

6.
Waste Manag ; 157: 330-338, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36603447

RESUMEN

E-waste is a valuable resource for the recovery of secondary metals. However, traditional methods only focused on the extraction of Cu and noble metals (Au, Ag, etc.), and significant tin (Sn) loss occurred during the smelting or the leached. In this paper, a novel chemical vapor transport (CVT) process was proposed to separate and recycle Sn from e-waste to prepare nano-SnO2. The effect of roasting parameters on Sn volatilization and characterization of nano-SnO2 were investigated using thermodynamic analysis, XRD, SEM, TEM, etc. The results indicated that Sn volatilization of 92.8 % was obtained under optimal roasting parameters under CO-CO2-N2 atmosphere. In addition, nano-SnO2 with a crystallinity of 99.9 %, an average grain size of 24.8 nm and a specific surface area of 97.9 m2/g was synthesized successfully.


Asunto(s)
Residuos Electrónicos , Estaño , Metales
7.
ACS Appl Mater Interfaces ; 14(50): 55616-55626, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36475586

RESUMEN

The practical implementation of lithium-sulfur batteries (LSBs) has been impeded by the sluggish redox kinetics of lithium polysulfides (LiPSs) and shuttle effect of soluble LiPSs during charge/discharge. It is desirable to exploit materials combining superior electrical conductivity with excellent catalytic activity for use as electrocatalysts in LSBs. Herein, we report the employment of chemical vapor transport (CVT) method followed by an electrochemical intercalation process to fabricate high-quality single-crystalline semimetallic ß-MoTe2 nanosheets, which are utilized to manipulate the LiPSs conversion kinetics. The first-principles calculations prove that ß-MoTe2 could lower the Gibbs free-energy barrier for Li2S2 transformation to Li2S. The wavefunction analysis demonstrates that the p-p orbital interaction between Te p and S p orbitals accounts for the strong electronic interaction between the ß-MoTe2 surface and Li2S2/Li2S, making bonding and electron transfer more efficient. As a result, a ß-MoTe2/CNT@S-based LSB cell can deliver an excellent cycling performance with a low capacity fade rate of 0.11% per cycle over 300 cycles at 1C. Our work might not only provide a universal route to prepare high-quality single-crystalline transition-metal dichalcogenides (TMDs) nanosheets for use as electrocatalysts in LSBs, but also suggest a different viewpoint for the rational design of LiPSs conversion electrocatalysts.

8.
Small ; 18(51): e2205344, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36323611

RESUMEN

A quasi-one-dimensional van der Waals metallic nanowire Nb2 PdS6 is synthesized, and its electrical characteristics are analyzed. The chemical vapor transport method is applied to produce centimeter-scale Nb2 PdS6 crystals with needle-like structures and X-ray diffraction (XRD) confirms their high crystallinity. Scanning transmission electron microscopy reveals the crystal orientation and atomic arrangement of the specific region with atomic resolution. The electrical properties are examined by delaminating bulk Nb2 PdS6 crystals into a few nanometer-scale wires onto 100 nm-SiO2 /Si substrates using a mechanical exfoliation process. Ohmic behavior is confirmed at the low-field measurements regardless of their thickness variation, and 4.64 nm-thick Nb2 PdS6 shows a breakdown current density (JBD ) of 52 MA cm-2 when the high electrical field is delivered. Moreover, with further exfoliation down to a single atomic chain, the JBD of Nb2 PdS6 is predicted to have a value of 527 MA cm-2 . The breakdown of Nb2 PdS6 proceeds due to the Joule heating mechanism, and the Nb2 PdS6 nanowires are well fitted to the 1D thermal dissipating model.

9.
J Phys Condens Matter ; 34(35)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35724661

RESUMEN

Metal thio(seleno)phosphatesMPX3have attracted considerable attentions with wide spanned band gaps and rich magnetic properties. In this series, two neighboring members MnPS3and NiPS3differ in magnetic atoms, magnetic easy axes, spin anisotropy, as well as nearest-neighbor magnetic interactions. The competition between these components may cause intriguing physical phenomena. In this article, the evolution of magnetism of Mn1-xNixPS3series is reported. Despite the incompatible antiferromagnetic orders of two end members, the antiferromagnetism persists as the ground state in the whole substitution region. The magnetic ordering temperatureTNshow nonmonotonic V-shape behavior, and the reentrant spin glass phase atx= 0.5 is observed. In addition, abnormal bifurcation ofTNoccurs atx= 0.75, which may be due to the temperature-dependent spin reorientation or phase separation. The evolution of magnetism is further confirmed semi-quantitatively by our density functional theory calculations. Our study indicates that exotic magnetism can be intrigued when multi-degrees of freedom are involved in these low-dimensional systems, which call for more in-depth microscopic studies in future.

10.
Nanomaterials (Basel) ; 12(9)2022 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-35564152

RESUMEN

Tin disulfide (SnS2) is a promising semiconductor for use in nanoelectronics and optoelectronics. Doping plays an essential role in SnS2 applications, because it can increase the functionality of SnS2 by tuning its original properties. In this study, the effect of zinc (Zn) doping on the photoelectric characteristics of SnS2 crystals was explored. The chemical vapor transport method was adopted to grow pristine and Zn-doped SnS2 crystals. Scanning electron microscopy images indicated that the grown SnS2 crystals were layered materials. The ratio of the normalized photocurrent of the Zn-doped specimen to that of the pristine specimen increased with an increasing illumination frequency, reaching approximately five at 104 Hz. Time-resolved photocurrent measurements revealed that the Zn-doped specimen had shorter rise and fall times and a higher current amplitude than the pristine specimen. The photoresponsivity of the specimens increased with an increasing bias voltage or decreasing laser power. The Zn-doped SnS2 crystals had 7.18 and 3.44 times higher photoresponsivity, respectively, than the pristine crystals at a bias voltage of 20 V and a laser power of 4 × 10-8 W. The experimental results of this study indicate that Zn doping markedly enhances the optical response of SnS2 layered crystals.

11.
Materials (Basel) ; 15(6)2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35329634

RESUMEN

In this study, the advanced chemical vapor transport (CVT) method in combination with the quenching effect is introduced for creating molybdenum oxide nanoparticle arrays, composed of the hierarchical structure of fine nanoparticles (NPs), which are vertically grown with a homogeneous coverage on the individual carbon fibers of carbon fiber paper (CFP) substrates. The obtained molybdenum oxide NPs hold a metastable high-temperature γ-Mo4O11 phase along with a stable α-MoO3 phase by the quenching effect. Furthermore, such a quenching effect forms thinner and smaller nanoparticle aggregates by suppressing the growth and coalescence of primary particles. The molybdenum oxide nanoparticle aggregates are prepared using two different types of precursors: MoO3 and a 1:1 (mol/mol) mixture of MoO3 and activated carbon. The results characterized using X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and Fourier-transform infrared spectroscopy show that the relative amount of α-MoO3 to γ-Mo4O11 within the prepared NPs is dependent on the precursor type; a lower amount of α-MoO3 to γ-Mo4O11 is obtained in the NPs prepared using the mixed precursor of MoO3 and carbon. This processing-structure landscape study can serve as the groundwork for the development of high-performance nanomaterials in various electronic and catalytic applications.

12.
Nanotechnology ; 33(23)2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35189611

RESUMEN

Herein, single crystalline boron nanowires (BNWs) have been synthesized by chemical vapor transport using boron element as boron source, iodine as transport agent, and Au as catalyst. The results demonstrate that BNWs can be all formed at 600 °C-950 °C for 2 h, and possess rhombohedral crystal structure (ß-boron). The NWs have diameters from several to hundreds of nanometers, and lengths from several to hundreds of microns. A single nanowire has been fabricated to field effect transistor (FET) which shows excellent solar blind photosensitivity and selectivity. The photo/dark current ratio and photoresponsitity is 1.14 and 97.6 mA W-1at a bias of 5 V under light illumination of 254 nm with 0.42 mW cm-2, respectively, and both the rising and decay time of the on-off currents are 4.6 s and 10.3 s, respectively. When the FET is used as a personal breath sensor, the ratio of exsufflating and inhaling currents is 2.7, rising and decay time of the breath currents are 0.4 s and 2.2 s, respectively. So the BNWs are important sense materials.

13.
Nanomaterials (Basel) ; 11(9)2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34578578

RESUMEN

In this paper we report the crystal growth conditions and optical anisotropy properties of Tungsten ditelluride (WTe2) single crystals. The chemical vapor transport (CVT) method was used for the synthesis of large WTe2 crystals with high crystallinity and surface quality. These were structurally and morphologically characterized by means of X-ray diffraction, optical profilometry and Raman spectroscopy. Through spectroscopic ellipsometry analysis, based on the Tauc-Lorentz model, we identified a high refractive index value (~4) and distinct tri-axial anisotropic behavior of the optical constants, which opens prospects for surface plasmon activity, revealed by the dielectric function. The anisotropic physical nature of WTe2 shows practical potential for low-loss light modulation at the 2D nanoscale level.

14.
Molecules ; 26(8)2021 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-33920131

RESUMEN

In this study, a series of SnS2-xSex (0 ≤ x ≤ 2) layered semiconductors were grown by the chemical-vapor transport method. The crystal structural and material phase of SnS2-xSex layered van der Waals crystals was characterized by X-ray diffraction measurements and Raman spectroscopy. The temperature dependence of the spectral features in the vicinity of the direct band edge excitonic transitions of the layered SnS2-xSex compounds was measured in the temperature range of 20-300 K using the piezoreflectance (PzR) technique. The near band-edge excitonic transition energies of SnS2-xSex were determined from a detailed line-shape fit of the PzR spectra. The PzR characterization has shown that the excitonic transitions were continuously tunable with the ratio of S and Se. The parameters that describe the temperature variation of the energies of the excitonic transitions are evaluated and discussed.

15.
Molecules ; 26(7)2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33805160

RESUMEN

Averievite-type compounds with the general formula (MX)[Cu5O2(TO4)], where M = alkali metal, X = halogen and T = P, V, have been synthesized by crystallization from gases and structurally characterized for six different compositions: 1 (M = Cs; X = Cl; T = P), 2 (M = Cs; X = Cl; T = V), 3 (M = Rb; X = Cl; T = P), 4 (M = K; X = Br; T = P), 5 (M = K; X = Cl; T = P) and 6 (M = Cu; X = Cl; T = V). The crystal structures of the compounds are based upon the same structural unit, the layer consisting of a kagome lattice of Cu2+ ions and are composed from corner-sharing (OCu4) anion-centered tetrahedra. Each tetrahedron shares common corners with three neighboring tetrahedra, forming hexagonal rings, linked into the two-dimensional [O2Cu5]6+ sheets parallel to (001). The layers are interlinked by (T5+O4) tetrahedra (T5+ = V, P) attached to the bases of the oxocentered tetrahedra in a "face-to-face" manner. The resulting electroneutral 3D framework {[O2Cu5](T5+O4)2}0 possesses channels occupied by monovalent metal cations M+ and halide ions X-. The halide ions are located at the centers of the hexagonal rings of the kagome nets, whereas the metal cations are in the interlayer space. There are at least four different structure types of the averievite-type compounds: the P-3m1 archetype, the 2 × 2 × 1 superstructure with the P-3 space group, the monoclinically distorted 1 × 1 × 2 superstructure with the C2/c symmetry and the low-temperature P21/c superstructure with a doubled unit cell relative to the high-temperature archetype. The formation of a particular structure type is controlled by the interplay of the chemical composition and temperature. Changing the chemical composition may lead to modification of the structure type, which opens up the possibility to tune the geometrical parameters of the kagome net of Cu2+ ions.

16.
Materials (Basel) ; 15(1)2021 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-35009321

RESUMEN

Doping plays a vital role in the application of transition-metal dichalcogenides (TMDCs) because it can increase the functionality of TMDCs by tuning their native characteristics. In this study, the influence of Mn, Fe, Co, and Cu doping on the photoelectric properties of HfS2 was investigated. Pristine, Mn-, Fe-, Co-, and Cu-doped HfS2 crystals were grown using the chemical vapor transport method. Scanning electron microscopy images showed that the crystals were layered and transmission electron microscopy, X-ray diffraction, and Raman spectroscopy measurements confirmed that the crystals were in the 1T-phase with a CdI2-like structure. The bandgap of pristine HfS2 obtained from the absorption and photoconductivity spectra was approximately 1.99 eV. As the dopant changed from Mn, Fe, and Co, to Cu, the bandgap gradually increased. The activation energies of the samples were determined using temperature-dependent current-voltage curves. After doping, the activation energy decreased, and the Co-doped HfS2 exhibited the smallest activation energy. Time-resolved photoresponse measurements showed that doping improved the response of HfS2 to light; the Co-doped HfS2 exhibited the best response. The photoresponsivity of HfS2 as a function of the laser power and bias voltage was measured. After doping, the photoresponsivity increased markedly; the Co-doped HfS2 exhibited the highest photoresponsivity. All the experimental results indicated that doping with Mn, Fe, Co, and Cu significantly improved the photoresponsive performance of HfS2, of which Co-doped HfS2 had the best performance.

17.
Small ; 16(45): e2003594, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33078576

RESUMEN

2D silicon nanosheets (SiNSs) are promising materials for biomedicine but facile synthesis of SiNSs remains a challenge. Herein, by means of a sulfur-iodine co-assisted chemical vapor transport method, octahedron silicon (oct-Si) crystals with fully exposed {111} planes are prepared as precursors for efficient synthesis of SiNSs by facet-selective exfoliation. The 13 nm thick SiNSs have good biocompatibility and the sharp Raman scattering signal facilitates intracellular Raman imaging upon exposure to a near-infrared (NIR) laser. Furthermore, the SiNSs have excellent NIR photothermal characteristics such as a large extinction coefficient of 11.3 L g-1 cm-1 and high photothermal conversion efficiency of 21.4% at 1064 nm. In vitro experiments demonstrate superior NIR-II photothermal therapeutic effects in killing cancer cells. Comparing to conventional methods, the novel facet-selective cleavage strategy is more controllable and environmentally friendly boding well for the fabrication of non-van der Waals 2D materials. The multimodal photonic behavior also suggests large potential of the SiNSs pertaining to integrated multi-NIR biophotonic techniques using single nanomaterials.


Asunto(s)
Nanoestructuras , Silicio
18.
Nano Lett ; 20(10): 7476-7481, 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-32897724

RESUMEN

Magnetic Weyl semimetals attract considerable interest not only for their topological quantum phenomena but also as an emerging materials class for realizing quantum anomalous Hall effect in the two-dimensional limit. A shandite compound Co3Sn2S2 with layered kagome-lattices is one such material, where vigorous efforts have been devoted to synthesize the two-dimensional crystal. Here, we report a synthesis of Co3Sn2S2 thin flakes with a thickness of 250 nm by chemical vapor transport method. We find that this facile bottom-up approach allows the formation of large-sized Co3Sn2S2 thin flakes of high-quality, where we identify the largest electron mobility (∼2600 cm2 V-1 s-1) among magnetic topological semimetals, as well as the large anomalous Hall conductivity (∼1400 Ω-1 cm-1) and anomalous Hall angle (∼32%) arising from the Berry curvature. Our study provides a viable platform for studying high-quality thin flakes of magnetic Weyl semimetal and stimulate further research on unexplored topological phenomena in the two-dimensional limit.

19.
ACS Nano ; 14(3): 3500-3508, 2020 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-32057230

RESUMEN

Halide perovskites have many important optoelectronic properties, including high emission efficiency, high absorption coefficients, color purity, and tunable emission wavelength, which makes these materials promising for optoelectronic applications. However, the inability to precisely control large-scale patterned growth of halide perovskites limits their potential toward various device applications. Here, we report a patterning method for the growth of a cesium lead halide perovskite single crystal array. Our approach consists of two steps: (1) cesium halide salt arrays patterning and (2) chemical vapor transport process to convert salt arrays into single crystal perovskite arrays. Characterizations including energy-dispersive X-ray spectroscopy and photoluminescence have been employed to confirm the chemical compositions and the optical properties of the as-synthesized perovskite arrays. This patterning method enables the patterning of single crystal cesium lead halide perovskite arrays with tunable spacing (from 2 to 20 µm) and crystal size (from 200 nm to 1.2 µm) in high production yield (almost every pixel in the array is successfully grown with converted perovskite crystals). Our large-scale patterning method renders a platform for the study of fundamental properties and opportunities for perovskite-based optoelectronic applications.

20.
Mikrochim Acta ; 187(2): 117, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31925565

RESUMEN

The room temperature polar vapor sensing behavior of a graphene-TiS3 heterojunction material and TiS3 nanoribbons is described. The nanoribbons were synthesized via chemical vapor transport (CVT) and their structure was investigated by scanning electron microscopy, high resolution transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, Raman and Fourier transform infrared spectroscopies. The gas sensing performance was assessed by following the changes in their resistivities. Sensing devices were fabricated with gold contacts and with lithographically patterned graphene (Gr) electrodes in a heterojunction Gr-TiS3-Gr. The gold contacted TiS3 device has a rather linear I-V behavior while the Gr-TiS3-Gr heterojunction forms a contact with a higher Schottky barrier (250 meV). The I-V responses of the sensors were recorded at room temperature at a relative humidity of 55% and for different ethanol vapor concentrations (varying from 2 to 20 ppm). The plots indicate an increase in the resistance of Gr-TiS3-Gr due to adsorption of water and ethanol with a relatively high sensing response (~495% at 2 ppm). The results reveal that stable responses to 2 ppm concentrations of ethanol are achieved at room temperature. The response and recovery times are around 8 s and 72 s, respectively. Weaker responses are obtained for methanol and acetone. Graphical abstract Schematic representation of resistance sensor for detection of low concentration of ethanol vapor. The graphene and TiS3 nanoribbons were synthesized using chemical vapor deposition and chemical vapor transport technique respectively. The 2D graphene/TiS3 heterojunction device was fabricated to make a high response sensor due to their synergy effect.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA