Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Genome Biol ; 19(1): 19, 2018 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-29426353

RESUMEN

We developed a chemical cleavage method that releases single nucleosome dyad-containing fragments, allowing us to precisely map both single nucleosomes and linkers with high accuracy genome-wide in yeast. Our single nucleosome positioning data reveal that nucleosomes occupy preferred positions that differ by integral multiples of the DNA helical repeat. By comparing nucleosome dyad positioning maps to existing genomic and transcriptomic data, we evaluated the contributions of sequence, transcription, and histones H1 and H2A.Z in defining the chromatin landscape. We present a biophysical model that neglects DNA sequence and shows that steric occlusion suffices to explain the salient features of nucleosome positioning.


Asunto(s)
Genómica/métodos , Nucleosomas , Genes , Histonas , Modelos Biológicos , Transcripción Genética
2.
Elife ; 3: e01861, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24737863

RESUMEN

In budding yeast, a single cenH3 (Cse4) nucleosome occupies the ∼120-bp functional centromere, however conflicting structural models for the particle have been proposed. To resolve this controversy, we have applied H4S47C-anchored cleavage mapping, which reveals the precise position of histone H4 in every nucleosome in the genome. We find that cleavage patterns at centromeres are unique within the genome and are incompatible with symmetrical structures, including octameric nucleosomes and (Cse4/H4)2 tetrasomes. Centromere cleavage patterns are compatible with a precisely positioned core structure, one in which each of the 16 yeast centromeres is occupied by oppositely oriented Cse4/H4/H2A/H2B hemisomes in two rotational phases within the population. Centromere-specific hemisomes are also inferred from distances observed between closely-spaced H4 cleavages, as predicted from structural modeling. Our results indicate that the orientation and rotational position of the stable hemisome at each yeast centromere is not specified by the functional centromere sequence. DOI: http://dx.doi.org/10.7554/eLife.01861.001.


Asunto(s)
Centrómero/metabolismo , Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona/metabolismo , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/metabolismo , Histonas/metabolismo , Nucleosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sitios de Unión , Centrómero/química , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/genética , ADN de Hongos/química , ADN de Hongos/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Histonas/química , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , Nucleosomas/química , Unión Proteica , Conformación Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA