Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Oncol ; 11: 746750, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34868946

RESUMEN

OBJECTIVES: This study was conducted in order to design and develop a framework utilizing deep learning (DL) to differentiate papillary renal cell carcinoma (PRCC) from chromophobe renal cell carcinoma (ChRCC) using convolutional neural networks (CNNs) on a small set of computed tomography (CT) images and provide a feasible method that can be applied to light devices. METHODS: Training and validation datasets were established based on radiological, clinical, and pathological data exported from the radiology, urology, and pathology departments. As the gold standard, reports were reviewed to determine the pathological subtype. Six CNN-based models were trained and validated to differentiate the two subtypes. A special test dataset generated with six new cases and four cases from The Cancer Imaging Archive (TCIA) was applied to validate the efficiency of the best model and of the manual processing by abdominal radiologists. Objective evaluation indexes [accuracy, sensitivity, specificity, receiver operating characteristic (ROC) curve, and area under the curve (AUC)] were calculated to assess model performance. RESULTS: The CT image sequences of 70 patients were segmented and validated by two experienced abdominal radiologists. The best model achieved 96.8640% accuracy (99.3794% sensitivity and 94.0271% specificity) in the validation set and 100% (case accuracy) and 93.3333% (image accuracy) in the test set. The manual classification achieved 85% accuracy (100% sensitivity and 70% specificity) in the test set. CONCLUSIONS: This framework demonstrates that DL models could help reliably predict the subtypes of PRCC and ChRCC.

2.
Cell Adh Migr ; 9(1-2): 48-82, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25482829

RESUMEN

Tenascin-C is a large, multimodular, extracellular matrix glycoprotein that exhibits a very restricted pattern of expression but an enormously diverse range of functions. Here, we discuss the importance of deciphering the expression pattern of, and effects mediated by, different forms of this molecule in order to fully understand tenascin-C biology. We focus on both post transcriptional and post translational events such as splicing, glycosylation, assembly into a 3D matrix and proteolytic cleavage, highlighting how these modifications are key to defining tenascin-C function.


Asunto(s)
Encéfalo/metabolismo , Regulación de la Expresión Génica/fisiología , Redes Reguladoras de Genes/fisiología , Transducción de Señal/fisiología , Tenascina/metabolismo , Animales , Humanos , Procesamiento Proteico-Postraduccional/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA