Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Comput Chem ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39139132

RESUMEN

Combined density functional theory and multireference configuration interaction methods have been used to elucidate singlet fission (SF) pathways and mechanisms in three regioisomers of side-on linked pentacene dimers. In addition to the optically bright singlets (S 1 $$ {}_1 $$ and S 2 $$ {}_2 $$ ) and singly excited triplets (T 1 $$ {}_1 $$ and T 2 $$ {}_2 $$ ), the full spin manifold of multiexcitonic triplet-pair states ( 1 $$ {}^1 $$ ME, 3 $$ {}^3 $$ ME, 5 $$ {}^5 $$ ME) has been considered. In the ortho- and para-regioisomers, the 1 $$ {}^1 $$ ME and S 1 $$ {}_1 $$ potentials intersect upon geometry relaxation of the S 1 $$ {}_1 $$ excitation. In the meta-regioisomer, the crossing occurs upon delocalization of the optically bright excitation. The energetic accessibility of these conical intersections and the absence of low-lying charge-transfer states suggests a direct SF mechanism, assisted by charge-resonance effects in the 1 $$ {}^1 $$ ME state. While the 5 $$ {}^5 $$ ME state does not appear to play a role in the SF mechanism of the ortho- and para-regioisomers, its participation in the disentanglement of the triplet pair is conceivable in the meta-regioisomer.

2.
Angew Chem Int Ed Engl ; 63(21): e202402344, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38478415

RESUMEN

A hitherto unknown series of air stable, π-conjugated, remarkably bent tetra-cation tetra-radical intermolecular Fe(III) µ-oxo tetranuclear complex, isolated from the dication diradical diiron(III) porphyrin dimers, has been synthesised and spectroscopically characterised along with single crystal X-ray structure determination of two such molecules. These species facilitate long-range charge/radical delocalisation through the bridge across the entire tetranuclear unit manifesting an unusually intense NIR band. Assorted spin states of Fe(III) centres are stabilised within these unique tetranuclear frameworks: terminal six-coordinate iron centres stabilise the admixed intermediate spin states while the central five-coordinate iron centres stabilise the high-spin states. Variable temperature magnetic susceptibility measurements indicated strong antiferromagnetic coupling for the Fe(III)-O-Fe(III) unit while the exchange interactions between the Fe centres and the porphyrin π-cation radicals are weaker as supported both by magnetic data and DFT calculations. The nature of orbital overlap between the SOMOs of Fe(III) and π* orbital of the porphyrin was found to rationalise the observed exchange coupling, establishing such a complex magnetic exchange in this tetranuclear model with a significant bioinorganic relevance.

3.
Molecules ; 28(1)2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36615311

RESUMEN

Intermolecular interactions modulate the electro-optical properties of molecular materials and the nature of low-lying exciton states. Molecular materials composed by oligoacenes are extensively investigated for their semiconducting and optoelectronic properties. Here, we analyze the exciton states derived from time-dependent density functional theory (TDDFT) calculations for two oligoacene model aggregates: naphthalene and anthracene dimers. To unravel the role of inter-molecular interactions, a set of diabatic states is selected, chosen to coincide with local (LE) and charge-transfer (CT) excitations within a restricted orbital space including two occupied and two unoccupied orbitals for each molecular monomer. We study energy profiles and disentangle inter-state couplings to disclose the (CT) character of singlet and triplet exciton states and assess the influence of inter-molecular orientation by displacing one molecule with respect to the other along the longitudinal translation coordinate. The analysis shows that (CT) contributions are relevant, although comparably less effective for triplet excitons, and induce a non-negligible mixed character to the low-lying exciton states for eclipsed monomers and for small translational displacements. Such (CT) contributions govern the La/Lb state inversion occurring for the low-lying singlet exciton states of naphthalene dimer and contribute to the switch from H- to J-aggregate type of the strongly allowed Bb transition of both oligoacene aggregates.

4.
Angew Chem Int Ed Engl ; 58(11): 3351-3355, 2019 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-30476350

RESUMEN

Charge resonance is a strong attractive intermolecular force in aromatic dimer radical ions. Despite its importance, this fundamental interaction has not been characterized at high resolution by spectroscopy of isolated dimers. We employ vibrational infrared spectroscopy of cold aromatic pyrrole dimer cations to precisely probe the charge distribution by measuring the frequency of the isolated N-H stretch mode (νNH ). We observe a linear correlation between νNH and the partial charge q on the pyrrole molecule in different environments. Subtle effects of symmetry reduction, such as substitution of functional groups (here pyrrole replaced by N-methylpyrrole) or asymmetric solvation (here by an inert N2 ligand), shift the charge distribution toward the moiety with lower ionization energy. This general approach provides a precise experimental probe of the asymmetry of the charge distribution in such aromatic homo- and heterodimer cations.

5.
Sci Adv ; 3(5): e1603282, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28508081

RESUMEN

The design of organic compounds with nearly no gap between the first excited singlet (S1) and triplet (T1) states has been demonstrated to result in an efficient spin-flip transition from the T1 to S1 state, that is, reverse intersystem crossing (RISC), and facilitate light emission as thermally activated delayed fluorescence (TADF). However, many TADF molecules have shown that a relatively appreciable energy difference between the S1 and T1 states (~0.2 eV) could also result in a high RISC rate. We revealed from a comprehensive study of optical properties of TADF molecules that the formation of delocalized states is the key to efficient RISC and identified a chemical template for these materials. In addition, simple structural confinement further enhances RISC by suppressing structural relaxation in the triplet states. Our findings aid in designing advanced organic molecules with a high rate of RISC and, thus, achieving the maximum theoretical electroluminescence efficiency in organic light-emitting diodes.

6.
Biochem J ; 473(12): 1769-75, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27076451

RESUMEN

In the absence of its substrate, the auto-reduction of the high-valent bis-Fe(IV) state of the dihaem enzyme MauG is coupled to oxidative damage of a methionine residue. Transient kinetic and solvent isotope effect studies reveal that this process occurs via two sequential long-range electron transfer (ET) reactions from methionine to the haems. The first ET is coupled to proton transfer (PT) to the haems from solvent via an ordered water network. The second ET is coupled to PT at the methionine site and occurs during the oxidation of the methionine to a sulfoxide. This process proceeds via Compound I- and Compound II-like haem intermediates. It is proposed that the methionine radical is stabilized by a two-centre three-electron (2c3e) bond. This provides insight into how oxidative damage to proteins may occur without direct contact with a reactive oxygen species, and how that damage can be propagated through the protein.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Transporte de Electrón/fisiología , Hemo/metabolismo , Paracoccus denitrificans/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Bacterianas/genética , Transporte de Electrón/genética , Hemo/química , Modelos Moleculares , Oxidación-Reducción , Proteínas Recombinantes/genética , Solventes/química
7.
Biochem J ; 473(1): 67-72, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26494530

RESUMEN

The electron transfer (ET) properties of two types of high-valent hemes were studied within the same protein matrix; the bis-Fe(IV) state of MauG and the Compound I state of Y294H MauG. The latter is formed as a consequence of mutation of the tyrosine which forms the distal axial ligand of the six-coordinate heme that allows it to stabilize Fe(IV) in the absence of an external ligand. The rates of the ET reaction of each high-valent species with the type I copper protein, amicyanin, were determined at different temperatures and analysed by ET theory. The reaction with bis-Fe(IV) wild-type (WT) MauG exhibited a reorganization energy (λ) that was 0.39 eV greater than that for the reaction of Compound I Y295H MauG. It is concluded that the delocalization of charge over the two hemes in the bis-Fe(IV) state is responsible for the larger λ, relative to the Compound I state in which the Fe(V) equivalent is isolated on one heme. Although the increase in λ decreases the rate of ET, the delocalization of charge decreases the ET distance to its natural substrate protein, thus increasing the ET rate. This describes how proteins can balance different ET properties of complex redox cofactors to optimize each system for its particular ET or catalytic reaction.


Asunto(s)
Transporte de Electrón/fisiología , Transferencia de Energía/fisiología , Compuestos Férricos/metabolismo , Hemoproteínas/metabolismo , Paracoccus denitrificans/enzimología , Estructura Secundaria de Proteína
8.
Proc Natl Acad Sci U S A ; 112(35): 10896-901, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26283395

RESUMEN

The high-valent state of the diheme enzyme MauG exhibits charge-resonance (CR) stabilization in which the major species is a bis-Fe(IV) state with one heme present as Fe(IV)=O and the other as Fe(IV) with axial heme ligands provided by His and Tyr side chains. In the absence of its substrate, the high-valent state is relatively stable and returns to the diferric state over several minutes. It is shown that this process occurs in two phases. The first phase is redistribution of the resonance species that support the CR. The second phase is the loss of CR and reduction to the diferric state. Thermodynamic analysis revealed that the rates of the two phases exhibited different temperature dependencies and activation energies of 8.9 and 19.6 kcal/mol. The two phases exhibited kinetic solvent isotope effects of 2.5 and 2.3. Proton inventory plots of each reaction phase exhibited extreme curvature that could not be fit to models for one- or multiple-proton transfers in the transition state. Each did fit well to a model for two alternative pathways for proton transfer, each involving multiple protons. In each case the experimentally determined fractionation factors were consistent with one of the pathways involving tunneling. The percent of the reaction that involved the tunneling pathway differed for the two reaction phases. Using the crystal structure of MauG it was possible to propose proton-transfer pathways consistent with the experimental data using water molecules and amino acid side chains in the distal pocket of the high-spin heme.


Asunto(s)
Transporte de Electrón , Enzimas/metabolismo , Compuestos Férricos/química , Protones , Enzimas/química , Transporte Iónico , Cinética , Termodinámica
9.
Biochim Biophys Acta ; 1847(8): 709-16, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25896561

RESUMEN

The diheme enzyme MauG catalyzes a six-electron oxidation required for posttranslational modification of a precursor of methylamine dehydrogenase (preMADH) to complete the biosynthesis of its protein-derived tryptophan tryptophylquinone (TTQ) cofactor. One heme is low-spin with ligands provided by His205 and Tyr294, and the other is high-spin with a ligand provided by His35. The side chain methyl groups of Thr67 and Leu70 are positioned at a distance of 3.4Å on either side of His35, maintaining a hydrophobic environment in the proximal pocket of the high-spin heme and restricting the movement of this ligand. Mutation of Thr67 to Ala in the proximal pocket of the high-spin heme prevented reduction of the low-spin heme by dithionite, yielding a mixed-valent state. The mutation also enhanced the stabilization of the charge-resonance-transition of the high-valent bis-FeIV state that is generated by addition of H2O2. The rates of electron transfer from TTQ biosynthetic intermediates to the high-valent form of T67A MauG were similar to that of wild-type MauG. These results are compared to those previously reported for mutation of residues in the distal pocket of the high-spin heme that also affected the redox properties and charge resonance transition stabilization of the high-valent state of the hemes. However, given the position of residue 67, the structure of the variant protein and the physical nature of the T67A mutation, the basis for the effects of the T67A mutation must be different from those of the mutations of the residues in the distal heme pocket.


Asunto(s)
Proteínas Bacterianas/química , Compuestos Férricos/química , Compuestos Ferrosos/química , Hemo/química , Hemoproteínas/química , Mutación/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Transporte de Electrón , Compuestos Férricos/metabolismo , Compuestos Ferrosos/metabolismo , Hemo/genética , Hemo/metabolismo , Hemoproteínas/genética , Hemoproteínas/metabolismo , Indolquinonas/metabolismo , Modelos Moleculares , Oxidación-Reducción , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Paracoccus denitrificans/genética , Paracoccus denitrificans/crecimiento & desarrollo , Paracoccus denitrificans/metabolismo , Procesamiento Proteico-Postraduccional , Rhodobacter sphaeroides/genética , Rhodobacter sphaeroides/crecimiento & desarrollo , Rhodobacter sphaeroides/metabolismo , Espectrometría Raman , Triptófano/análogos & derivados , Triptófano/metabolismo
10.
Angew Chem Int Ed Engl ; 54(12): 3692-6, 2015 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-25631460

RESUMEN

The biosynthesis of tryptophan tryptophylquinone, a protein-derived cofactor, involves a long-range reaction mediated by a bis-Fe(IV) intermediate of a diheme enzyme, MauG. Recently, a unique charge-resonance (CR) phenomenon was discovered in this intermediate, and a biological, long-distance CR model was proposed. This model suggests that the chemical nature of the bis-Fe(IV) species is not as simple as it appears; rather, it is composed of a collection of resonance structures in a dynamic equilibrium. Here, we experimentally evaluated the proposed CR model by introducing small molecules to, and measuring the temperature dependence of, bis-Fe(IV) MauG. Spectroscopic evidence was presented to demonstrate that the selected compounds increase the decay rate of the bis-Fe(IV) species by disrupting the equilibrium of the resonance structures that constitutes the proposed CR model. The results support this new CR model and bring a fresh concept to the classical CR theory.


Asunto(s)
Hemo/química , Hemoproteínas/química , Modelos Moleculares , Sustitución de Aminoácidos , Espectroscopía de Resonancia por Spin del Electrón , Hemoproteínas/genética , Hemoproteínas/metabolismo , Indolquinonas/biosíntesis , Indolquinonas/química , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/química , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Espectroscopía Infrarroja Corta , Temperatura , Triptófano/análogos & derivados , Triptófano/biosíntesis , Triptófano/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA