Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 43(21): 3949-3969, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37037606

RESUMEN

Autism spectrum disorder (ASD) is a neurodevelopmental disorder with highly heritable heterogeneity. Mutations of CUB and sushi multiple domains 3 (CSMD3) gene have been reported in individuals with ASD. However, the underlying mechanisms of CSMD3 for the onset of ASD remain unexplored. Here, using male CSMD3 knock-out (CSMD3 -/-) mice, we found that genetic deletion of CSMD3 produced core autistic-like symptoms (social interaction deficits, restricted interests, and repetitive and stereotyped behaviors) and motor dysfunction in mice, indicating that the CSMD3 gene can be considered as a candidate for ASD. Moreover, we discovered that the ablation of CSMD3 in mice led to abnormal cerebellar Purkinje cell (PC) morphology in Crus I/II lobules, including aberrant developmental dendritogenesis and spinogenesis of PCs. Furthermore, combining in vivo fiber photometry calcium imaging and ex vivo electrophysiological recordings, we showed that the CSMD3 -/- mice exhibited an increased neuronal activity (calcium fluorescence signals) in PCs of Crus I/II lobules in response to movement activity, as well as an enhanced intrinsic excitability of PCs and an increase of excitatory rather than inhibitory synaptic input to the PCs, and an impaired long-term depression at the parallel fiber-PC synapse. These results suggest that CSMD3 plays an important role in the development of cerebellar PCs. Loss of CSMD3 causes abnormal PC morphology and dysfunction in the cerebellum, which may underlie the pathogenesis of motor deficits and core autistic-like symptoms in CSMD3 -/- mice. Our findings provide novel insight into the pathophysiological mechanisms by which CSMD3 mutations cause impairments in cerebellar function that may contribute to ASD.SIGNIFICANCE STATEMENT Autism spectrum disorder (ASD) is a neurodevelopmental disorder with highly heritable heterogeneity. Advances in genomic analysis have contributed to numerous candidate genes for the risk of ASD. Recently, a novel giant gene CSMD3 encoding a protein with CUB and sushi multiple domains (CSMDs) has been identified as a candidate gene for ASD. However, the underlying mechanisms of CSMD3 for the onset of ASD remain largely unknown. Here, we unravel that loss of CSMD3 results in abnormal morphology, increased intrinsic excitabilities, and impaired synaptic plasticity in cerebellar PCs, subsequently leading to motor deficits and ASD-like behaviors in mice. These results provide novel insight into the pathophysiological mechanisms by which CSMD3 mutations cause impairments in cerebellar function that may contribute to ASD.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Trastornos Motores , Animales , Masculino , Ratones , Calcio/metabolismo , Cerebelo/fisiología , Ratones Noqueados , Trastornos Motores/genética , Trastornos Motores/metabolismo , Células de Purkinje/fisiología
2.
Biochim Biophys Acta Mol Cell Res ; 1870(5): 119466, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36940741

RESUMEN

Distorted neuronal calcium signaling has been reported in many neurodegenerative disorders, including different types of spinocerebellar ataxias (SCAs). Cerebellar Purkinje cells (PCs) are primarily affected in SCAs and the disturbances in the calcium homeostasis were observed in SCA PCs. Our previous results have revealed that 3,5-dihydroxyphenylglycine (DHPG) induced greater calcium responses in SCA2-58Q PC cultures than in wild type (WT) PC cultures. Here we observed that glutamate-induced calcium release in PCs cells bodies is significantly higher in SCA2-58Q PCs from acute cerebellar slices compared to WT PCs of the same age. Recent studies have demonstrated that the stromal interaction molecule 1 (STIM1) plays an important role in the regulation of the neuronal calcium signaling in cerebellar PCs in mice. The main function of STIM1 is to regulate store-operated calcium entry through the TRPC/Orai channels formation to refill the calcium stores in the ER when it is empty. Here we demonstrated that the chronic viral-mediated expression of the small interfering RNA (siRNA) targeting STIM1 specifically in cerebellar PCs alleviates the deranged calcium signaling in SCA2-58Q PCs, rescues the spine loss in these cerebellar neurons, and also improves the motor decline in SCA2-58Q mice. Thus, our preliminary results support the important role of the altered neuronal calcium signaling in SCA2 pathology and also suggest the STIM1-mediated signaling pathway as a potential therapeutic target for treatment of SCA2 patients.


Asunto(s)
Células de Purkinje , Ataxias Espinocerebelosas , Ratones , Animales , Células de Purkinje/metabolismo , Señalización del Calcio/fisiología , Calcio/metabolismo , Molécula de Interacción Estromal 1/genética , Molécula de Interacción Estromal 1/metabolismo , Ataxias Espinocerebelosas/genética
3.
Cells ; 12(4)2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36831191

RESUMEN

PRUNE1 is a member of the aspartic acid-histidine-histidine (DHH) protein superfamily, which could display an exopolyphosphatase activity and interact with multiple cellular proteins involved in the cytoskeletal rearrangement. It is widely expressed during embryonic development and is essential for embryogenesis. PRUNE1 could also be critical for postnatal development of the nervous system as it was found to be mutated in patients with microcephaly, brain malformations, and neurodegeneration. To determine the cellular function of PRUNE1 during development and in disease, we have generated conditional mouse alleles of the Prune1 in which loxP sites flank exon 6. Crossing these alleles with a ubiquitous Cre transgenic line resulted in a complete loss of PRUNE1 expression and embryonic defects identical to those previously described for Prune1 null embryos. In addition, breeding these alleles with a Purkinje cell-specific Cre line (Pcp2-Cre) resulted in the loss of Purkinje cells similar to that observed in patients carrying a mutation with loss of PRUNE1 function. Therefore, the Prune1 conditional mouse alleles generated in this study provide important genetic tools not only for dissecting the spatial and temporal roles of PRUNE1 during development but also for understanding the pathogenic role of PRUNE1 dysfunction in neurodegenerative or neurodevelopmental disease. In addition, from this work, we have described an approach that allows one to efficiently generate conditional mouse alleles based on mouse zygote electroporation.


Asunto(s)
Histidina , Fitomejoramiento , Ratones , Animales , Alelos , Ratones Noqueados , Mutación
4.
Antioxidants (Basel) ; 11(12)2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36552657

RESUMEN

Research reports using animal models of ischemic insults have demonstrated that oxcarbazepine (a carbamazepine analog: one of the anticonvulsant compounds) extends neuroprotective effects against cerebral or forebrain injury induced by ischemia and reperfusion. However, research on protective effects against ischemia and reperfusion cerebellar injury induced by cardiac arrest (CA) and the return of spontaneous circulation has been poor. Rats were assigned to four groups as follows: (Groups 1 and 2) sham asphyxial CA and vehicle- or oxcarbazepine-treated, and (Groups 3 and 4) CA and vehicle- or oxcarbazepine-treated. Vehicle (0.3% dimethyl sulfoxide/saline) or oxcarbazepine (200 mg/kg) was administered intravenously ten minutes after the return of spontaneous circulation. In this study, CA was induced by asphyxia using vecuronium bromide (2 mg/kg). We conducted immunohistochemistry for calbindin D-28kDa and Fluoro-Jade B histofluorescence to examine Purkinje cell death induced by CA. In addition, immunohistochemistry for 4-hydroxy-2-nonenal (4HNE) was carried out to investigate CA-induced oxidative stress, and immunohistochemistry for Cu, Zn-superoxide dismutase (SOD1) and Mn-superoxide dismutase (SOD2) was performed to examine changes in endogenous antioxidant enzymes. Oxcarbazepine treatment after CA significantly increased the survival rate and improved neurological deficit when compared with vehicle-treated rats with CA (survival rates ≥ 63.6 versus 6.5%), showing that oxcarbazepine treatment dramatically protected cerebellar Purkinje cells from ischemia and reperfusion injury induced by CA. The salvation of the Purkinje cells from ischemic injury by oxcarbazepine treatment paralleled a dramatic reduction in 4HNE (an end-product of lipid peroxidation) and increased or maintained the endogenous antioxidant enzymes (SOD1 and SOD2). In brief, this study shows that therapeutic treatment with oxcarbazepine after CA apparently saved cerebellar neurons (Purkinje cells) from CA-induced neuronal death by attenuating oxidative stress and suggests that oxcarbazepine can be utilized as a therapeutic medicine for ischemia and reperfusion brain (cerebellar) injury induced by CA.

5.
Neuroscience ; 505: 78-90, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-36244636

RESUMEN

Genetic analyses have linked BTBD9 to restless legs syndrome (RLS) and sleep regulation. Btbd9 knockout mice show RLS-like motor restlessness. Previously, we found hyperactivity of cerebellar Purkinje cells (PCs) in Btbd9 knockout mice, which may contribute to the motor restlessness observed. However, underlying mechanisms for PC hyperactivity in Btbd9 knockout mice are unknown. Here, we used dissociated PC recording, brain slice recording and western blot to address this question. Our dissociated recording shows that knockout PCs had increased TEA-sensitive, Ca2+-dependent K+ currents. Applying antagonist to large conductance Ca2+-activated K+ (BK) channels further isolated the increased current as BK current. Consistently, we found increased amplitude of afterhyperpolarization and elevated BK protein levels in the knockout mice. Dissociated recording also shows a decrease in TEA-insensitive, Ca2+-dependent K+ currents. The result is consistent with reduced amplitude of tail currents, mainly composed of small conductance Ca2+-activated K+ (SK) currents, in slice recording. Our results suggest that BK and SK channels may be responsible for the hyperactivity of knockout PCs. Recently, BTBD9 protein was shown to associate with SYNGAP1 protein. We found a decreased cerebellar level of SYNGAP1 in Btbd9 knockout mice. However, Syngap1 heterozygous knockout mice showed nocturnal, instead of diurnal, motor restlessness. Our results suggest that SYNGAP1 deficiency may not contribute directly to the RLS-like motor restlessness observed in Btbd9 knockout mice. Finally, we found that PC-specific Btbd9 knockout mice exhibited deficits in motor coordination and balance similar to Btbd9 knockout mice, suggesting that the motor effect of BTBD9 in PCs is cell-autonomous.


Asunto(s)
Síndrome de las Piernas Inquietas , Ratones , Animales , Síndrome de las Piernas Inquietas/genética , Síndrome de las Piernas Inquietas/metabolismo , Agitación Psicomotora , Proteínas del Tejido Nervioso/metabolismo , Ratones Noqueados , Cerebelo/metabolismo , Sueño , Proteínas Activadoras de ras GTPasa/metabolismo
6.
Eur J Neurosci ; 54(7): 6673-6684, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34536317

RESUMEN

Serine/threonine kinase 17b (STK17B, also known as DRAK2) is known to be a downstream effector of protein kinase C (PKC) in the immune system, in particular T lymphocytes. PKC activity also plays a critical role for dendritic development and synaptic maturation and plasticity in cerebellar Purkinje cells. We present evidence that STK17B is strongly expressed in mouse cerebellar Purkinje cells starting in the early postnatal period and remaining highly expressed throughout adult stages and that STK17B is a target of PKC phosphorylation in the cerebellum. STK17B overexpression potentiates the morphological changes of Purkinje cells seen after PKC activation, suggesting that it is a downstream effector of PKC. A phosphorylation mimetic STK17B variant induced a marked reduction of Purkinje cell dendritic tree size, whereas the inhibition of STK17B with the novel compound 16 (Cpd16) could partially rescue the morphological changes of the Purkinje cell dendritic tree after PKC activation. These findings show that STK17B signalling is an important downstream effector of PKC activation in Purkinje cells. Furthermore, STK17B was identified as a molecule being transcriptionally downregulated in mouse models of SCA1, SCA7, SCA14 and SCA41. The reduced expression of STK17B in these mouse models might protect Purkinje cell dendrites from the negative effects of overactivated PKC signalling. Our findings provide new insights in the role of STK17B for Purkinje cell dendritic development and the pathology of SCAs.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Proteínas Serina-Treonina Quinasas/genética , Células de Purkinje , Ataxias Espinocerebelosas , Animales , Cerebelo/metabolismo , Ratones , Proteína Quinasa C/metabolismo , Células de Purkinje/metabolismo , Serina , Ataxias Espinocerebelosas/genética
7.
Prog Neurobiol ; 200: 101986, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33400965

RESUMEN

Long-term potentiation (LTP) of synaptic transmission is a form of activity-dependent synaptic plasticity that exists at most synapses in the nervous system. In the central nervous system (CNS), LTP has been recorded at numerous synapses and is a prime candidate mechanism associating activity-dependent plasticity with learning and memory. LTP involves long-lasting increase in synaptic strength with various underlying mechanisms. In the CNS, the predominant type of LTP is believed to be dependent on activation of the ionotropic glutamate N-methyl-D-aspartate receptor (NMDAR), which is highly calcium-permeable. However, various forms of NMDAR-independent LTP have been identified in diverse areas of the nervous system. The NMDAR-independent LTP may require activation of glutamate metabotropic receptors (mGluR) or ionotropic receptors other than NMDAR such as nicotinic acetylcholine receptor (α7-nAChR), serotonin 5-HT3 receptor or calcium-permeable AMPA receptor (CP-AMPAR). In this review, NMDAR-independent LTP of various areas of the central and peripheral nervous systems are discussed.


Asunto(s)
Potenciación a Largo Plazo , Animales , Calcio/metabolismo , Glutamatos , Hipocampo/metabolismo , Humanos , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/metabolismo
8.
Dokl Biochem Biophys ; 494(1): 222-226, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33119821

RESUMEN

Using the patch-clamp method in the whole cell configuration, it was shown that new conjugates of 2-aminothiophene-3-carboxylic acid with adamantane derivatives exhibit the ability to modulate CaCC activity in the single Purkinje neurons of rat cerebellum. It was noted that, depending on the nature of the substitution in the thiophene fragment, the nature of the effect on CaCC varies from inhibition to potentiation of CaCC currents. The described compounds are also blockers of the NMDA receptor ifenprodile site, which may have an additional neuroprotective contribution to the spectrum of biological activity of these compounds.


Asunto(s)
Adamantano/farmacología , Canales de Cloruro/antagonistas & inhibidores , Potenciales de la Membrana/efectos de los fármacos , Neuronas/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Tiofenos/farmacología , Animales , Células Cultivadas , Masculino , Neuronas/metabolismo , Neuronas/fisiología , Técnicas de Placa-Clamp/métodos , Ratas , Ratas Wistar , Receptores de N-Metil-D-Aspartato/metabolismo
9.
J Neurosci ; 40(2): 267-282, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31754008

RESUMEN

The role of dendrites in the integration of widespread synaptic activity has been studied in experiments and theories (Johnston et al., 1996; Magee, 2007). However, whether the conduction of synaptic currents from dendrites to the soma depends on excitability of those dendritic branches is unclear. How modulation of the branch excitability affects the conduction of synaptic inputs and their selection on dendrites is also elusive. Here, I performed simultaneous voltage-clamp recordings from the soma and dendrites of single cerebellar Purkinje neurons in male Sprague-Dawley rats and analyzed the relationship between spontaneous EPSCs on both sides. I found that EPSCs on distal dendrites have a salient discordance in amplitude compared with those on the soma. Furthermore, individual ratios of the EPSC concurrently recorded on the soma and dendrites were not unique, but discrete, suggesting the occurrence of various attenuations in different paths of dendritic branches to the soma. The obtained data and simulations indicate several distinct groups (4.5 ± 0.3, n = 22 somatodendritic recordings) of co-occurred synaptic inputs in Purkinje cell dendrites. This clustering of synaptic currents was suggested to emerge at farther distances than the secondary bifurcations. Finally, ratios of the co-EPSCs were uniformly distributed after either intrinsic plasticity induction or SK-channel blockade. Overall, results suggest that in Purkinje cells the excitability along the dendrite processes modulates the conduction of EPSCs and makes active inputs heterogeneous through SK channel activity, intrinsic plasticity, and dendritic branching. These properties of dendrites may confer branch-specific computational power to neurons.SIGNIFICANCE STATEMENT I have previously studied the "non-synaptic" plasticity of the intrinsic excitability in the cerebellar Purkinje cells (Belmeguenai et al., 2010), and branch-specific increase of intrinsic excitability of the dendrites (Ohtsuki et al., 2012b; Ohtsuki and Hansel, 2018) through the downregulation of SK (small conductance Ca2+-activated K+) channels. In this study, I show that a dendritic filtering of synaptic electroconductivity is heterogeneous among the branches on distal dendrites and that the increase in the dendritic excitability accompanied with the intrinsic plasticity alters a state with the heterogeneity to a globally excitable state in Purkinje neurons. My findings propose a new learning model relying on the intrinsic excitability plasticity of the dendritic branch fields.


Asunto(s)
Dendritas/fisiología , Plasticidad Neuronal/fisiología , Células de Purkinje/fisiología , Sinapsis/fisiología , Animales , Potenciales Postsinápticos Excitadores/fisiología , Masculino , Ratas , Ratas Sprague-Dawley
10.
Pharmacology ; 103(1-2): 82-92, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30517937

RESUMEN

Etomidate is an imidazole, nonbarbiturate hypnotic agent that is increasingly used in procedural sedation. However, the effects of etomidate on the spontaneous activity of cerebellar Purkinje cells (PCs) in living mouse have not been fully understood. In this study, we investigated the effects of etomidate on the spontaneous simple spike (SS) activity of PCs in urethane-anesthetized mice by cell-attached recording and pharmacological methods. Cerebellar surface application of etomidate (50 µmol\L) reduced the SS firing rate in a concentration-dependent manner (IC50: 43.4 µmol\L). Application of either a γ-aminobutyric acid type A (GABAA) receptor antagonist, SR95531 (20 µmol\L) or a glycine receptor antagonist strychnine (10 µmol\L) significantly attenuated but not abolished the etomidate-induced decrease in PC SS firing rate. However, co-application of SR95531 (20 µmol\L) and strychnine (10 µmol\L) abolished the etomidate-induced decrease in PC SS firing rate. Moreover, intraperitoneal injection of etomidate (3 mg/kg body weight) also induced a significant depression in PC SS firing rate, which was blocked by the co-application of SR95531 and strychnine on the cerebellar surface. These results indicate that both GABAA and glycine receptors are involved in the etomidate-induced decrease in PC SS firing rate in vivo in mice.


Asunto(s)
Etomidato/farmacología , Células de Purkinje/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Animales , Cerebelo/citología , Cerebelo/efectos de los fármacos , Cerebelo/metabolismo , Cerebelo/fisiología , Femenino , Antagonistas del GABA/farmacología , Hipnóticos y Sedantes/farmacología , Masculino , Ratones , Ratones Endogámicos ICR , Células de Purkinje/fisiología , Piridazinas/farmacología , Receptores de GABA-A/metabolismo , Receptores de Glicina/metabolismo , Estricnina/farmacología
11.
Neurobiol Dis ; 120: 34-50, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30184469

RESUMEN

Spinocerebellar ataxia type 21 (SCA21) is caused by missense or nonsense mutations of the transmembrane protein 240 (TMEM240). Molecular mechanisms of SCA21 pathogenesis remain unknown because the functions of TMEM240 have not been elucidated. We aimed to reveal the molecular pathogenesis of SCA21 using cell and mouse models that overexpressed the wild-type and SCA21 mutant TMEM240. In HeLa cells, overexpressed TMEM240 localized around large cytoplasmic vesicles. The SCA21 mutation did not affect this localization. Because these vesicles contained endosomal markers, we evaluated the effect of TMEM240 fused with a FLAG tag (TMEM-FL) on endocytosis and autophagic protein degradation. Wild-type TMEM-FL significantly impaired clathrin-mediated endocytosis, whereas the SCA21 mutants did not. The SCA21 mutant TMEM-FL significantly impaired autophagic lysosomal protein degradation, in contrast to wild-type. Next, we investigated how TMEM240 affects the neural morphology of primary cultured cerebellar Purkinje cells (PCs). The SCA21 mutant TMEM-FL significantly prevented the dendritic development of PCs, in contrast to the wild-type. Finally, we assessed mice that expressed wild-type or SCA21 mutant TMEM-FL in cerebellar neurons using adeno-associated viral vectors. Mice expressing the SCA21 mutant TMEM-FL showed impaired motor coordination. Although the SCA21 mutant TMEM-FL did not trigger neurodegeneration, activation of microglia and astrocytes was induced before motor miscoordination. In addition, immunoblot experiments revealed that autophagic lysosomal protein degradation, especially chaperone-mediated autophagy, was also impaired in the cerebella that expressed the SCA21 mutant TMEM-FL. These dysregulated functions in vitro, and induction of early gliosis and lysosomal impairment in vivo by the SCA21 mutant TMEM240 may contribute to the pathogenesis of SCA21.


Asunto(s)
Lisosomas/metabolismo , Proteínas de la Membrana/biosíntesis , Mutación/fisiología , Neuroglía/metabolismo , Degeneraciones Espinocerebelosas/metabolismo , Animales , Femenino , Células HeLa , Humanos , Lisosomas/genética , Lisosomas/patología , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuroglía/patología , Embarazo , Ratas , Ratas Wistar , Degeneraciones Espinocerebelosas/genética
12.
J Neurosci ; 37(23): 5659-5669, 2017 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-28495974

RESUMEN

Long-term depression (LTD) at the parallel fiber (PF)-to-cerebellar Purkinje cell (PC) synapse is implicated in the output of PCs, the sole output of the cerebellar cortex. In addition to synaptic plasticity, intrinsic excitability is also one of the components that determines PC output. Although long-term potentiation of intrinsic excitability (LTP-IE) has been suggested, it has yet to be investigated how PF-PC LTD modifies intrinsic excitability of PCs. Here, we show that pairing of the PF and climbing fiber (CF) for PF-PC LTD induction evokes LTD-IE in cerebellar PCs from male C57BL/6 mice. Interestingly, this intrinsic plasticity showed different kinetics from synaptic plasticity, but both forms of plasticity share Ca2+ signaling and protein kinase C pathway as their underlying mechanism. Although small-conductance Ca2+-activated K+ channels play important roles in LTP-IE, no direct implication has been found. After PF-PC LTD induction, neither the temporal summation of dendritic EPSP nor the power of spike frequency adaptation is changed, indicating that cerebellar LTD executes the information processing in a quantitative way without quality changes of synaptic integration and generation of output signals. Our results suggest that LTD-IE may have a synergistic effect with synaptic depression on the total net output of neurons by amplifying the modification of PF synaptic transmission.SIGNIFICANCE STATEMENT Although the output of Purkinje cells (PCs) is a critical component of cerebellum-dependent learning and memory, the changes of PC excitability when synaptic LTD occurs are unclear. Here, we show that the induction of PF-PC LTD evokes LTD-IE in PCs. Our observation complements previous intrinsic plasticity phenomenon of long-term potentiation of intrinsic excitability (LTP-IE), providing evidence for the idea that intrinsic plasticity has bidirectionality as synaptic plasticity. LTD-IE occurs together with synaptic LTD and both phenomena are dependent on the Ca2+ signaling pathway. Furthermore, our findings raise the prospect that this synaptic and intrinsic plasticity acts synergistically in PCs to modify neuronal activity in the same direction when learning occurs.


Asunto(s)
Cerebelo/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Inhibición Neural/fisiología , Plasticidad Neuronal/fisiología , Células de Purkinje/fisiología , Animales , Células Cultivadas , Cerebelo/citología , Masculino , Ratones , Ratones Endogámicos C57BL
13.
Cell Physiol Biochem ; 41(4): 1403-1412, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28315868

RESUMEN

OBJECTIVE: To identify the molecular mechanism of post-stroke depression (PSD), and observe the therapeutic effects of cerebellar fastigial nucleus electrical stimulation (FNS) on the behaviors and regional cerebral blood flow (rCBF) in a PSD rat model. METHODS: Healthy SD rats were randomly divided into four groups (sham, stroke, post-stroke depress and FNS group). Sham group (n = 6) underwent sham operation. The other three groups (n = 6*3) underwent MCAO. Rats were examined twice a week in open filed test. Moreover, neuroprotective effect on cerebellar Purkinje cells and expression of cytokines in hippocampal tissue were examined. RESULTS: The PSD group showed a significant weight loss, decreased consumption of sucrose water, reduced rearing and locomotor activities. The FNS significantly alleviates the body weight loss and sucrose preference, locomotor and rearing activities. The bilateral rCBF was also restored after FNS treatment. Moreover, FNS improved the neuroprotection via suppressing apoptosis of cerebellar Purkinje cells. And the inflammatory cytokines mRNA level in hippocampus was significantly decreased. CONCLUSION: FNS treatment alleviates depressive-like behaviors and rCBF in PSD rats model, which could be attributed to its ability to protect cerebellar Purkinje cells and decrease the mRNA level of inflammatory cytokines.


Asunto(s)
Conducta Animal , Núcleos Cerebelosos , Modelos Animales de Enfermedad , Terapia por Estimulación Eléctrica , Accidente Cerebrovascular , Animales , Núcleos Cerebelosos/metabolismo , Núcleos Cerebelosos/fisiopatología , Citocinas/metabolismo , Depresión/etiología , Depresión/metabolismo , Depresión/fisiopatología , Depresión/terapia , Humanos , Células de Purkinje/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/fisiopatología , Accidente Cerebrovascular/terapia
14.
J Chem Neuroanat ; 81: 87-96, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28254550

RESUMEN

INTRODUCTION: Electrical injury is a prominent problem in low income countries with increased morbidity and mortality rate. Nervous system is one of the most susceptible systems to electrical current because of its low resistance. There were different studies demonstrated electrocution effect on the nervous system, however little was made on the cerebellum. AIM: This study was conducted to produce an experimental suggestion concerning injury of the nervous system through evaluating Purkinje cell apoptosis and number in rat cerebellum by fatal and non-fatal electric current using histological and immunohistochemical study. Also to support the diagnosis of electrocution as a probable cause of death and delayed neurological damage as well as disability. MATERIALS & METHODS: Fifty male Wistar rats were divided into five groups (10 rats each); control group: normal rats that were sacrificed without exposure to electric current, groups 1-3 (non-fatal electrocution groups): rats were exposed to alternating electric current (220v, 50Hz) for one minute then were sacrificed immediately, after 2h, and after 4h respectively, and group 4 (fatal electrocution group): rats were sacrificed after being electrified up to death (153±27s). Sections from cerebellum were processed for histological and caspase-3 immunohistochemical study. RESULTS: Purkinje cells showed marked histopathological changes in the form of shrunken dark stained cells with significant reduction of their number in H &E stained sections when compared to control, widespread argyrophilia, and degenerated organelles along with shrunken irregular nuclei. For caspase-3 staining, there was significantly increased number of caspase-3 positive cells in groups 1-3 (non-fatal electrocution groups) and markedly increased in group 4 (fatal electrocution group) in comparison to control group. These changes were gradually increased with the increased duration after exposure to the electric current. CONCLUSION: Apoptosis and loss of Purkinje cells were involved in the pathogenesis of immediate and long term effect of electrical injury on Purkinje cells, which will be an aid to the forensic pathologist to determine the cause of death and residual damage as well as disability after electric shock.


Asunto(s)
Apoptosis , Cerebelo/química , Cerebelo/patología , Traumatismos por Electricidad/patología , Células de Purkinje/química , Células de Purkinje/patología , Animales , Apoptosis/fisiología , Estimulación Eléctrica/efectos adversos , Masculino , Ratas , Ratas Wistar
15.
Neurochem Int ; 94: 1-8, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26827887

RESUMEN

Modulation of the intracellular calcium concentration is a ubiquitous signaling system involved in the control of numerous biological processes in a wide variety of cells. Inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs), which act as calcium release channels in the ER membrane, play a key role in the regulation of intracellular calcium concentration. IP3R type 1 (IP3R1) is the major neuronal IP3R isoform in the central nervous system and particularly abundant in cerebellar Purkinje cells. Heterozygous deletions or missense mutations in ITPR1, which encodes IP3R1, result in autosomal dominantly inherited spinocerebellar ataxias (SCAs), including SCA types 15 (SCA15) and 29 (SCA29). In addition, homozygous missense mutations in carbonic anhydrase-related protein VIII (CARP), which suppresses the ability of IP3 to bind to IP3R1, cause a recessively inherited ataxia with mild cognitive impairment with/without quadrupedal gait. Moreover, cytosolic calcium overload with excessive IP3R1 activity has been implicated in the pathogenesis of other SCAs, including SCA types 2 (SCA2) and 3 (SCA3). These facts indicate that dysregulation of IP3R-mediated calcium signaling is linked to the pathogenesis of SCAs. Here, we focus on the molecular basis of SCA15 and SCA29, which are caused by mutations in ITPR1. In addition, we discuss other SCAs whose pathogenesis may be linked to aberrant activation of IP3R-mediated Ca(2+) signaling.


Asunto(s)
Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/metabolismo , Animales , Señalización del Calcio/fisiología , Humanos , Mutación/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA