Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 418
Filtrar
1.
Mar Pollut Bull ; 207: 116939, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39243471

RESUMEN

Marine microorganisms like Tistrella are essential for producing bioactive compounds, including didemnins with antitumor and antiviral properties. However, our understanding of Tistrella's ecological features and didemnin production in natural environments is limited. In this study, we used genomics and metagenomics to show that Tistrella is widely distributed across natural habitats, especially in marine environments from the surface to 5000 m deep, with distinct non-random distribution patterns revealed by co-occurrence analysis. Importantly, transcriptional profiling of didemnin biosynthetic gene clusters indicates active in situ production of this compound within marine ecosystems. These findings enhance our understanding of Tistrella's ecology and secondary metabolite production in natural environments. Further research is needed to explore the ecological dynamics and functional impacts of Tistrella in these ecosystems.


Asunto(s)
Ecosistema , Microbiota , Organismos Acuáticos , Metagenómica , Agua de Mar/microbiología , Agua de Mar/química
2.
Prog Chem Org Nat Prod ; 124: 57-183, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39101984

RESUMEN

Plants are excellent chemists with an impressive capability of biosynthesizing a large variety of natural products (also known as secondary or specialized metabolites) to resist various biotic and abiotic stresses. In this chapter, 989 plant natural products and their ecological functions in plant-herbivore, plant-microorganism, and plant-plant interactions are reviewed. These compounds include terpenoids, phenols, alkaloids, and other structural types. Terpenoids usually provide direct or indirect defense functions for plants, while phenolic compounds play important roles in regulating the interactions between plants and other organisms. Alkaloids are frequently toxic to herbivores and microorganisms, and can therefore also provide defense functions. The information presented should provide the basis for in-depth research of these plant natural products and their natural functions, and also for their further development and utilization.


Asunto(s)
Alcaloides , Productos Biológicos , Plantas , Terpenos , Productos Biológicos/química , Productos Biológicos/farmacología , Plantas/química , Terpenos/química , Alcaloides/química , Fenoles/química
3.
Ecol Evol ; 14(8): e70063, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39091327

RESUMEN

Eusocial insects, such as ants and termites, are characterized by high levels of coordinated social organization. This is contrasted by solitary insects that display more limited forms of collective behavior. It has been hypothesized that this gradient in sociobehavioral sophistication is positively correlated with chemical profile complexity, due to a potentially increased demand for diversity in chemical communication mechanisms in insects with higher levels of social complexity. However, this claim has rarely been assessed empirically. Here, we compare different levels of chemical and transcriptomic complexity in selected species of the order Blattodea that represent different levels of social organization, from solitary to eusocial. We primarily focus on cuticular hydrocarbon (CHC) complexity, since it has repeatedly been demonstrated that CHCs are key signaling molecules conveying a wide variety of chemical information in solitary as well as eusocial insects. We assessed CHC complexity and divergence between our studied taxa of different social complexity levels as well as the differentiation of their respective repertoires of CHC biosynthesis gene transcripts. Surprisingly, we did not find any consistent pattern of chemical complexity correlating with social complexity, nor did the overall chemical divergence or transcriptomic repertoire of CHC biosynthesis genes reflect on the levels of social organization. Our results challenge the assumption that increasing social complexity is generally reflected in more complex chemical profiles and point toward the need for a more cautious and differentiated view on correlating complexity on a chemical, genetic, and social level.

4.
Biol Methods Protoc ; 9(1): bpae054, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39131584

RESUMEN

The integration of data from multiple sources and analytical techniques to obtain novel insights and answer challenging questions is a hallmark of modern science. In arthropods, exocrine secretions may act as pheromones, defensive substances, antibiotics, as well as surface protectants, and as such they play a crucial role in ecology and evolution. Exocrine chemical compounds are frequently characterized by gas chromatography-mass spectrometry. Technological advances of recent years now allow us to routinely characterize the total gene complement transcribed in a particular biological tissue, often in the context of experimental treatment, via RNAseq. We here introduce a novel methodological approach to successfully characterize exocrine secretions and full transcriptomes of one and the same individual of oribatid mites. We found that chemical extraction prior to RNA extraction had only minor effects on the total RNA integrity. De novo transcriptomes obtained from such combined extractions were of comparable quality to those assembled for samples that were subject to RNA extraction only, indicating that combined chemical/RNA extraction is perfectly suitable for phylotranscriptomic studies. However, in-depth analysis of RNA expression analysis indicates that chemical extraction prior to RNAseq may affect transcript degradation rates, similar to the effects reported in previous studies comparing RNA extraction protocols. With this pilot study, we demonstrate that profiling chemical secretions and RNA expression levels from the same individual is methodologically feasible, paving the way for future research to understand the genes and pathways underlying the syntheses of biogenic chemical compounds. Our approach should be applicable broadly to most arachnids, insects, and other arthropods.

5.
Plants (Basel) ; 13(16)2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39204666

RESUMEN

Sawfly species of the genus Monophadnus are specialised on Ranunculaceae plants from which the larvae can sequester furostanol saponins into the haemolymph, mainly (25R)-26-[(α-L-rhamnopyranosyl)oxy]-22α-methoxyfurost-5-en-3ß-yl-O-ß-D-glucopyranosyl-(1→3)-O-[6-acetyl-ß-D-glucopyranosyl-(1→3)]-O-ß-D-glucopyranoside (compound 1). In this work, TLC, GC-MS, and HPLC-DAD-ESI/MS analyses together with feeding, repeated simulated attacks, and ant deterrence bioassays were conducted to extend the chemoecological knowledge about two sawfly species specialised on H. foetidus L. (Monophadnus species A) and H. viridis L. (Monophadnus species B). Larvae of Monophadnus species B were mostly feeding on the squares treated with the n-butanol fraction from H. foetidus, compound 1 being its primary non-nutritional stimulant. In contrast, all H. viridis fractions stimulated feeding, with n-hexane marginally more active. ß-sitosterol within n-hexane was determined as the nutritional stimulant. Quantitative analyses demonstrated that leaves of H. viridis but not H. foetidus contain the ecdysteroids 20-hydroxyecdysone and polypodine B. Moreover, the haemolymph of Monophadnus species B larvae reared on H. viridis contained the glycosides of polypodine B and 20-hydroxyecdysone at a concentration of 2.5 to 6.8 µmol/g fresh weight of haemolymph. This concentration is several thousand times higher than the concentration range of the aglycones in their host plant (3.63 × 10-4 to 2.23 × 10-4 µmol total ecdysteroids/g fresh weight of leaves), suggesting bioaccumulation. The larvae of both species fed on H. foetidus do not show any traces of ecdysteroids in their haemolymph, indicating a facultative role of these compounds in their defence as well as their inability to endogenously synthesise these compounds. The haemolymph containing ecdysteroids was a significant feeding deterrent against Myrmica rubra L. ant workers (one of their natural predators) at 0.8 mg/mL. The larvae kept effective deterrent levels of glycosylated ecdysteroids (≅175 mM) between simulated attacks on days 1 and 2, but the levels clearly decreased on day 3 (≅75 mM). Most larvae (89%) survived a first attack but only 23% a consecutive second one. As a conclusion, we report for the first time that two Monophadnus species feeding on H. viridis sequester phytoecdysteroids into the larval haemolymph in the form of glycosides. In addition, compound 1 possesses defensive and phagostimulant activities, and we present evidence for a combined effect of furostanol saponins and ecdysteroids as repellents against ants.

6.
J Chem Ecol ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958678

RESUMEN

Characteristics such as calcareous morphology and life cycle are used to understand the ecology of calcified rhodophytes. However, there is limited information regarding their chemical profiles and biological activities. Therefore, a systematic review (PRISMA) was conducted to assess the influence of the chemistry of calcareous rhodophytes on ecological interactions in the marine environment. The keywords used were: ["Chemical AND [Ecology OR Interaction OR Response OR Defense OR Effect OR Cue OR Mediated OR Induce]"] AND ["Red Seaweed" OR "Red Macroalgae" OR Rhodophy?] AND [Calcified OR Calcareous] in Science Direct, Scielo, PUBMED, Springer, Web of Science, and Scopus. Only English articles within the proposed theme were considered. Due to the low number of articles, another search was conducted with three classes and 16 genera. Finally, 67 articles were considered valid. Their titles, abstracts, and keywords were analyzed using IRaMuTeQ through factorial, hierarchical and similarity classification. Most of the studies used macroalgae thallus to evaluate chemical mediation while few tested crude extracts. Some substances were noted as sesquiterpene (6-hydroxy-isololiolide), fatty acid (heptadeca5,8,11-triene) and dibromomethane. The articles were divided into four classes: Herbivory, Competition, Settlement/Metamorphosis, and Epiphytism. Crustose calcareous algae were associated with studies of Settlement/Metamorphosis, while calcified algae were linked to herbivory. Thus, the importance of chemistry in the ecology of these algae is evident,and additional studies are needed to identify the substances responsible for ecological interactions. This study collected essential information on calcified red algae, whose diversity appears to be highly vulnerable to the harmful impacts of ongoing climate change.

7.
Appl Environ Microbiol ; 90(7): e0034224, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38899884

RESUMEN

Black apples are the result of late-stage microbial decomposition after falling to the ground. This phenomenon is highly comparable from year to year, with the filamentous fungus Monilinia fructigena most commonly being the first invader, followed by Penicillium expansum. Motivated by the fact that only little chemistry has been reported from apple microbiomes, we set out to investigate the chemical diversity and potential ecological roles of secondary metabolites (SMs) in a total of 38 black apples. Metabolomics analyses were conducted on either whole apples or small excisions of fungal biomass derived from black apples. Annotation of fungal SMs in black apple extracts was aided by the cultivation of 15 recently isolated fungal strains on 9 different substrates in a One Strain Many Compounds (OSMAC) approach, leading to the identification of 3,319 unique chemical features. Only 6.4% were attributable to known compounds based on analysis of high-performance liquid chromatography-high-resolution mass spectrometry (HPLC-HRMS/MS) data using spectral library matching tools. Of the 1,606 features detected in the black apple extracts, 32% could be assigned as fungal-derived, due to their presence in the OSMAC-based training data set. Notably, the detection of several antifungal compounds indicates the importance of such compounds for the invasion of and control of other microbial competitors on apples. In conclusion, the diversity and abundance of microbial SMs on black apples were found to be much higher than that typically observed for other environmental microbiomes. Detection of SMs known to be produced by the six fungal species tested also highlights a succession of fungal growth following the initial invader M. fructigena.IMPORTANCEMicrobial secondary metabolites constitute a significant reservoir of biologically potent and clinically valuable chemical scaffolds. However, their usefulness is hampered by rapidly developing resistance, resulting in reduced profitability of such research endeavors. Hence, the ecological role of such microbial secondary metabolites must be considered to understand how best to utilize such compounds as chemotherapeutics. Here, we explore an under-investigated environmental microbiome in the case of black apples; a veritable "low-hanging fruit," with relatively high abundances and diversity of microbially produced secondary metabolites. Using both a targeted and untargeted metabolomics approach, the interplay between metabolites, other microbes, and the apple host itself was investigated. This study highlights the surprisingly low incidence of known secondary metabolites in such a system, highlighting the need to study the functionality of secondary metabolites in microbial interactions and complex microbiomes.


Asunto(s)
Malus , Penicillium , Metabolismo Secundario , Malus/microbiología , Penicillium/metabolismo , Penicillium/aislamiento & purificación , Penicillium/genética , Hongos/clasificación , Hongos/metabolismo , Hongos/genética , Hongos/aislamiento & purificación , Ascomicetos/metabolismo , Ascomicetos/genética , Ascomicetos/clasificación , Metabolómica , Microbiota , Biodiversidad , Micobioma
8.
J Chem Ecol ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38896387

RESUMEN

Tsetse flies (Diptera: Glossinidae) are the cyclical vectors of human and animal trypanosomes. This viviparous insect develops and produces a single larva at 10-day intervals deposited in specific sites. In some species aggregation of larvae has been shown and seems to be mediated by both physical factors and volatile semiochemicals of larval origin. In this context, this study aims to identify chemicals emitted during the pupariation process in Glossina palpalis gambiensis. Volatile Organic Compounds (VOCs) emitted by larvae were identified using static headspace solid-phase microextraction and gas-chromatography mass-spectrometry (GC-MS) analysis. Electrophysiology and behavioural assays were performed on gravid females to confirm VOCs behavioural activity and attractiveness. GC-MS results revealed ten chemicals emitted during the pupariation process of G. p. gambiensis larvae. Among these chemicals, gravid females were shown to detect nine of them during coupled gas chromatography - electroantennographic detection tests. Behavioural assays highlighted two compounds were as attractive as pupae and one compound and a blend of four compounds were more attractive than pupae. Although the larval origin of some of them needs to be confirmed as they may also likely produced by micro-organisms, these compounds induced significant behavioural responses in the laboratory. Further experiments have to explore the biological activity and competitiveness of these compounds in the field. This work opens interesting opportunities for behavioural manipulation and control of tsetse flies.

9.
J Chem Ecol ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38842636

RESUMEN

Animals that consume toxic diets provide models for understanding the molecular and physiological adaptations to ecological challenges. Garter snakes (Thamnophis) in western North America prey on Pacific newts (Taricha), which employ tetrodotoxin (TTX) as an antipredator defense. These snakes possess mutations in voltage-gated sodium channels (Nav), the molecular targets of TTX, that decrease the binding ability of TTX to sodium channels (target-site resistance). However, genetic variation at these loci that cannot explain all the phenotypic variation in TTX resistance in Thamnophis. We explored a separate means of resistance, toxin metabolism, to determine if TTX-resistant snakes either rapidly remove TTX or sequester TTX. We examined the metabolism and distribution of TTX in the body (toxicokinetics), to determine differences between TTX-resistant and TTX-sensitive snakes in the rates at which TTX is eliminated from organs and the whole body (using TTX half-life as our metric). We assayed TTX half-life in snakes from TTX-resistant and TTX-sensitive populations of three garter snake species with a coevolutionary history with newts (T. atratus, T. couchii, T. sirtalis), as well as two non-resistant "outgroup" species (T. elegans, Pituophis catenifer) that seldom (if ever) engage newts. We found TTX half-life varied across species, populations, and tissues. Interestingly, TTX half-life was shortest in T. elegans and P. catenifer compared to all other snakes. Furthermore, TTX-resistant populations of T. couchii and T. sirtalis eliminated TTX faster (shorter TTX half-life) than their TTX-sensitive counterparts, while populations of TTX-resistant and TTX-sensitive T. atratus showed no difference rates of TTX removal (same TTX half-life). The ability to rapidly eliminate TTX may have permitted increased prey consumption, which may have promoted the evolution of additional resistance mechanisms. Finally, snakes still retain substantial amounts of TTX, and we projected that snakes could be dangerous to their own predators days to weeks following the ingestion of a single newt. Thus, aspects of toxin metabolism may have been key in driving predator-prey relationships, and important in determining other ecological interactions.

10.
Planta ; 260(1): 15, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38829528

RESUMEN

MAIN CONCLUSION: One of seven Solanum taxa studied displayed associations between pollen presence and floral scent composition and volume, suggesting buzz-pollinated plants rarely use scent as an honest cue for foraging pollinators. Floral scent influences the recruitment, learning, and behaviour of floral visitors. Variation in floral scent can provide information on the amount of reward available or whether a flower has been visited recently and may be particularly important in species with visually concealed rewards. In many buzz-pollinated flowers, tubular anthers opening via small apical pores (poricidal anthers) visually conceal pollen and appear similar regardless of pollen quantity within the anther. We investigated whether pollen removal changes floral scent composition and emission rate in seven taxa of buzz-pollinated Solanum (Solanaceae). We found that pollen removal reduced both the overall emission of floral scent and the emission of specific compounds (linalool and farnesol) in S. lumholtzianum. Our findings suggest that in six out of seven buzz-pollinated taxa studied here, floral scent could not be used as a signal by visitors as it does not contain information on pollen availability.


Asunto(s)
Flores , Odorantes , Polen , Polinización , Solanum , Solanum/fisiología , Solanum/química , Polinización/fisiología , Flores/fisiología , Flores/química , Polen/fisiología , Polen/química , Odorantes/análisis , Animales , Abejas/fisiología
11.
Environ Entomol ; 53(4): 677-686, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-38775360

RESUMEN

Pear psylla, Cacopsylla pyricola (Foerster) (Hemiptera: Psyllidae), occurs as 2 seasonal morphotypes. Summerforms occur on pear (Pyrus communis L.; Rosales: Rosaceae) where they are a significant pest. The larger and darker winterform morphotype develops in response to shortening daylengths and begins winter in reproductive diapause characterized by the absence of ovarian development. Diapausing winterforms often leave pear to overwinter on coniferous shelter plants and then return to pear in late winter and early spring to begin depositing the eggs that produce the first summerform generation. Cacopsylla pyricola adults are attracted to the color of foliage most of the year, but little is known about the role of plant volatiles in host finding and in seasonal dispersal between host and shelter plants by the psyllid. We used a Y-tube olfactometer and choice assays to investigate the response by C. pyricola adults to volatiles emitted by pear and an evergreen tree (cypress) often used as a shelter plant by wintering C. pyricola. Attraction to pear and cypress volatiles varied by season, tree phenology, and psyllid physiology. Cacopsylla pyricola were attracted to cypress volatiles and preferred to settle on cypress shoots during winter and early spring but then shifted to a marked preference for the pear developmental host in late spring and summer. Female C. pyricola exhibited stronger responses to pear volatiles than did males. Our study is the first to show that plant volatiles have a role in host finding by C. pyricola and provides a foundation for research on chemical ecology and management of C. pyricola.


Asunto(s)
Hemípteros , Pyrus , Estaciones del Año , Compuestos Orgánicos Volátiles , Animales , Hemípteros/fisiología , Compuestos Orgánicos Volátiles/metabolismo , Femenino , Masculino
12.
Trends Plant Sci ; 29(8): 848-855, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38744599

RESUMEN

Living organisms use both chemical and mechanical stimuli to survive in their environment. Substrate-borne vibrations play a significant role in mediating behaviors in animals and inducing physiological responses in plants, leading to the emergence of the discipline of biotremology. Biotremology is experiencing rapid growth both in fundamental research and in applications like pest control, drawing attention from diverse audiences. As parallels with concepts and approaches in chemical ecology emerge, there is a pressing need for a shared standardized vocabulary in the area of overlap for mutual understanding. In this article, we propose an updated set of terms in biotremology rooted in chemical ecology, using the suffix '-done' derived from the classic Greek word 'δονέω' (pronounced 'doneo'), meaning 'to shake'.


Asunto(s)
Ecología , Terminología como Asunto , Plantas/metabolismo , Animales
13.
J Agric Food Chem ; 72(22): 12478-12488, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38769753

RESUMEN

Pseudococcus longispinus (Targioni-Tozzetti) (Hemiptera: Coccoidea: Pseudococcidae), a polyphagous and cosmopolitan pest native to Australia, is a highly damaging pest for numerous crops of economic importance. The sex pheromone of this species (2-(1,5,5-trimethylcyclopent-2-en-1-yl)ethyl acetate), currently used for pest monitoring purposes, was not attractive to males in field experiments conducted in Spanish persimmon orchards infested with this mealybug. The virgin and mated female volatile profiles of these P. longispinus populations were studied by the volatile collection of effluvia in Porapak-Q. The resulting extracts were analyzed by gas chromatography coupled to mass spectrometry (GC-MS), revealing a new compound specific to virgin females and different from the previously described sex pheromone. Based on GC-MS data and nuclear magnetic resonance experiments, we envisaged monoterpene 2-(1,5-dimethyl-4-methylenecyclopent-2-en-1-yl)ethyl acetate as the new sex pheromone candidate, which was synthesized and shown to be attractive in the field to P. longispinus males of the Spanish population.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas , Hemípteros , Monoterpenos , Atractivos Sexuales , Animales , Hemípteros/química , Atractivos Sexuales/química , Femenino , Masculino , España , Monoterpenos/análisis , Monoterpenos/química
14.
J Chem Ecol ; 50(7-8): 385-396, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38758510

RESUMEN

The ecological interaction between fleshy fruits and frugivores is influenced by diverse mixtures of secondary metabolites that naturally occur in the fruit pulp. Although some fruit secondary metabolites have a primary role in defending the pulp against antagonistic frugivores, these metabolites also potentially affect mutualistic interactions. The physiological impact of these secondary metabolites on mutualistic frugivores remains largely unexplored. Using a mutualistic fruit bat (Carollia perspicillata), we showed that ingesting four secondary metabolites commonly found in plant tissues affects bat foraging behavior and induces changes in the fecal metabolome. Our behavioral trials showed that the metabolites tested typically deter bats. Our metabolomic surveys suggest that secondary metabolites alter, either by increasing or decreasing, the absorption of essential macronutrients. These behavioral and physiological effects vary based on the specific identity and concentration of the metabolite tested. Our results also suggest that a portion of the secondary metabolites consumed is excreted by the bat intact or slightly modified. By identifying key shifts in the fecal metabolome of a mutualistic frugivore caused by secondary metabolite consumption, this study improves our understanding of the effects of fruit chemistry on frugivore physiology.


Asunto(s)
Quirópteros , Heces , Frutas , Metabolómica , Quirópteros/fisiología , Quirópteros/metabolismo , Animales , Frutas/metabolismo , Frutas/química , Heces/química , Metaboloma , Conducta Alimentaria , Nutrientes/metabolismo , Metabolismo Secundario
15.
J Chem Ecol ; 50(5-6): 237-249, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38713322

RESUMEN

The orange wheat blossom midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae), is a significant wheat pest in the Prairie Provinces of Canada and northern regions of the USA. Wheat phenology plays a critical role in wheat midge oviposition. We hypothesized that S. mosellana oviposition behaviour is influenced by volatile organic compounds (VOCs) emitted by wheat at two adjacent wheat growth stages: preanthesis and postanthesis. A higher number of S. mosellana eggs laid on preanthesis than postanthesis spikes in an oviposition choice experiment using the susceptible spring wheat cultivar 'Roblin'. In preanthesis, wheat emitted higher amounts of Z-3-hexenyl acetate (Z3-06:OAc) than at the postanthesis stage. Higher amounts of methyl ketones such as 2-tridecanone, 2-pentadecanone, and 2-undecanone were emitted by wheat in the postanthesis stage and these VOCs were sensitive to S. mosellana antennae used in the Gas Chromatography-Electroantennographic Detection. Females were attracted to synthetic Z3-06:OAc but were deterred by 2-tridecanone relative to the solvent control in the vertical Y-tube olfactometer. 2-Undecanone and 2-pentadecanone did not show any attractiveness or deterrence. In a no-choice oviposition experiment, fewer eggs were laid in preanthesis wheat exposed to a synthetic VOC blend of Z3-06:OAc, 2-undecanone, 2-tridecanone, and 2-pentadecanone at the concentrations released by postanthesis spikes. This study shows that the reduction of Z3-06:OAc, in the VOC mix, and possibly the increase in 2-tridecanone, are likely responsible for the reduction in oviposition on postanthesis wheat. These results elucidate for the first time the role of specific VOCs mediating S. mosellana oviposition in preanthesis and postanthesis wheat.


Asunto(s)
Dípteros , Oviposición , Triticum , Compuestos Orgánicos Volátiles , Animales , Triticum/química , Triticum/metabolismo , Triticum/parasitología , Compuestos Orgánicos Volátiles/farmacología , Compuestos Orgánicos Volátiles/metabolismo , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/análisis , Femenino , Oviposición/efectos de los fármacos , Dípteros/fisiología , Dípteros/efectos de los fármacos , Acetatos/farmacología , Antenas de Artrópodos/fisiología , Antenas de Artrópodos/efectos de los fármacos
16.
Appl Environ Microbiol ; 90(6): e0066524, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38814060

RESUMEN

Ash dieback, caused by the fungal pathogen Hymenoscyphus fraxineus (Helotiales, Ascomycota), is threatening the existence of the European ash, Fraxineus excelsior. During our search for biological control agents for this devastating disease, endophytic fungi were isolated from healthy plant tissues and co-cultivated with H. fraxineus to assess their antagonistic potential. Among the strains screened, Penicillium cf. manginii DSM 104493 most strongly inhibited the pathogen. Initially, DSM 104493 showed promise in planta as a biocontrol agent. Inoculation of DSM 104493 into axenically cultured ash seedlings greatly decreased the development of disease symptoms in seedlings infected with H. fraxineus. The fungus was thus cultivated on a larger scale in order to obtain sufficient material to identify active metabolites that accounted for the antibiosis observed in dual culture. We isolated PF1140 (1) and identified it as the main active compound in the course of a bioassay-guided isolation strategy. Furthermore, its derivative 2, the mycotoxin citreoviridin (3), three tetramic acids of the vancouverone type (4-6), and penidiamide (7) were isolated by preparative chromatography. The structures were elucidated mainly by NMR spectroscopy and high-resolution mass spectrometry (HRMS), of which compounds 2 and 6 represent novel natural products. Of the compounds tested, not only PF1140 (1) strongly inhibited H. fraxineus in an agar diffusion assay but also showed phytotoxic effects in a leaf puncture assay. Unfortunately, both the latent virulent attributes of DSM 104493 observed subsequent to these experiments in planta and the production of mycotoxins exclude strain Penicillium cf. manginii DSM 104493 from further development as a safe biocontrol agent.IMPORTANCEEnvironmentally friendly measures are urgently needed to control the causative agent of ash dieback, Hymenoscyphus fraxineus. Herein, we show that the endophyte DSM 104493 exhibits protective effects in vitro and in planta. We traced the activity of DSM 104493 to the antifungal natural product PF1140, which unfortunately also showed phytotoxic effects. Our results have important implications for understanding plant-fungal interactions mediated by secondary metabolites, not only in the context of ash dieback but also generally in plant-microbial interactions.


Asunto(s)
Antifúngicos , Ascomicetos , Endófitos , Fraxinus , Enfermedades de las Plantas , Fraxinus/microbiología , Endófitos/metabolismo , Endófitos/aislamiento & purificación , Ascomicetos/efectos de los fármacos , Ascomicetos/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Antifúngicos/farmacología , Antifúngicos/metabolismo , Antibiosis , Metabolismo Secundario , Penicillium/metabolismo , Penicillium/efectos de los fármacos , Agentes de Control Biológico/farmacología , Agentes de Control Biológico/metabolismo
17.
Proc Biol Sci ; 291(2023): 20240623, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38807518

RESUMEN

Intraspecific and habitat-mediated responses to chemical cues play key roles in structuring populations of marine species. We investigated the behaviour of herbivorous-stage juvenile crown-of-thorns sea stars (COTS; Acanthaster sp.) in flow-through choice chambers to determine if chemical cues from their habitat influence movement and their transition to become coral predators. Juveniles at the diet transition stage were exposed to cues from their nursery habitat (coral rubble-crustose coralline algae (CCA)), live coral and adult COTS to determine if waterborne cues influence movement. In response to CCA and coral as sole cues, juveniles moved towards the cue source and when these cues were presented in combination, they exhibited a preference for coral. Juveniles moved away from adult COTS cues. Exposure to food cues (coral, CCA) in the presence of adult cues resulted in variable responses. Our results suggest a feedback mechanism whereby juvenile behaviour is mediated by adult chemical cues. Cues from the adult population may deter juveniles from the switch to corallivory. As outbreaks wane, juveniles released from competition may serve as a proximate source of outbreaks, supporting the juveniles-in-waiting hypothesis. The accumulation of juveniles within the reef infrastructure is an underappreciated potential source of COTS outbreaks that devastate coral reefs.


Asunto(s)
Antozoos , Señales (Psicología) , Estrellas de Mar , Animales , Antozoos/fisiología , Estrellas de Mar/fisiología , Arrecifes de Coral , Herbivoria , Ecosistema , Conducta Alimentaria , Rhodophyta/fisiología
18.
Mar Drugs ; 22(5)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38786591

RESUMEN

Marine molluscs are of enormous scientific interest due to their astonishing diversity in terms of their size, shape, habitat, behaviour, and ecological roles. The phylum Mollusca is the second most common animal phylum, with 100,000 to 200,000 species, and marine molluscs are among the most notable class of marine organisms. This work aimed to show the importance of marine molluscs as a potential source of nutraceuticals as well as natural medicinal drugs. In this review, the main classes of marine molluscs, their chemical ecology, and the different techniques used for the extraction of bioactive compounds have been presented. We pointed out their nutraceutical importance such as their proteins, peptides, polysaccharides, lipids, polyphenolic compounds pigments, marine enzymes, minerals, and vitamins. Their pharmacological activities include antimicrobial, anticancer, antioxidant, anti-inflammatory, and analgesic activities. Moreover, certain molluscs like abalones and mussels contain unique compounds with potential medicinal applications, ranging from wound healing to anti-cancer effects. Understanding the nutritional and therapeutic value of marine molluscs highlights their significance in both pharmaceutical and dietary realms, paving the way for further research and utilization in human health.


Asunto(s)
Organismos Acuáticos , Suplementos Dietéticos , Moluscos , Animales , Moluscos/química , Humanos , Productos Biológicos/farmacología , Productos Biológicos/química
19.
Microsc Res Tech ; 87(10): 2275-2291, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38733292

RESUMEN

Sclerodermus cereicollis is a European flat wasp ectoparasitoid of some longhorn beetle species. This species is important as a suitable biological control agent against xylophagous pests. To better understand its chemical ecology, the ultrastructure of the antennal sensilla of the adult was studied using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The sensilla are located mainly in the ventro-medial side of the antennae. We report a clearly sexual dimorphism with respect to antennae length, and to types, number, and distribution of chemosensilla. The antennae in males are significantly longer than those of females. We describe in detail the external and internal structure of different chemoreceptors represented by sensilla placodea, long sensilla basiconica, multiporous sensilla chaetica, grooved sensilla ampullacea, uniporous grooved sensilla chaetica. The potential involvement of the different kinds of chemoreceptors in inter- (mainly sexual recognition and social behavior-kin recognition) or intra-specific communication (mainly host selection) is discussed on the basis of behavioral and electrophysiological investigations performed on other parasitoid species belonging to the same family. Other sensilla with morphology that is not consistent with that of chemoreceptors are represented by grooved pegs, coeloconic pegs, trichoid sensilla. Such detailed ultrastructural investigation of the flagellar chemoreceptors of S. cereicollis, clarifying the number of chemosensory neurons innervating the different sensilla, is crucial for further electrophysiological investigations on this important species. RESEARCH HIGHLIGHTS: Evident sexual dimorphism concerning antennae length, type, number, and distribution of chemosensilla. Long sensilla basiconica (LSB) present only in females could play a role in host location and/or maternal care. Multiporous sensilla chaetica (MSC), significantly longer and mostly represented in males, could play a role in the perception of sexual pheromones. Detailed ultrastructural study is crucial for electrophysiological investigations on this important species.


Asunto(s)
Antenas de Artrópodos , Células Quimiorreceptoras , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Sensilos , Animales , Femenino , Masculino , Sensilos/ultraestructura , Sensilos/anatomía & histología , Sensilos/fisiología , Células Quimiorreceptoras/ultraestructura , Células Quimiorreceptoras/fisiología , Antenas de Artrópodos/ultraestructura , Antenas de Artrópodos/anatomía & histología , Antenas de Artrópodos/fisiología , Avispas/anatomía & histología , Avispas/ultraestructura , Avispas/fisiología , Caracteres Sexuales , Escarabajos/ultraestructura , Escarabajos/anatomía & histología , Escarabajos/fisiología , Himenópteros/ultraestructura , Himenópteros/anatomía & histología , Himenópteros/fisiología
20.
Plant Direct ; 8(4): e578, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38601948

RESUMEN

Mass spectrometry-based plant metabolomics is frequently used to identify novel natural products or study the effect of specific treatments on a plant's metabolism. Reliable sample handling is required to avoid artifacts, which is why most protocols mandate shock freezing of plant tissue in liquid nitrogen and an uninterrupted cooling chain. However, the logistical challenges of this approach make it infeasible for many ecological studies. Especially for research in the tropics, permanent cooling poses a challenge, which is why many of those studies use dried leaf tissue instead. We screened a total of 10 extraction and storage approaches for plant metabolites extracted from maize leaf tissue across two cropping seasons to develop a methodology for agroecological studies in logistically challenging tropical locations. All methods were evaluated based on changes in the metabolite profile across a 2-month storage period at different temperatures with the goal of reproducing the metabolite profile of the living plant as closely as possible. We show that our newly developed on-site liquid-liquid extraction protocol provides a good compromise between sample replicability, extraction efficiency, material logistics, and metabolite profile stability. We further discuss alternative methods which showed promising results and feasibility of on-site sample handling for field studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA