Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J R Soc Interface ; 20(208): 20230467, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-38016635

RESUMEN

Stochastic gene expression dynamics can be modelled either discretely or continuously. Previous studies have shown that the mRNA or protein number distributions of some simple discrete and continuous gene expression models are related by Gardiner's Poisson representation. Here, we systematically investigate the Poisson representation in complex stochastic gene regulatory networks. We show that when the gene of interest is unregulated, the discrete and continuous descriptions of stochastic gene expression are always related by the Poisson representation, no matter how complex the model is. This generalizes the results obtained in Dattani & Barahona (Dattani & Barahona 2017 J. R. Soc. Interface 14, 20160833 (doi:10.1098/rsif.2016.0833)). In addition, using a simple counter-example, we find that the Poisson representation in general fails to link the two descriptions when the gene is regulated. However, for a general stochastic gene regulatory network, we demonstrate that the discrete and continuous models are approximately related by the Poisson representation in the limit of large protein numbers. These theoretical results are further applied to analytically solve many complex gene expression models whose exact distributions are previously unknown.


Asunto(s)
Redes Reguladoras de Genes , Simulación por Computador , Procesos Estocásticos
2.
Phys Biol ; 20(5)2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37343568

RESUMEN

This study describes a method for controlling the production of protein in individual cells using stochastic models of gene expression. By combining modern microscopy platforms with optogenetic gene expression, experimentalists are able to accurately apply light to individual cells, which can induce protein production. Here we use a finite state projection based stochastic model of gene expression, along with Bayesian state estimation to control protein copy numbers within individual cells. We compare this method to previous methods that use population based approaches. We also demonstrate the ability of this control strategy to ameliorate discrepancies between the predictions of a deterministic model and stochastic switching system.


Asunto(s)
Proteínas , Humanos , Procesos Estocásticos , Teorema de Bayes , Expresión Génica
3.
J Math Biol ; 86(2): 28, 2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36637496

RESUMEN

Reactions involving three or more reactants, called higher-molecular reactions, play an important role in mathematical modelling in systems and synthetic biology. In particular, such reactions underpin a variety of important bio-dynamical phenomena, such as multi-stability/multi-modality, oscillations, bifurcations, and noise-induced effects. However, as opposed to reactions involving at most two reactants, called bi-molecular reactions, higher-molecular reactions are biochemically improbable. To bridge the gap, in this paper we put forward an algorithm for systematically approximating arbitrary higher-molecular reactions with bi-molecular ones, while preserving the underlying stochastic dynamics. Properties of the algorithm and convergence are established via singular perturbation theory. The algorithm is applied to a variety of higher-molecular biochemical networks, and is shown to play an important role in synthetic biology.


Asunto(s)
Algoritmos , Modelos Biológicos , Procesos Estocásticos , Simulación por Computador
4.
Chaos Solitons Fractals ; 164: 112671, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36091637

RESUMEN

The level of unpredictability of the COVID-19 pandemics poses a challenge to effectively model its dynamic evolution. In this study we incorporate the inherent stochasticity of the SARS-CoV-2 virus spread by reinterpreting the classical compartmental models of infectious diseases (SIR type) as chemical reaction systems modeled via the Chemical Master Equation and solved by Monte Carlo Methods. Our model predicts the evolution of the pandemics at the level of municipalities, incorporating for the first time (i) a variable infection rate to capture the effect of mitigation policies on the dynamic evolution of the pandemics (ii) SIR-with-jumps taking into account the possibility of multiple infections from a single infected person and (iii) data of viral load quantified by RT-qPCR from samples taken from Wastewater Treatment Plants. The model has been successfully employed for the prediction of the COVID-19 pandemics evolution in small and medium size municipalities of Galicia (Northwest of Spain).

5.
J R Soc Interface ; 19(192): 20220153, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35858045

RESUMEN

Estimating uncertainty in model predictions is a central task in quantitative biology. Biological models at the single-cell level are intrinsically stochastic and nonlinear, creating formidable challenges for their statistical estimation which inevitably has to rely on approximations that trade accuracy for tractability. Despite intensive interest, a sweet spot in this trade-off has not been found yet. We propose a flexible procedure for uncertainty quantification in a wide class of reaction networks describing stochastic gene expression including those with feedback. The method is based on creating a tractable coarse-graining of the model that is learned from simulations, a synthetic model, to approximate the likelihood function. We demonstrate that synthetic models can substantially outperform state-of-the-art approaches on a number of non-trivial systems and datasets, yielding an accurate and computationally viable solution to uncertainty quantification in stochastic models of gene expression.


Asunto(s)
Algoritmos , Modelos Biológicos , Expresión Génica , Procesos Estocásticos , Incertidumbre
6.
Math Biosci ; 347: 108828, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35461835

RESUMEN

Temporal variation of environmental stimuli leads to changes in gene expression. Since the latter is noisy and since many reaction events occur between the birth and death of an mRNA molecule, it is of interest to understand how a stimulus affects the transcript numbers measured at various sub-cellular locations. Here, we construct a stochastic model describing the dynamics of signal-dependent gene expression and its propagation downstream of transcription. For any time-dependent stimulus and assuming bursty gene expression, we devise a procedure which allows us to obtain time-dependent distributions of mRNA numbers at various stages of its life-cycle, e.g. in its nascent form at the transcription site, post-splicing in the nucleus, and after it is exported to the cytoplasm. We also derive an expression for the error in the approximation whose accuracy is verified via stochastic simulation. We find that, depending on the frequency of oscillation and the time of measurement, a stimulus can lead to cytoplasmic amplification or attenuation of transcriptional noise.


Asunto(s)
Modelos Genéticos , Simulación por Computador , Citoplasma , ARN Mensajero/genética , Procesos Estocásticos
7.
Proc Natl Acad Sci U S A ; 119(11): e2114438119, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35271387

RESUMEN

SignificanceAt the single-cell level, biochemical processes are inherently stochastic. For many natural systems, the resulting cell-to-cell variability is exploited by microbial populations. In synthetic biology, however, the interplay of cell-to-cell variability and population processes such as selection or growth often leads to circuits not functioning as predicted by simple models. Here we show how multiscale stochastic kinetic models that simultaneously track single-cell and population processes can be obtained based on an augmentation of the chemical master equation. These models enable us to quantitatively predict complex population dynamics of a yeast optogenetic differentiation system from a specification of the circuit's components and to demonstrate how cell-to-cell variability can be exploited to purposefully create unintuitive circuit functionality.


Asunto(s)
Variación Biológica Poblacional , Redes Reguladoras de Genes , Optogenética , Saccharomyces cerevisiae , Análisis de la Célula Individual , Optogenética/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Análisis de la Célula Individual/métodos , Procesos Estocásticos , Biología Sintética
8.
Math Biosci Eng ; 19(2): 2095-2119, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35135243

RESUMEN

eRNAs as the products of enhancers can regulate gene expression via various possible ways, but which regulation way is more reasonable is debatable in biology, and in particular, how eRNAs impact gene expression remains unclear. Here we introduce a mechanistic model of gene expression to address these issues. This model considers three possible regulation ways of eRNA: Type-I by which eRNA regulates transcriptional activity by facilitating the formation of enhancer-promoter (E-P) loop, Type-II by which eRNA directly promotes the mRNA production rate, and mixed regulation (i.e., the combination of Type-I and Type-II). We show that with the increase of the E-P loop length, mRNA distribution can transition from unimodality to bimodality or vice versa in all the three regulation cases. However, in contrast to the other two regulations, Type-II regulation can lead to the highest mean mRNA level and the lowest mRNA noise, independent of the E-P loop length. These results would not only reveal the essential mechanism of how eRNA regulates gene expression, but also imply a new mechanism for phenotypic switching, namely the E-P loop can induce phenotypic switching.


Asunto(s)
Elementos de Facilitación Genéticos , Regulación de la Expresión Génica , Expresión Génica , Regiones Promotoras Genéticas , ARN Mensajero/genética , Transcripción Genética
9.
Math Biosci ; 343: 108760, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34883103

RESUMEN

Neurotransmission at chemical synapses relies on the calcium-induced fusion of synaptic vesicles with the presynaptic membrane. The distance of the synaptic vesicle to the calcium channels determines the release probability and consequently the postsynaptic signal. Suitable models of the process need to capture both the mean and the variance observed in electrophysiological measurements of the postsynaptic current. In this work, we propose a method to directly compute the exact first- and second-order moments for signals generated by a linear reaction network under convolution with an impulse response function, rendering computationally expensive numerical simulations of the underlying stochastic counting process obsolete. We show that the autocorrelation of the process is central for the calculation of the filtered signal's second-order moments, and derive a system of PDEs for the cross-correlation functions (including the autocorrelations) of linear reaction networks with time-dependent rates. Finally, we employ our method to efficiently compare different spatial coarse graining approaches for a specific model of synaptic vesicle fusion. Beyond the application to neurotransmission processes, the developed theory can be applied to any linear reaction system that produces a filtered stochastic signal.


Asunto(s)
Transmisión Sináptica , Vesículas Sinápticas , Fenómenos Electrofisiológicos , Procesos Estocásticos , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Vesículas Sinápticas/fisiología
10.
J Am Soc Mass Spectrom ; 32(12): 2842-2851, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34787413

RESUMEN

The photoisomerization behavior of styryl 9M, a common dye used in material sciences, is investigated using tandem ion mobility spectrometry (IMS) coupled with laser spectroscopy. Styryl 9M has two alkene linkages, potentially allowing for four geometric isomers. IMS measurements demonstrate that at least three geometric isomers are generated using electrospray ionization with the most abundant forms assigned to a combination of EE (major) and ZE (minor) geometric isomers, which are difficult to distinguish using IMS as they have similar collision cross sections. Two additional but minor isomers are generated by collisional excitation of the electrosprayed styryl 9M ions and are assigned to the EZ and ZZ geometric isomers, with the latter predicted to have a π-stacked configuration. The isomer assignments are supported through calculations of equilibrium structures, collision cross sections, and statistical isomerization rates. Photoexcitation of selected isomers using an IMS-photo-IMS strategy shows that each geometric isomer photoisomerizes following absorption of near-infrared and visible light, with the EE isomer possessing a S1 ← S0 electronic transition with a band maximum near 680 nm and shorter wavelength S2 ← S0 electronic transition with a band maximum near 430 nm. The study demonstrates the utility of the IMS-photo-IMS strategy for providing fundamental gas-phase photochemical information on molecular systems with multiple isomerizable bonds.

11.
J Math Biol ; 83(5): 48, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34635944

RESUMEN

The chemical master equation (CME) is a fundamental description of interacting molecules commonly used to model chemical kinetics and noisy gene regulatory networks. Exact time-dependent solutions of the CME-which typically consists of infinitely many coupled differential equations-are rare, and are valuable for numerical benchmarking and getting intuition for the behavior of more complicated systems. Jahnke and Huisinga's landmark calculation of the exact time-dependent solution of the CME for monomolecular reaction systems is one of the most general analytic results known; however, it is hard to generalize, because it relies crucially on special properties of monomolecular reactions. In this paper, we rederive Jahnke and Huisinga's result on the time-dependent probability distribution and moments of monomolecular reaction systems using the Doi-Peliti path integral approach, which reduces solving the CME to evaluating many integrals. While the Doi-Peliti approach is less intuitive, it is also more mechanical, and hence easier to generalize. To illustrate how the Doi-Peliti approach can go beyond the method of Jahnke and Huisinga, we also find an explicit and exact time-dependent solution to a problem involving an autocatalytic reaction that Jahnke and Huisinga identified as not solvable using their method. Most interestingly, we are able to find a formal exact time-dependent solution for any CME whose list of reactions involves only zero and first order reactions, which may be the most general result currently known. This formal solution also yields a useful algorithm for efficiently computing numerical solutions to CMEs of this type.


Asunto(s)
Algoritmos , Redes Reguladoras de Genes , Simulación por Computador , Probabilidad , Procesos Estocásticos
12.
Patterns (N Y) ; 2(9): 100332, 2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34553172

RESUMEN

Single-cell RNA sequencing (scRNA-seq) has become ubiquitous in biology. Recently, there has been a push for using scRNA-seq snapshot data to infer the underlying gene regulatory networks (GRNs) steering cellular function. To date, this aspiration remains unrealized due to technical and computational challenges. In this work we focus on the latter, which is under-represented in the literature. We took a systemic approach by subdividing the GRN inference into three fundamental components: data pre-processing, feature extraction, and inference. We observed that the regulatory signature is captured in the statistical moments of scRNA-seq data and requires computationally intensive minimization solvers to extract it. Furthermore, current data pre-processing might not conserve these statistical moments. Although our moment-based approach is a didactic tool for understanding the different compartments of GRN inference, this line of thinking-finding computationally feasible multi-dimensional statistics of data-is imperative for designing GRN inference methods.

13.
J Theor Biol ; 530: 110851, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34343578

RESUMEN

Rule-based models generalise reaction-based models with reagents that have internal state and may be bound together to form complexes, as in chemistry. An important class of system that would be intractable if expressed as reactions or ordinary differential equations can be efficiently simulated when expressed as rules. In this paper we demonstrate the utility of the rule-based approach for epidemiological modelling presenting a suite of seven models illustrating the spread of infectious disease under different scenarios: wearing masks, infection via fomites and prevention by hand-washing, the concept of vector-borne diseases, testing and contact tracing interventions, disease propagation within motif-structured populations with shared environments such as schools, and superspreading events. Rule-based models allow to combine transparent modelling approach with scalability and compositionality and therefore can facilitate the study of aspects of infectious disease propagation in a richer context than would otherwise be feasible.


Asunto(s)
Epidemias , Trazado de Contacto , Modelos Biológicos , Modelos Estadísticos
14.
J R Soc Interface ; 18(178): 20210274, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34034535

RESUMEN

The chemical master equation and the Gillespie algorithm are widely used to model the reaction kinetics inside living cells. It is thereby assumed that cell growth and division can be modelled through effective dilution reactions and extrinsic noise sources. We here re-examine these paradigms through developing an analytical agent-based framework of growing and dividing cells accompanied by an exact simulation algorithm, which allows us to quantify the dynamics of virtually any intracellular reaction network affected by stochastic cell size control and division noise. We find that the solution of the chemical master equation-including static extrinsic noise-exactly agrees with the agent-based formulation when the network under study exhibits stochastic concentration homeostasis, a novel condition that generalizes concentration homeostasis in deterministic systems to higher order moments and distributions. We illustrate stochastic concentration homeostasis for a range of common gene expression networks. When this condition is not met, we demonstrate by extending the linear noise approximation to agent-based models that the dependence of gene expression noise on cell size can qualitatively deviate from the chemical master equation. Surprisingly, the total noise of the agent-based approach can still be well approximated by extrinsic noise models.


Asunto(s)
Algoritmos , Modelos Biológicos , Tamaño de la Célula , Simulación por Computador , Expresión Génica , Cinética , Procesos Estocásticos
15.
J Comput Biol ; 28(3): 257-268, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33370157

RESUMEN

In a series of previous studies, we provided a stochastic description of a theory of synaptic plasticity. This theory, called BCM from the names of the three authors, has been formulated in two ways: the original formulation, where the plasticity threshold is defined as the square of the time-averaged neuronal activity, and a newer formulation, where the plasticity threshold is defined as the time average of the square of the neuronal activity. The newest formulation of the BCM rule of synaptic activity has interesting statistical properties, derived from a risk (or energy) function, the minimization of which leads to seeking of interesting projections in high-dimensional space. Moreover, these two rules, if implemented by a chemical master equation approach, show another interesting difference: the original rule satisfies the detailed balance, whereas the other not. Based on this different behavior, we found a continuous parameterization between these two rules. This parameterization shows a minimum that corresponds to maximum negative eigenvalues of the Jacobian matrix. In addition, the newest rule, due to the fact that it is in a nonequilibrium steady state (NESS), shows a higher level of plasticity than the original rule. This higher level of plasticity has to be interpreted in the framework of open thermodynamical systems and we show that entropy production and energy consumption in the newest rule are both less than in the original BCM rule.


Asunto(s)
Plasticidad Neuronal/fisiología , Neuronas/fisiología , Entropía , Termodinámica
16.
J Stat Phys ; 181(6): 2257-2303, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33268907

RESUMEN

We consider various modeling levels for spatially homogeneous chemical reaction systems, namely the chemical master equation, the chemical Langevin dynamics, and the reaction-rate equation. Throughout we restrict our study to the case where the microscopic system satisfies the detailed-balance condition. The latter allows us to enrich the systems with a gradient structure, i.e. the evolution is given by a gradient-flow equation. We present the arising links between the associated gradient structures that are driven by the relative entropy of the detailed-balance steady state. The limit of large volumes is studied in the sense of evolutionary Γ -convergence of gradient flows. Moreover, we use the gradient structures to derive hybrid models for coupling different modeling levels.

17.
BMC Bioinformatics ; 21(1): 515, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33176690

RESUMEN

BACKGROUND: Numerical solutions of the chemical master equation (CME) are important for understanding the stochasticity of biochemical systems. However, solving CMEs is a formidable task. This task is complicated due to the nonlinear nature of the reactions and the size of the networks which result in different realizations. Most importantly, the exponential growth of the size of the state-space, with respect to the number of different species in the system makes this a challenging assignment. When the biochemical system has a large number of variables, the CME solution becomes intractable. We introduce the intelligent state projection (ISP) method to use in the stochastic analysis of these systems. For any biochemical reaction network, it is important to capture more than one moment: this allows one to describe the system's dynamic behaviour. ISP is based on a state-space search and the data structure standards of artificial intelligence (AI). It can be used to explore and update the states of a biochemical system. To support the expansion in ISP, we also develop a Bayesian likelihood node projection (BLNP) function to predict the likelihood of the states. RESULTS: To demonstrate the acceptability and effectiveness of our method, we apply the ISP method to several biological models discussed in prior literature. The results of our computational experiments reveal that the ISP method is effective both in terms of the speed and accuracy of the expansion, and the accuracy of the solution. This method also provides a better understanding of the state-space of the system in terms of blueprint patterns. CONCLUSIONS: The ISP is the de-novo method which addresses both accuracy and performance problems for CME solutions. It systematically expands the projection space based on predefined inputs. This ensures accuracy in the approximation and an exact analytical solution for the time of interest. The ISP was more effective both in predicting the behavior of the state-space of the system and in performance management, which is a vital step towards modeling large biochemical systems.


Asunto(s)
Modelos Biológicos , Teorema de Bayes , Catálisis , Cadenas de Markov , Procesos Estocásticos
18.
R Soc Open Sci ; 7(2): 190462, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32257298

RESUMEN

Fractional killing, which is a significant impediment to successful chemotherapy, is observed even in a population of genetically identical cancer cells exposed to apoptosis-inducing agents. This phenomenon arises not from genetic mutation but from cell-to-cell variation in the activation timing and level of the proteins that regulates apoptosis. To understand the mechanism behind the phenomenon, we formulate complex fractional killing processes as a first-passage time (FPT) problem with a stochastically fluctuating boundary. Analytical calculations are performed for the FPT distribution in a toy model of stochastic p53 gene expression, where the cancer cell is killed only when the p53 expression level crosses an active apoptotic threshold. Counterintuitively, we find that threshold fluctuations can effectively enhance cellular killing by significantly decreasing the mean time that the p53 protein reaches the threshold level for the first time. Moreover, faster fluctuations lead to the killing of more cells. These qualitative results imply that fluctuations in threshold are a non-negligible stochastic source, and can be taken as a strategy for combating fractional killing of cancer cells.

19.
Adv Exp Med Biol ; 1131: 771-797, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31646534

RESUMEN

In this article, we present an overview of simulation strategies in the context of subcellular domains where calcium-dependent signaling plays an important role. The presentation follows the spatial and temporal scales involved and represented by each algorithm. As an exemplary cell type, we will mainly cite work done on striated muscle cells, i.e. skeletal and cardiac muscle. For these cells, a wealth of ultrastructural, biophysical and electrophysiological data is at hand. Moreover, these cells also express ubiquitous signaling pathways as they are found in many other cell types and thus, the generalization of the methods and results presented here is straightforward.The models considered comprise the basic calcium signaling machinery as found in most excitable cell types including Ca2+ ions, diffusible and stationary buffer systems, and calcium regulated calcium release channels. Simulation strategies can be differentiated in stochastic and deterministic algorithms. Historically, deterministic approaches based on the macroscopic reaction rate equations were the first models considered. As experimental methods elucidated highly localized Ca2+ signaling events occurring in femtoliter volumes, stochastic methods were increasingly considered. However, detailed simulations of single molecule trajectories are rarely performed as the computational cost implied is too large. On the mesoscopic level, Gillespie's algorithm is extensively used in the systems biology community and with increasing frequency also in models of microdomain calcium signaling. To increase computational speed, fast approximations were derived from Gillespie's exact algorithm, most notably the chemical Langevin equation and the τ-leap algorithm. Finally, in order to integrate deterministic and stochastic effects in multiscale simulations, hybrid algorithms are increasingly used. These include stochastic models of ion channels combined with deterministic descriptions of the calcium buffering and diffusion system on the one hand, and algorithms that switch between deterministic and stochastic simulation steps in a context-dependent manner on the other. The basic assumptions of the listed methods as well as implementation schemes are given in the text. We conclude with a perspective on possible future developments of the field.


Asunto(s)
Señalización del Calcio , Calcio , Simulación por Computador , Algoritmos , Animales , Calcio/metabolismo , Canales de Calcio , Fenómenos Electrofisiológicos , Humanos , Modelos Biológicos , Procesos Estocásticos
20.
Proc Natl Acad Sci U S A ; 116(47): 23542-23550, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31685609

RESUMEN

Many cellular processes are governed by stochastic reaction events. These events do not necessarily occur in single steps of individual molecules, and, conversely, each birth or death of a macromolecule (e.g., protein) could involve several small reaction steps, creating a memory between individual events and thus leading to nonmarkovian reaction kinetics. Characterizing this kinetics is challenging. Here, we develop a systematic approach for a general reaction network with arbitrary intrinsic waiting-time distributions, which includes the stationary generalized chemical-master equation (sgCME), the stationary generalized Fokker-Planck equation, and the generalized linear-noise approximation. The first formulation converts a nonmarkovian issue into a markovian one by introducing effective transition rates (that explicitly decode the effect of molecular memory) for the reactions in an equivalent reaction network with the same substrates but without molecular memory. Nonmarkovian features of the reaction kinetics can be revealed by solving the sgCME. The latter 2 formulations can be used in the fast evaluation of fluctuations. These formulations can have broad applications, and, in particular, they may help us discover new biological knowledge underlying memory effects. When they are applied to generalized stochastic models of gene-expression regulation, we find that molecular memory is in effect equivalent to a feedback and can induce bimodality, fine-tune the expression noise, and induce switch.


Asunto(s)
Regulación de la Expresión Génica , Líquido Intracelular/fisiología , Cadenas de Markov , Modelos Biológicos , Modelos Químicos , Modelos Genéticos , Cinética , Procesos Estocásticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA