Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Sport Health Sci ; 13(2): 160-171, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37914153

RESUMEN

Vertebrate neurons are highly dynamic cells that undergo several alterations in their functioning and physiologies in adaptation to various external stimuli. In particular, how these neurons respond to physical exercise has long been an area of active research. Studies of the vertebrate locomotor system's adaptability suggest multiple mechanisms are involved in the regulation of neuronal activity and properties during exercise. In this brief review, we highlight recent results and insights from the field with a focus on the following mechanisms: (a) alterations in neuronal excitability during acute exercise; (b) alterations in neuronal excitability after chronic exercise; (c) exercise-induced changes in neuronal membrane properties via modulation of ion channel activity; (d) exercise-enhanced dendritic plasticity; and (e) exercise-induced alterations in neuronal gene expression and protein synthesis. Our hope is to update the community with a cellular and molecular understanding of the recent mechanisms underlying the adaptability of the vertebrate locomotor system in response to both acute and chronic physical exercise.


Asunto(s)
Neuronas , Condicionamiento Físico Animal , Animales , Neuronas/fisiología , Vertebrados , Condicionamiento Físico Animal/fisiología
2.
Proc Natl Acad Sci U S A ; 120(12): e2216440120, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36930599

RESUMEN

Potassium channels in auditory neurons are rapidly modified by changes in the auditory environment. In response to elevated auditory stimulation, short-term mechanisms such as protein phosphorylation and longer-term mechanisms such as accelerated channel synthesis increase the amplitude of currents that promote high-frequency firing. It has been suggested that this allows neurons to fire at high rates in response to high sound levels. We have carried out simple simulations of the response to postsynaptic neurons to patterns of neurotransmitter release triggered by auditory stimuli. These demonstrate that the amplitudes of potassium currents required for optimal encoding of a low-amplitude auditory signal differ from those for louder sounds. Specifically, the cross-correlation of the output of a neuron with an auditory stimulus is improved by increasing potassium currents as sound amplitude increases. Temporal fidelity for low-frequency stimuli is improved by increasing potassium currents that activate at negative potentials, while that for high-frequency stimuli requires increases in currents that activate at positive membrane potentials. These effects are independent of the firing rate. Moreover, levels of potassium currents that maximize the fidelity of the output of an ensemble of neurons differ from those that maximize fidelity for a single neuron. This suggests that the modulatory mechanisms must coordinate channel activity in groups of neurons or an entire nucleus. The simulations provide an explanation for the modulation of the intrinsic excitability of auditory brainstem neurons by changes in environmental sound levels, and the results may extend to information processing in other neural systems.


Asunto(s)
Canales de Potasio , Potasio , Potenciales de Acción/fisiología , Potenciales de la Membrana , Canales de Potasio/metabolismo , Fosforilación , Potasio/metabolismo , Vías Auditivas/fisiología
3.
Pharmacol Res ; 189: 106684, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36740150

RESUMEN

KV1.5 channels are key players in the regulation of vascular tone and atrial excitability and their impairment is associated with cardiovascular diseases including pulmonary arterial hypertension (PAH) and atrial fibrillation (AF). Unfortunately, pharmacological strategies to improve KV1.5 channel function are missing. Herein, we aimed to study whether the chaperone sigma-1 receptor (S1R) is able to regulate these channels and represent a new strategy to enhance their function. By using different electrophysiological and molecular techniques in X. laevis oocytes and HEK293 cells, we demonstrate that S1R physically interacts with KV1.5 channels and regulate their expression and function. S1R induced a bimodal regulation of KV1.5 channel expression/activity, increasing it at low concentrations and decreasing it at high concentrations. Of note, S1R agonists (PRE084 and SKF10047) increased, whereas the S1R antagonist BD1047 decreased, KV1.5 expression and activity. Moreover, PRE084 markedly increased KV1.5 currents in pulmonary artery smooth muscle cells and attenuated vasoconstriction and proliferation in pulmonary arteries. We also show that both KV1.5 channels and S1R, at mRNA and protein levels, are clearly downregulated in samples from PAH and AF patients. Moreover, the expression of both genes showed a positive correlation. Finally, the ability of PRE084 to increase KV1.5 function was preserved under sustained hypoxic conditions, as an in vitro PAH model. Our study provides insight into the key role of S1R in modulating the expression and activity of KV1.5 channels and highlights the potential role of this chaperone as a novel pharmacological target for pathological conditions associated with KV1.5 channel dysfunction.


Asunto(s)
Fibrilación Atrial , Receptores sigma , Humanos , Células HEK293 , Pulmón/patología , Arteria Pulmonar , Receptores sigma/metabolismo , Receptor Sigma-1
5.
Elife ; 112022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-35792082

RESUMEN

In dopaminergic (DA) Substantia nigra (SN) neurons Cav2.3 R-type Ca2+-currents contribute to somatodendritic Ca2+-oscillations. This activity may contribute to the selective degeneration of these neurons in Parkinson's disease (PD) since Cav2.3-knockout is neuroprotective in a PD mouse model. Here, we show that in tsA-201-cells the membrane-anchored ß2-splice variants ß2a and ß2e are required to stabilize Cav2.3 gating properties allowing sustained Cav2.3 availability during simulated pacemaking and enhanced Ca2+-currents during bursts. We confirmed the expression of ß2a- and ß2e-subunit transcripts in the mouse SN and in identified SN DA neurons. Patch-clamp recordings of mouse DA midbrain neurons in culture and SN DA neurons in brain slices revealed SNX-482-sensitive R-type Ca2+-currents with voltage-dependent gating properties that suggest modulation by ß2a- and/or ß2e-subunits. Thus, ß-subunit alternative splicing may prevent a fraction of Cav2.3 channels from inactivation in continuously active, highly vulnerable SN DA neurons, thereby also supporting Ca2+ signals contributing to the (patho)physiological role of Cav2.3 channels in PD.


Asunto(s)
Neuronas Dopaminérgicas , Enfermedad de Parkinson , Empalme Alternativo , Animales , Mesencéfalo , Ratones , Enfermedad de Parkinson/genética , Sustancia Negra/fisiología
6.
Proc Natl Acad Sci U S A ; 119(13): e2109431119, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35333652

RESUMEN

SignificanceCholesterol is one of the main components found in plasma membranes and is involved in lipid-dependent signaling enabled by integral membrane proteins such as inwardly rectifying potassium (Kir) channels. Similar to other ion channels, most of the Kir channels are down-regulated by cholesterol. One of the very few notable exceptions is Kir3.4, which is up-regulated by this important lipid. Here, we discovered and characterized a molecular switch that controls the impact (up-regulation vs. down-regulation) of cholesterol on Kir3.4. Our results provide a detailed molecular mechanism of tunable cholesterol regulation of a potassium channel.


Asunto(s)
Colesterol , Canales de Potasio Rectificados Internamente Asociados a la Proteína G , Membrana Celular/metabolismo , Colesterol/metabolismo , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/genética , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Potasio/metabolismo , Transducción de Señal
7.
J Physiol ; 600(9): 2023-2036, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35238051

RESUMEN

Selective ion channel modulators play a critical role in physiology in defining the contribution of specific ion channels to physiological function and as proof of concept for novel therapeutic strategies. Antibodies are valuable research tools that have broad uses including defining the expression and localization of ion channels in native tissue, and capturing ion channel proteins for subsequent analyses. In this review, we detail how renewable and recombinant antibodies can be used to control ion channel function. We describe the different forms of renewable and recombinant antibodies that have been used and the mechanisms by which they modulate ion channel function. We highlight the use of recombinant antibodies that are expressed intracellularly (intrabodies) as genetically encoded tools to control ion channel function. We also offer perspectives of avenues of future research that may be opened by the application of emerging technologies for engineering recombinant antibodies for enhanced utility in ion channel research. Overall, this review provides insights that may help stimulate and guide interested researchers to develop and incorporate renewable and recombinant antibodies as valuable tools to control ion channel function.


Asunto(s)
Anticuerpos , Canales Iónicos
8.
Pflugers Arch ; 473(9): 1437-1454, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34212239

RESUMEN

Cav1.4 L-type Ca2+ channels are predominantly expressed in retinal neurons, particularly at the photoreceptor terminals where they mediate sustained Ca2+ entry needed for continuous neurotransmitter release at their ribbon synapses. Cav1.4 channel gating properties are controlled by accessory subunits, associated regulatory proteins, and also alternative splicing. In humans, mutations in the CACNA1F gene encoding for Cav1.4 channels are associated with X-linked retinal disorders such as congenital stationary night blindness type 2. Mutations in the Cav1.4 protein result in a spectrum of altered functional channel activity. Several mouse models broadened our understanding of the role of Cav1.4 channels not only as Ca2+ source at retinal synapses but also as synaptic organizers. In this review, we highlight different structural and functional phenotypes of Cav1.4 mutations that might also occur in patients with congenital stationary night blindness type 2. A further important yet mostly neglected aspect that we discuss is the influence of alternative splicing on channel dysfunction. We conclude that currently available functional phenotyping strategies should be refined and summarize potential specific therapeutic options for patients carrying Cav1.4 mutations. Importantly, the development of new therapeutic approaches will permit a deeper understanding of not only the disease pathophysiology but also the physiological function of Cav1.4 channels in the retina.


Asunto(s)
Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Enfermedades Hereditarias del Ojo/genética , Enfermedades Hereditarias del Ojo/metabolismo , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Enfermedades Genéticas Ligadas al Cromosoma X/metabolismo , Miopía/genética , Miopía/metabolismo , Ceguera Nocturna/genética , Ceguera Nocturna/metabolismo , Ácido 3-piridinacarboxílico, 1,4-dihidro-2,6-dimetil-5-nitro-4-(2-(trifluorometil)fenil)-, Éster Metílico/farmacología , Animales , Agonistas de los Canales de Calcio/farmacología , Humanos , Mutación/fisiología , Retina/efectos de los fármacos , Retina/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/genética , Sinapsis/metabolismo
9.
Cell Physiol Biochem ; 55(S3): 108-130, 2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34043299

RESUMEN

Transient receptor potential vanilloid (TRPV) channels are part of the TRP channel superfamily and named after the first identified member TRPV1, that is sensitive to the vanillylamide capsaicin. Their overall structure is similar to the structure of voltage gated potassium channels (Kv) built up as homotetramers from subunits with six transmembrane helices (S1-S6). Six TRPV channel subtypes (TRPV1-6) are known, that can be subdivided into the thermoTRPV (TRPV1-4) and the Ca2+-selective TRPV channels (TRPV5, TRPV6). Contrary to Kv channels, TRPV channels are not primary voltage gated. All six channels have distinct properties and react to several endogenous ligands as well as different gating stimuli such as heat, pH, mechanical stress, or osmotic changes. Their physiological functions are highly diverse and subtype as well as tissue specific. In many tissues they serve as sensors for different pain stimuli (heat, pressure, pH) and contribute to the homeostasis of electrolytes, the maintenance of barrier functions and the development of macrophages. Due to their fundamental role in manifold physiological and pathophysiological processes, TRPV channels are promising targets for drug development. However, drugs targeting specific TRPV channels, that are suitable for drug therapy, are rare. Moreover, selective and potent compounds for further research at TRPV channels are often lacking. In this review different aspects of the structure, the different gating stimuli, the expression pattern, the physiological and pathophysiological roles as well as the modulating mechanisms of synthetic, natural and endogenous ligands are summarized.


Asunto(s)
Analgésicos/farmacología , Antineoplásicos/farmacología , Factores Inmunológicos/farmacología , Moduladores del Transporte de Membrana/farmacología , Canales Catiónicos TRPV/metabolismo , Analgésicos/química , Analgésicos/clasificación , Antineoplásicos/química , Antineoplásicos/clasificación , Sitios de Unión , Encéfalo/citología , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Humanos , Factores Inmunológicos/química , Factores Inmunológicos/clasificación , Activación del Canal Iónico/efectos de los fármacos , Ligandos , Pulmón/citología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Moduladores del Transporte de Membrana/química , Moduladores del Transporte de Membrana/clasificación , Modelos Moleculares , Especificidad de Órganos , Unión Proteica , Isoformas de Proteínas/agonistas , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/clasificación , Isoformas de Proteínas/metabolismo , Estructura Secundaria de Proteína , Bazo/citología , Bazo/efectos de los fármacos , Bazo/metabolismo , Canales Catiónicos TRPV/agonistas , Canales Catiónicos TRPV/antagonistas & inhibidores , Canales Catiónicos TRPV/clasificación
10.
Molecules ; 26(7)2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33806009

RESUMEN

Modifications of the composition or organization of the cancer cell membrane seem to be a promising targeted therapy. This approach can significantly enhance drug uptake or intensify the response of cancer cells to chemotherapeutics. There are several methods enabling lipid bilayer modifications, e.g., pharmacological, physical, and mechanical. It is crucial to keep in mind the significance of drug resistance phenomenon, ion channel and specific receptor impact, and lipid bilayer organization in planning the cell membrane-targeted treatment. In this review, strategies based on cell membrane modulation or reorganization are presented as an alternative tool for future therapeutic protocols.


Asunto(s)
Membrana Celular , Sistemas de Liberación de Medicamentos , Neoplasias , Membrana Celular/metabolismo , Membrana Celular/patología , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología
11.
Am J Physiol Cell Physiol ; 320(4): C520-C546, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33326312

RESUMEN

Several potassium channels (KCs) have been described throughout the gastrointestinal tract. Notwithstanding, their contribution to both physiologic and pathophysiologic conditions, as inflammatory bowel disease (IBD), remains underexplored. Therefore, we aim to systematically review, for the first time, the evidence on the characteristics and modulation of KCs in intestinal epithelial cells (IECs). PubMed, Scopus, and Web of Science were searched to identify studies focusing on KCs and their modulation in IECs. The included studies were assessed using a reporting inclusiveness checklist. From the 745 identified records, 73 met the inclusion criteria; their reporting inclusiveness was moderate-high. Some studies described the physiological role of KCs, while others explored their importance in pathological settings. Globally, in IBD animal models, apical KCa1.1 channels, responsible for luminal secretion, were upregulated. In human colonocytes, basolateral KCa3.1 channels were downregulated. The pharmacological inhibition of K2P and Kv influenced intestinal barrier function, promoting inflammation. Evidence suggests a strong association between KCs expression and secretory mechanisms in human and animal IECs. Further research is warranted to explore the usefulness of KC pharmacological modulation as a therapeutic target.


Asunto(s)
Células Epiteliales/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio/efectos de los fármacos , Animales , Línea Celular , Células Epiteliales/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Potenciales de la Membrana , Canales de Potasio/metabolismo , Transducción de Señal
12.
Channels (Austin) ; 14(1): 380-392, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33006503

RESUMEN

Voltage-gated Ca2+ channels are typically integrated in a complex network of protein-protein-interactions, also referred to as Ca2+ channel nanodomains. Amongst the neuronal CaV2 channel family, CaV2.2 is of particular importance due to its general role for signal transmission from the periphery to the central nervous system, but also due to its significance for pain perception. Thus, CaV2.2 is an ideal target candidate to search for pharmacological inhibitors but also for novel modulatory interactors. In this review we summarize the last years findings of our intense screenings and characterization of the six CaV2.2 interaction partners, tetraspanin-13 (TSPAN-13), reticulon 1 (RTN1), member 1 of solute carrier family 38 (SLC38), prostaglandin D2 synthase (PTGDS), transmembrane protein 223 (TMEM223), and transmembrane BAX inhibitor motif 3 (Grina/TMBIM3) containing protein. Each protein shows a unique way of channel modulation as shown by extensive electrophysiological studies. Amongst the newly identified interactors, Grina/TMBIM3 is most striking due to its modulatory effect which is rather comparable to G-protein regulation.


Asunto(s)
Proteínas de Unión al GTP , Neuronas , Canales de Calcio Tipo N
13.
Cell ; 180(2): 340-347.e9, 2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31883792

RESUMEN

KCNQ1, also known as Kv7.1, is a voltage-dependent K+ channel that regulates gastric acid secretion, salt and glucose homeostasis, and heart rhythm. Its functional properties are regulated in a tissue-specific manner through co-assembly with beta subunits KCNE1-5. In non-excitable cells, KCNQ1 forms a complex with KCNE3, which suppresses channel closure at negative membrane voltages that otherwise would close it. Pore opening is regulated by the signaling lipid PIP2. Using cryoelectron microscopy (cryo-EM), we show that KCNE3 tucks its single-membrane-spanning helix against KCNQ1, at a location that appears to lock the voltage sensor in its depolarized conformation. Without PIP2, the pore remains closed. Upon addition, PIP2 occupies a site on KCNQ1 within the inner membrane leaflet, which triggers a large conformational change that leads to dilation of the pore's gate. It is likely that this mechanism of PIP2 activation is conserved among Kv7 channels.


Asunto(s)
Canal de Potasio KCNQ1/metabolismo , Canal de Potasio KCNQ1/ultraestructura , Microscopía por Crioelectrón , Humanos , Activación del Canal Iónico/fisiología , Canal de Potasio KCNQ1/química , Potenciales de la Membrana/fisiología , Técnicas de Placa-Clamp , Fosfatidilinositol 4,5-Difosfato/metabolismo , Canales de Potasio con Entrada de Voltaje/química , Canales de Potasio con Entrada de Voltaje/metabolismo , Canales de Potasio con Entrada de Voltaje/ultraestructura
14.
Adv Exp Med Biol ; 1135: 119-138, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31098814

RESUMEN

Inwardly rectifying potassium (Kir) channels play a variety of critical cellular roles including modulating membrane excitability in neurons, cardiomyocytes and muscle cells, and setting the resting membrane potential, heart rate, vascular tone, insulin release, and salt flow across epithelia. These processes are regulated by a variegated list of modulators. In particular, in recent years, cholesterol has been shown to modulate a growing number of Kir channels. Subsequent to the discovery that members of the Kir2 subfamily were down-regulated by cholesterol, we have shown that members of several other Kir subfamilies were also modulated by cholesterol. However, not all cholesterol sensitive Kir channels were down-regulated by cholesterol. Our recent studies focused on three Kir channels: Kir2.1 (IRK1), Kir3.2^ (GIRK2^) and Kir3.4* (GIRK4*). Among these, Kir2.1 was down-regulated by cholesterol whereas Kir3.2^ and Kir3.4* were both up-regulated by cholesterol. Despite the opposite impact of cholesterol on these Kir3 channels compared to Kir2.1, putative cholesterol binding sites in all three channels were identified in equivalent transmembrane domains. Interestingly, however, there are intriguing differences in the specific residues that interact with the cholesterol molecule in these Kir channels. Here we compare and contrast the molecular characteristics of the putative cholesterol binding sites in the three channels, and discuss the potential implications of the differences for the impact of cholesterol on ion channels.


Asunto(s)
Colesterol/química , Canales de Potasio de Rectificación Interna/química , Sitios de Unión , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/química , Humanos , Potenciales de la Membrana
15.
Methods Mol Biol ; 1987: 187-206, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31028681

RESUMEN

The implication of several TRP ion channels (e.g., TRPV1) in diverse physiological and pathological processes has signaled them as pivotal drug targets. Consequently, the identification of selective and potent ligands for these channels is of great interest in pharmacology and biomedicine. However, a major challenge in the design of modulators is ensuring the specificity for their intended targets. In recent years, the emergence of high-resolution structures of ion channels facilitates the computer-assisted drug design at molecular levels. Here we describe some computational methods and general protocols to discover channel modulators, including homology modelling, docking and virtual screening, and structure-based peptide design.


Asunto(s)
Diseño de Fármacos , Simulación del Acoplamiento Molecular/métodos , Simulación de Dinámica Molecular , Canales Catiónicos TRPV/química , Simulación por Computador , Diseño Asistido por Computadora , Descubrimiento de Drogas , Ligandos , Péptidos/síntesis química , Homología Estructural de Proteína , Relación Estructura-Actividad , Canales Catiónicos TRPV/efectos de los fármacos , Canales Catiónicos TRPV/metabolismo
16.
Cell Calcium ; 80: 71-78, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30991297

RESUMEN

Grina/TMBIM3 is a poorly characterized transmembrane protein with a broad expression pattern in mammals and with a very ancient origin within eukaryotes. Although initially characterized as an NMDA-receptor associated subunit, there is increasing evidence that Grina/TMBIM3 is involved in the unfolded protein response and controls apoptosis via regulation of Ca2+ homeostasis. Here, we investigate a putative direct interaction of Grina/TMBIM3 with voltage gated Ca2+ channels, in particular with the CaV2.2 α1-subunit and describe its modulatory effects on the current through CaV2.2 N-type channels. Direct interaction was confirmed by co-immunoprecipitation studies and membrane localization was proven. Co-expression of Grina/TMBIM3 with CaV2.2 channels resulted in a significant decrease of the current amplitude and in a slowing of the kinetics of current activation. This effect was accompanied by a significant shift of the voltage dependencies of activation time constants towards more depolarized voltages. Application of a stimulus protocol including a strong depolarizing pulse relieved inhibition of current amplitude by Grina/TMBIM3. When Grina/TMBIM3 was present, inactivation by an action potential-like train of pulses was diminished. Both observations resemble mechanisms that are well-studied modulatory effects of G-protein ßγ subunits on CaV2 channels. The impact of Grina/TMBIM3 and G-protein ßγ subunits are rather comparable with respect to suppression of current amplitude and slowing of activation kinetics. Furthermore, both modulators had the same effect on current inactivation when evoked by an action potential-like train of pulses.


Asunto(s)
Canales de Calcio Tipo N/metabolismo , Retículo Endoplásmico/metabolismo , Fibroblastos/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Potenciales de Acción , Animales , Apoptosis/genética , Canales de Calcio Tipo N/genética , Señalización del Calcio , Células Cultivadas , Subunidades beta de la Proteína de Unión al GTP/genética , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/genética , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Homeostasis , Proteínas de la Membrana/genética , Ratones , Proteínas del Tejido Nervioso/genética , Técnicas de Placa-Clamp , Unión Proteica , Receptores de N-Metil-D-Aspartato/genética
17.
J Biol Chem ; 293(50): 19411-19428, 2018 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-30348901

RESUMEN

Phosphatidylinositol 4,5-bisphosphate (PIP2) in the plasma membrane regulates the function of many ion channels, including M-type (potassium voltage-gated channel subfamily Q member (KCNQ), Kv7) K+ channels; however, the molecular mechanisms involved remain unclear. To this end, we here focused on the KCNQ3 subtype that has the highest apparent affinity for PIP2 and performed extensive mutagenesis in regions suggested to be involved in PIP2 interactions among the KCNQ family. Using perforated patch-clamp recordings of heterologously transfected tissue culture cells, total internal reflection fluorescence microscopy, and the zebrafish (Danio rerio) voltage-sensitive phosphatase to deplete PIP2 as a probe, we found that PIP2 regulates KCNQ3 channels through four different domains: 1) the A-B helix linker that we previously identified as important for both KCNQ2 and KCNQ3, 2) the junction between S6 and the A helix, 3) the S2-S3 linker, and 4) the S4-S5 linker. We also found that the apparent strength of PIP2 interactions within any of these domains was not coupled to the voltage dependence of channel activation. Extensive homology modeling and docking simulations with the WT or mutant KCNQ3 channels and PIP2 were consistent with the experimental data. Our results indicate that PIP2 modulates KCNQ3 channel function by interacting synergistically with a minimum of four cytoplasmic domains.


Asunto(s)
Citoplasma/metabolismo , Canal de Potasio KCNQ3/química , Canal de Potasio KCNQ3/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Secuencia de Aminoácidos , Animales , Células CHO , Cricetulus , Humanos , Canal de Potasio KCNQ3/genética , Modelos Moleculares , Mutación , Unión Proteica , Conformación Proteica en Hélice alfa , Dominios Proteicos
18.
J Biol Chem ; 293(24): 9423-9434, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29724821

RESUMEN

Transient receptor potential melastatin 8 (TRPM8) is a cold-sensitive ion channel with diverse physiological roles. TRPM8 activity is modulated by many mechanisms, including an interaction with the small membrane protein phosphoinositide-interacting regulator of TRP (PIRT). Here, using comparative electrophysiology experiments, we identified species-dependent differences between the human and mouse TRPM8-PIRT complexes. We found that human PIRT attenuated human TPRM8 conductance, unlike mouse PIRT, which enhanced mouse TRPM8 conductance. Quantitative Western blot analysis demonstrates that this effect does not arise from decreased trafficking of TRPM8 to the plasma membrane. Chimeric human/mouse TRPM8 channels were generated to probe the molecular basis of the PIRT modulation, and the effect was recapitulated in a pore domain chimera, demonstrating the importance of this region for PIRT-mediated regulation of TRPM8. Moreover, recombinantly expressed and purified human TRPM8 S1-S4 domain (comprising transmembrane helices S1-S4, also known as the sensing domain, ligand-sensing domain, or voltage sensing-like domain) and full-length human PIRT were used to investigate binding between the proteins. NMR experiments, supported by a pulldown assay, indicated that PIRT binds directly and specifically to the TRPM8 S1-S4 domain. Binding became saturated as the S1-S4:PIRT mole ratio approached 1. Our results have uncovered species-specific TRPM8 modulation by PIRT. They provide evidence for a direct interaction between PIRT and the TRPM8 S1-S4 domain with a 1:1 binding stoichiometry, suggesting that a functional tetrameric TRPM8 channel has four PIRT-binding sites.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo , Canales Catiónicos TRPM/metabolismo , Animales , Proteínas Portadoras/química , Células HEK293 , Humanos , Proteínas de la Membrana/química , Ratones , Modelos Moleculares , Dominios y Motivos de Interacción de Proteínas , Mapas de Interacción de Proteínas , Especificidad de la Especie , Canales Catiónicos TRPM/química
19.
Lipid Insights ; 11: 1178635317754071, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29467578

RESUMEN

In recent years, it has become evident that cholesterol plays a direct role in the modulation of a variety of ion channels. In most cases, cholesterol downregulates channel activity. In contrast, our earlier studies have demonstrated that atrial G protein inwardly rectifying potassium (GIRK) channels are upregulated by cholesterol. Recently, we have shown that hippocampal GIRK currents are also upregulated by cholesterol. A combined computational-experimental approach pointed to putative cholesterol-binding sites in the transmembrane domain of the GIRK2 channel, the primary subunit in hippocampal GIRK channels. In particular, the principal cholesterol-binding site was located in the center of the transmembrane domain in between the inner and outer α-helices of 2 adjacent subunits. Further studies pointed to a similar cholesterol-binding site in GIRK4, a major subunit in atrial GIRK channels. However, a close look at a sequence alignment of the transmembrane helices of the 2 channels reveals surprising differences among the residues that interact with the cholesterol molecule in these 2 channels. Here, we compare the residues that form putative cholesterol-binding sites in GIRK2 and GIRK4 and discuss the similarities and differences among them.

20.
J Physiol ; 595(20): 6517-6539, 2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28815591

RESUMEN

KEY POINTS: The AMPA-type ionotropic glutamate receptors (AMPARs) mediate the majority of excitatory synaptic transmission and their function impacts learning, cognition and behaviour. The gating of AMPARs occurs in milliseconds, precisely controlled by a variety of auxiliary subunits that are expressed differentially in the brain, but the difference in mechanisms underlying AMPAR gating modulation by auxiliary subunits remains elusive and is investigated. The elements of the AMPAR that are functionally recruited by auxiliary subunits, stargazin and cornichon 3, are located not only in the extracellular domains but also in the lipid-accessible surface of the AMPAR. We reveal that the two auxiliary subunits require a shared surface on the transmembrane domain of the AMPAR for their function, but the gating is influenced by this surface in opposing directions for each auxiliary subunit. Our results provide new insights into the mechanistic difference of AMPAR modulation by auxiliary subunits and a conceptual framework for functional engineering of the complex. ABSTRACT: During excitatory synaptic transmission, various structurally unrelated transmembrane auxiliary subunits control the function of AMPA receptors (AMPARs), but the underlying mechanisms remain unclear. We identified lipid-exposed residues in the transmembrane domain (TMD) of the GluA2 subunit of AMPARs that are critical for the function of AMPAR auxiliary subunits, stargazin (Stg) and cornichon 3 (CNIH3). These residues are essential for stabilizing the AMPAR-CNIH3 complex in detergents and overlap with the contacts made between GluA2 TMD and Stg in the cryoEM structures. Mutating these residues had opposite effects on gating modulation and complex stability when Stg- and CNIH3-bound AMPARs were compared. Specifically, in detergent the GluA2-A793F formed an unstable complex with CNIIH3 but in the membrane the GluA2-A793F-CNIH3 complex expressed a gain of function. In contrast, the GluA2-A793F-Stg complex was stable, but had diminished gating modulation. GluA2-C528L destabilized the AMPAR-CNIH3 complex but stabilized the AMPAR-Stg complex, with overall loss of function in gating modulation. Furthermore, loss-of-function mutations in this TMD region cancelled the effects of a gain-of-function Stg carrying mutation in its extracellular loop, demonstrating that both the extracellular and the TMD elements contribute independently to gating modulation. The elements of AMPAR functionally recruited by auxiliary subunits are, therefore, located not only in the extracellular domains but also in the lipid accessible surface of the AMPAR. The TMD surface we defined is a potential target for auxiliary subunit-specific compounds, because engineering of this hotspot induces opposing functional outcomes by Stg and CNIH3. The collection of mutant-phenotype mapping provides a framework for engineering AMPAR gating using auxiliary subunits.


Asunto(s)
Canales de Calcio/fisiología , Receptores AMPA/fisiología , Canales de Calcio/genética , Línea Celular , Membrana Celular , Humanos , Activación del Canal Iónico , Mutación , Dominios Proteicos , Receptores AMPA/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA