Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 24(11): 3299-3306, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38442266

RESUMEN

Cesium lead halide nanostructures have highly tunable optical and optoelectronic properties. Establishing precise control in forming perovskite single-crystal nanostructures is key to unlocking the full potential of these materials. However, studying the growth kinetics of colloidal cesium lead halides is challenging due to their sensitivity to light, electron beam, and environmental factors like humidity. In this study, in situ observations of CsPbBr3-particle dynamics were made possible through extremely low dose liquid cell transmission electron microscopy, showing that oriented attachment is the dominant pathway for the growth of single-crystal CsPbBr3 architectures from primary nanocubes. In addition, oriented assembly and fusion of ligand-stabilized cubic CsPbBr3 nanocrystals are promoted by electron beam irradiation or introduction of polar additives that both induce partial desorption of the original ligands and polarize the nanocube surfaces. These findings advance our understanding of cesium lead halide growth mechanisms, aiding the controlled synthesis of other perovskite nanostructures.

2.
Small ; 20(26): e2310238, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38267815

RESUMEN

Cesium lead halide (CsPbX3, X = Br, Cl, and I) nanocrystals (NCs) are widely concerned and applied in many fields due to the excellent photoelectric performance. However, the toxicity of Pb and the loss of luminescence in water limit its application in vivo. A stable perovskite nanomaterial with good bioimaging properties is developed by incorporating europium (Eu) in CsPbX3 NCs followed with the surface coating of silica (SiO2) shell (CsPbX3:Eu@SiO2). Through the surface coating of SiO2, the luminescence stability of CsPbBr3 in water is improved and the leakage of Pb2+ is significantly reduced. In particular, Eu doping inhibits the photoluminescence quantum yield reduction of CsPbBr3 caused by SiO2 coating, and further reduces the release of Pb2+. CsPbBr3:Eu@SiO2 nanoparticles (NPs) show efficient luminescence in water and good biocompatibility to achieve cell imaging. More importantly, CsPb(ClBr)3:Eu@SiO2 NPs are obtained by adjusting the halogen components, and green light and blue light are realized in zebrafish imaging, showing good imaging effect and biosafety. The work provides a strategy for advanced perovskite nanomaterials toward biological practical application.


Asunto(s)
Cesio , Europio , Plomo , Luminiscencia , Nanopartículas , Dióxido de Silicio , Agua , Pez Cebra , Animales , Dióxido de Silicio/química , Europio/química , Nanopartículas/química , Plomo/química , Cesio/química , Agua/química , Titanio/química , Óxidos , Compuestos de Calcio
3.
Adv Mater ; 36(8): e2308672, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38051274

RESUMEN

The most attractive advantages of all-inorganic cesium lead halide perovskites are their optical gain over broad spectral ranges through the visible spectrum, so are well suited to use in tunable lasers or broadband amplifiers. Most reported anion exchange reactions face a challenge to achieve the desired halogen-variable perovskites due to rapid and uncontrollable reactions and difficulty to synthesize directly. In this study, a simple vapor/solid anion exchange strategy is demonstrated for controlling the reaction process and realizing a wide range tuning of band gap and amplified spontaneous emission (ASE) wavelength, which exhibits a temperature-dependent anion exchange rate. By optimizing the reaction temperature at 90 °C, the ASE wavelength can be linearly manipulated by just controlling the reaction time. A clear quantitative relationship between ASE peak position and reaction time is achieved. Compares with the CsPbClBr2 film obtained via the liquid phase anion exchange method, the fabricated perovskite films obtained by vapor/solid anion exchange technology exhibit superior film quality and enhanced ASE performance. This work may have applications in the future using facile and controllable techniques to develop high-quality full-color visible lasers.

4.
Small ; 20(23): e2307032, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38145359

RESUMEN

Perovskite nanocrystals (NCs) have emerged as a promising building block for the fabrication of optic-/optoelectronic-/electronic devices owing to their superior characteristics, such as high absorption coefficient, rapid ion mobilities, and tunable energy levels. However, their low structural stability and poor surface passivation have restricted their application to next-generation devices. Herein, a drug delivery system (DDS)-inspired post-treatment strategy is reported for improving their structural stability by doping of Ag into CsPbBr3 (CPB) perovskite NCs; delivery to damaged sites can promote their structural recovery slowly and uniformly, averting the permanent loss of their intrinsic characteristics. Ag NCs are designed through surface-chemistry tuning and structural engineering to enable their circulation in CPB NC dispersions, followed by their delivery to the CPB NC surface, defect-site recovery, and defect prevention. The perovskite-structure healing process through the DDS-type process (with Ag NCs as the drug) is analyzed by a combination of theoretical calculations (with density functional theory) and experimental analyses. The proposed DDS-inspired healing strategy significantly enhances the optical properties and stability of perovskite NCs, enabling the fabrication of white light-emitting diodes.

5.
Nano Lett ; 23(7): 2615-2622, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-36926921

RESUMEN

Cesium lead halide perovskite nanocrystals (PNCs) have emerged as a potential next-generation single quantum emitter (QE) material for quantum optics and quantum information science. Optical dephasing processes at cryogenic temperatures are critical to the quality of a QE, making a mechanistic understanding of coherence losses of fundamental interest. We use photon-correlation Fourier spectroscopy (PCFS) to obtain a lower bound to the optical coherence times of single PNCs as a function of temperature. We find that 20 nm CsPbBr3 PNCs emit nearly exclusively into a narrow zero-phonon line from 4 to 13 K. Remarkably, no spectral diffusion is observed at time scales of 10 µs to 5 ms. Our results suggest that exciton dephasing in this temperature range is dominated by elastic scattering from phonon modes with characteristic frequencies of 1-3 meV, while inelastic scattering is minimal due to weak exciton-phonon coupling.

6.
Front Chem ; 10: 1020484, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36277337

RESUMEN

Inorganic perovskites have been recognized as highly potent materials for the display and medical industries due to their outstanding features. However, there haven't been many reports on their implications as a photocatalyst for the removal of heavy metals. Photocatalysis has been regarded as a significant approach for the removal of pollutants because of its great sustainability, improved efficiency, and reduced energy consumption. Here, we applied inorganic cesium lead halides (Br and I) with zinc oxide heterostructure as a photocatalyst for the first time. The heterostructure has been synthesized by the traditional hot injection strategy and its photocatalytic activity was systematically investigated. Interestingly, the CsPbX3/ZnO heterostructure as a photocatalyst has a homogeneous geometry and possesses an excellent degradation efficiency of over 50% under xenon UV-Visible light. The CsPbX3/ZnO catalyst carries superior oxidation/reduction properties and ionic conductivity due to the synergistic photogenerated charge carrier and interaction between CsPbX3 and ZnO. The recycling experiment showed the good stability of the catalysts. These findings suggest that inorganic lead halide heterostructure has the potential to be used for heavy metal degradation and water pollution removal catalysts.

7.
Nanomaterials (Basel) ; 12(19)2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36234425

RESUMEN

Perovskite materials offer high-efficiency low-cost solar cells and applications versatility. We report on cesium-based hybrid perovskite solar cells with wavelength-selective properties ranging from 500 nm (UV-VIS) to 800 nm (IR). The band gap tuning was achieved through composition changes of mainly lead(II) iodide PbI2 and lead(II) bromide PbBr2. The optical spectra of the developed materials were studied, including the photoluminescence (PL), optical transparency, X-ray diffraction and external quantum efficiency for samples prepared under different compositions. It was found that a high content of iodine displayed a photoluminescence (PL) peak at 790 nm, whereas a high content of bromine showed a PL peak at 548 nm. The combined composition mixture of PbI2 and PbBr2 can be fine-tuned to prepare materials that absorbed light in the visible range (640-660 nm) or other selective wavelengths in the range from 500 to 800 nm. The illuminated current-voltage characteristics of the solar cells were carried out under the AM 1.5 condition using an ABET solar simulator with a reference solar cell for comparison and control. The average efficiency of the fabricated solar cells ranged from 3.5% to 15.5%, depending on perovskite composition. Wavelength-selective solar cells have potential applications in smart windows, building of integrated PVs and solar-operated greenhouses.

8.
Nanomaterials (Basel) ; 12(15)2022 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-35893503

RESUMEN

The metal doping at the Pb2+ position provides improved luminescence performance for the cesium lead halide perovskites, and their fabrication methods assisted by microwave have attracted considerable attention due to the advantages of fast heating and low energy consumption. However, the postsynthetic doping strategy of the metal-doped perovskites driven by microwave heating still lacks systematic research. In this study, the assembly of CsPbBr3/CsPb2Br5 with a strong fluorescence peak at 523 nm is used as the CsPbBr3 precursor, and through the optimization of the postsynthetic conditions such as reaction temperatures, Mn2+/Pb2+ feeding ratios, and Mn2+ sources, the optimum Mn2+-doped product (CsPb(Cl/Br)3:Mn) is achieved. The exciton fluorescence peak of CsPb(Cl/Br)3:Mn is blueshifted to 437 nm, and an obvious fluorescence peak attributing to the doped Mn2+ ions at 597 nm is obtained. Both the CsPbBr3 precursor and CsPb(Cl/Br)3:Mn have high PLQY and stability because there are CsPb2Br5 microcubic crystals to well disperse and embed the CsPbBr3 nanocrystals (NCs) in the precursor, and after Mn2+-doping, this structure is maintained to form CsPb(Cl/Br)3:Mn NCs on the surface of their microcrystals. The exploration of preparation parameters in the microwave-assisted method provides insights into the enhanced color-tunable luminescence of the metal-doped perovskite materials.

9.
ACS Nano ; 16(5): 8318-8328, 2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35544608

RESUMEN

The fast kinetics of all-inorganic CsPbX3 (X = Cl, Br, or I) nanocrystal growth entail that many synthetic strategies for structural control established in other semiconductor systems do not apply. Rather, products are often determined by thermodynamic factors, limiting the range of synthetic outcomes and functionality. In this study, we show how reaction kinetics are significantly slowed if nanocrystals are prepared using a dual injection strategy that moderates the crucial interaction between cesium and halide during nucleation and growth. The result is highly uniform nanorod or cuboid nanocrystals with a controllable size and aspect ratio across the quantum confinement regime, obtainable for both pure and mixed halide compositions. Further, the crystal lattice is continuously tunable between the tetragonal (I4/mcm) and orthorhombic (Pbnm) phases, independent of the overall nanorod morphology, enabling significantly more sophisticated structure-property relationships that can be tailored during this kinetically controlled synthesis.

10.
Artículo en Inglés | MEDLINE | ID: mdl-35638714

RESUMEN

All-inorganic perovskites (CsPbX3) with the merits of high stability and remarkable optical gain property are attractive for achieving on-chip coherent light sources. Unfortunately, traditional solution-processed CsPbX3 films suffer from inevitable poor surface integrity and pinhole defects, severely hindering their optical properties. Here, from the perspective of precursor solution chemistry, we use an ionic liquid solvent methylammonium acetate (MAAc) to fabricate compact, pinhole-free, and smooth CsPbX3 thin films in a one-step air process without antisolvent treatment. Optically pumped amplified spontaneous emission (ASE) with a straightforward visible spectral tunability (418-725 nm) is achieved under both nanosecond and femtosecond laser excitation. For the representative CsPbBr3 films, the threshold reaches down to 11.4 µJ cm-2 under nanosecond laser pumping, which is comparable to the value under one-photon femtosecond pumping. The long gain lifetime up to 258.2 ps is revealed by transient absorption spectroscopy. Most importantly, the films show excellent optical stability and humidity stability with no obvious degradation under the pulsed laser irradiation for more than 210 min, stable ASE output under 95% high humidity, and conspicuous ASE after 1000 h of storage in air condition without encapsulation. These results demonstrate that the method of fabricating inorganic perovskite films with an ionic liquid solvent is promising in developing high-performance full-color visible lasers.

11.
Nanotechnology ; 33(17)2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-35026737

RESUMEN

Herein, we develop a novel strategy for preparing all-inorganic cesium lead halide (CsPbX3, X = Cl, Br, I) perovskite nanocrystals (NCs)@Zn-based metal-organic framework (MOF) composites through interfacial synthesis. The successful embedding of fluorescent perovskite NCs in Zn-MOFs is due to thein situconfined growth, which is attributed to the re-nucleation of water-triggered phase transformation from Cs4PbBr6to CsPbBr3. The controllable synthesis of mixed-halide based composites with various emission wavelength can be achieved by adding the desired amount of halide (Cl or I) salts in the re-nucleation process. More importantly, the anion exchange reaction is inhibited among various composites with different halogen atoms by being trapped in MOFs. Besides, a white light-emitting diode (WLED) is produced using a blue LED chip with the green-emitting and red-emitting composites, which has a color coordinate of (0.3291, 0.3272) and a wide color gamut. This work provides a novel route to achieving perovskite NCs growth in MOFs, which also can be extended to the other NCs embedded in frames as well.

12.
Small Methods ; 5(11): e2100725, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34927958

RESUMEN

The rapid development of all inorganic metal perovskite (CsPbX3 , X represents halogen) materials holds great promise for top-cells in tandem junctions due to their glorious thermal stability and continuous adjustable band gap in a wide range. Due to the presence of defects, the power conversion efficiency (PCE) of CsPbX3 perovskite solar cells (PSCs) is still substantially below the Shockley-Queisser (SQ) limit. Therefore, it is imperative to have an in-depth understanding of the defects in PSCs, thus to evaluate their impact on device performances and to develop corresponding strategies to manipulate defects in PSCs for further promoting their photoelectric properties. In this review, the latest progress in defect passivation in the CsPbX3 PSCs field is summarized. Starting from the effect of non-radiative recombination on open circuit voltage (Voc ) losses, the defect physics, tolerance, self-healing, and the effect of defects on the photovoltaic properties are discussed. Some techniques to identify defects are compared based on quantitative and qualitative analysis. Then, passivation manipulation is discussed in detail, the defect passivation mechanisms are proposed, and the passivation agents in CsPbX3 thin films are classified. Finally, directions for future research about defect manipulation that will push the field to progress forward are outlined.

13.
Nanotechnology ; 32(50)2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34500445

RESUMEN

The quantum confinement effect and interesting optical properties of cesium lead halide (CsPbX3; X = Cl, Br, I) perovskite quantum dots (QDs) and nanocrystals (NCs) have given a new horizon to lighting and photonic applications. Given the exponential rate at which scientific results on CsPbX3NCs are published in the last few years, it can be expected that the research in CsPbX3NCs will further receive increasing scientific interests in the near future and possibly lead to great commercial opportunities to realize these materials based practical applications. With the rapid progress in the single-photon emitting CsPbX3QDs and NCs, practical applications of the quantum technologies such as single-photon emitting light-emitting diode, quantum lasers, quantum computing might soon be possible. But to reach at cutting edge of stable perovskite QDs/NCs, the study of fundamental insight and theoretical aspects of crystal design is yet insufficient. Even more, it has aroused many unanswered questions related to the stability, optical and electronic properties of the CsPbX3QDs. Aim of the present review is to illustrate didactically a precise study of recent progress in the synthesis, properties and applications of CsPbX3QDs and NCs. Critical issues that currently restrict the applicability of these QDs will be identified and advanced methodologies currently in the developing queue, to overcome the roadblock, will be presented. And finally, the prospects for future directions will be provided.

14.
Adv Mater ; 32(12): e1907812, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32064674

RESUMEN

Perovskite nanostructures have attracted much attention in recent years due to their suitability for a variety of applications such as photovoltaics, light-emitting diodes (LEDs), nanometer-size lasing, and more. These uses rely on the conductive properties of these nanostructures. However, electrical characterization of individual, thin perovskite nanowires has not yet been reported. Here, conductive atomic force microscopy characterization of individual cesium lead halide nanowires is presented. Clear differences are observed in the conductivity of nanowires containing only bromide and nanowires containing a mixture of bromide and iodide. The differences are attributed to a higher density of crystalline defects, deeper trap states, and higher inherent conductivity for nanowires with mixed bromide-iodide content.

15.
Nanomaterials (Basel) ; 9(12)2019 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-31835336

RESUMEN

All inorganic cesium lead halide (CsPbX3, X = Cl, Br, I) perovskite nanocrystals (PNCs) exhibit promising applications in light-emitting devices due to their excellent photophysical properties. Herein, we developed a low-cost and convenient method for the preparation of CsPbX3 PNCs in a multiligand-assisted reaction system where peanut oil is applied as a ligand source. The mixed-halide PNCs with tunable optical-band gap were prepared by mixing the single-halide perovskite solutions at room temperature. The resulting PNCs had good monodispersity, with dimensions of 8-10 nm, high photoluminescence quantum yield (96.9%), narrow emission widths (15-34 nm), and tunable emission wavelength (408-694 nm), covering the entire visible spectrum. Additionally, various morphologies of PNCs, such as nanospheres, nanocubes, and nanowires, were obtained by controlling reaction temperature and time, and the amount of oleamine with multiple ligands in peanut oil potentially playing a dominant role in the nucleation/growth processes of our PNCs. Finally, the resulting CsPbBr3 PNCs were employed to develop a white light-emitting diode (WLED), demonstrating the potential lighting applications for our method.

16.
Adv Sci (Weinh) ; 6(13): 1900462, 2019 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-31380191

RESUMEN

Colloidal all-inorganic perovskite nanocrystals have gained significant attention as a promising material for both fundamental and applied research due to their excellent emission properties. However, reported photoluminescence quantum yields (PL QYs) of blue-emitting perovskite nanocrystals are rather low, mostly due to the fact that the high energy excitons for such wide bandgap materials are easily captured by interband traps, and then decay nonradiatively. In this work, it is demonstrated how to tackle this issue, performing self-assembly of 2D perovskite nanoplatelets into larger size (≈50 nm × 50 nm × 20 nm) cuboid crystals. In these structures, 2D nanoplatelets being isolated from each other within the cuboidal scaffold by organic ligands constitute multiple quantum wells, where exciton localization on potential disorder sites helps them to bypass nonradiative channels present in other platelets. As a result, the cuboid crystals show an extremely high PL QY of 91% of the emission band centered at 480 nm. Moreover, using the same synthetic method, mixed-anion CsPb(Br/Cl)3 cuboid crystals with blue emission peaks ranging from 452 to 470 nm, and still high PL QYs in the range of 72-83% are produced.

17.
Adv Mater ; 31(39): e1903717, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31402527

RESUMEN

Cesium lead halide perovskites are of interest for light-emitting diodes and lasers. So far, thin-films of CsPbX3 have typically afforded very low photoluminescence quantum yields (PL-QY < 20%) and amplified spontaneous emission (ASE) only at cryogenic temperatures, as defect related nonradiative recombination dominated at room temperature (RT). There is a current belief that, for efficient light emission from lead halide perovskites at RT, the charge carriers/excitons need to be confined on the nanometer scale, like in CsPbX3 nanoparticles (NPs). Here, thin films of cesium lead bromide, which show a high PL-QY of 68% and low-threshold ASE at RT, are presented. As-deposited layers are recrystallized by thermal imprint, which results in continuous films (100% coverage of the substrate), composed of large crystals with micrometer lateral extension. Using these layers, the first cesium lead bromide thin-film distributed feedback and vertical cavity surface emitting lasers with ultralow threshold at RT that do not rely on the use of NPs are demonstrated. It is foreseen that these results will have a broader impact beyond perovskite lasers and will advise a revision of the paradigm that efficient light emission from CsPbX3 perovskites can only be achieved with NPs.

18.
ACS Appl Mater Interfaces ; 11(21): 19123-19131, 2019 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-31070346

RESUMEN

High-performance and hysteresis-less mesoscopic CsPbI2Br perovskite solar cells (PSCs) are demonstrated by adapting hole-transporting materials (HTMs) with controlled highest occupied molecular orbital (HOMO) values. The used model HTMs are poly-3-hexylthiophene (P3HT), poly-triarylamine (P-TAA), poly-fluoren-8-triarylamine (PF8-TAA), and poly-indenofluoren-8-triarylamine (PIF8-TAA), and their HOMO energy levels position to -4.98, -5.09, -5.45, and -5.52 eV, respectively. By controlling the HOMO of the HTMs, the average open-circuit voltages of 25 mesoscopic CsPbI2Br PSCs are controllable from 1.11 ± 0.030 V for a P3HT HTM-based device to 1.17 ± 0.023, 1.21 ± 0.027, and 1.27 ± 0.028 V for P-TAA, PF8-TAA, and PIF8-TAA HTM-based devices. As a result, the PIF8-TAA HTM-based mesoscopic PSC exhibits the highest open-circuit voltage of 1.31 V and power conversion efficiency (PCE) of 14.20% for the forward scan condition and 14.86% for the reverse scan condition under 1 sun illumination (100 mW/cm2 AM 1.5G). In addition, the unencapsulated mesoscopic CsPbI2Br PSCs exhibited 10-14% of PCE degradation compared to their initial efficiency in maximum power point tracking under continuous 1 sun light soaking at 85 °C for 1000 h.

19.
ACS Appl Mater Interfaces ; 11(17): 15898-15904, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-30969112

RESUMEN

Cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I) have emerged as an important class of color-tunable light-emitting materials in the past 4 years. However, single-CsPbX3 nanostructures with dual-color emission remain scarce. Here, we demonstrate dual-color emission from lead halide perovskite nanowires induced by the surface ligands, that is, oligomeric methoxypolyethylene glycol (MEOPEG). In addition to the characteristic emission from the host lattice, an unprecedented emission from the expanded band gap caused by MEOPEG is observed. The ratio of the two emission intensities can be easily adjusted by changing the concentration of the surface ligands. Moreover, the band gaps of CsPbX3-MEOPEG can be further fine-tuned by a simple postsynthetic anion exchange process. As a result, white light-emitting diodes (WLEDs) with high-quality CIE coordinates of (0.33, 0.29) and a high color rendering index value (84) are realized. These CsPbX3-MEOPEG materials, with tunable dual-color emission, may serve as ideal model systems for WLEDs, which will undoubtedly expand the applications of cesium lead halide perovskites.

20.
Angew Chem Int Ed Engl ; 58(44): 15596-15618, 2019 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-30861267

RESUMEN

Recently, lead halide-based perovskites have become one of the hottest topics in photovoltaic research because of their excellent optoelectronic properties. Among them, organic-inorganic hybrid perovskite solar cells (PSCs) have made very rapid progress with their power conversion efficiency (PCE) now at 23.7 %. However, the intrinsically unstable nature of these materials, particularly to moisture and heat, may be a problem for their long-term stability. Replacing the fragile organic group with more robust inorganic Cs+ cations forms the cesium lead halide system (CsPbX3 , X is halide) as all-inorganic perovskites which are much more thermally stable and often more stable to other factors. From the first report in 2015 to now, the PCE of CsPbX3 -based PSCs has abruptly increased from 2.9 % to 17.1 % with much enhanced stability. In this Review, we summarize the field up to now, propose solutions in terms of development bottlenecks, and attempt to boost further research in CsPbX3 PSCs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA