Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 36(21): e2308126, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38533956

RESUMEN

The behavior of tissue resident cells can be influenced by the spatial arrangement of cellular interactions. Therefore, it is of significance to precisely control the spatial organization of various cells within multicellular constructs. It remains challenging to construct a versatile multicellular scaffold with ordered spatial organization of multiple cell types. Herein, a modular multicellular tissue engineering scaffold with ordered spatial distribution of different cell types is constructed by assembling varying cell-laden modules. Interestingly, the modular scaffolds can be disassembled into individual modules to evaluate the specific contribution of each cell type in the system. Through assembling cell-laden modules, the macrophage-mesenchymal stem cell (MSC), endothelial cell-MSC, and chondrocyte-MSC co-culture models are successfully established. The in vitro results indicate that the intercellular cross-talk can promote the proliferation and differentiation of each cell type in the system. Moreover, MSCs in the modular scaffolds may regulate the behavior of chondrocytes through the nuclear factor of activated T-Cells (NFAT) signaling pathway. Furthermore, the modular scaffolds loaded with co-cultured chondrocyte-MSC exhibit enhanced regeneration ability of osteochondral tissue, compared with other groups. Overall, this work offers a promising strategy to construct a multicellular tissue engineering scaffold for the systematic investigation of intercellular cross-talk and complex tissue engineering.


Asunto(s)
Diferenciación Celular , Condrocitos , Técnicas de Cocultivo , Células Madre Mesenquimatosas , Ingeniería de Tejidos , Andamios del Tejido , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Condrocitos/citología , Condrocitos/metabolismo , Animales , Ratones , Proliferación Celular , Humanos , Factores de Transcripción NFATC/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Células RAW 264.7 , Transducción de Señal
2.
Front Immunol ; 13: 1015283, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36439177

RESUMEN

Purpose: This study aims to investigate the prognostic value of composition and spatial architecture of tumor-infiltrating lymphocytes (TILs) as well as PDL1 expression on TILs subpopulations in nasopharyngeal carcinoma (NPC). Methods: A total of 121 patients with NPC were included and divided into two groups: favorable (n = 68) and unfavorable (n = 53). The archived tumor tissues of the included patients were retrieved, and a tissue microarray was constructed. The density and spatial distribution of TILs infiltration were analyzed using the multiplex fluorescent immunohistochemistry staining for CD3, CD4, CD8, Foxp3, cytokeratin (CK), PDL1, and 4',6-diamidino-2-phenylindole (DAPI). The infiltration density of TILs subpopulations and PDL1 expression were compared between the two groups. The Gcross function was calculated to quantify the relative proximity of any two types of cells. The Cox proportional hazards regression model was used to identify factors associated with overall survival (OS) and disease-free survival (DFS). Results: The densities of regulatory T-cells (Tregs), effector T-cells (Teffs), PDL1+ Tregs, and PDL1+ Teffs were significantly higher in patients with unfavorable outcomes. PDL1 expression on tumor cells (TCs) or overall TILs was not associated with survival. Multivariate analysis revealed that higher PDL1+ Tregs infiltration density was independently associated with inferior OS and DFS, whereas Tregs infiltration density was only a prognostic marker for DFS. Spatial analysis revealed that unfavorable group had significantly stronger Tregs and PDL1+ Tregs engagement in the proximity of TCs and cytotoxic T lymphocyte (CTLs). Gcross analysis further revealed that Tregs and PDL1+ Tregs were more likely to colocalize with CTLs. Moreover, increased GTC : Treg (Tregs engagement surrounding TCs) and GCTL : PDL1+ Treg were identified as independent factors correlated with poor outcomes. Conclusion: TILs have a diverse infiltrating pattern and spatial distribution in NPC. Increased infiltration of Tregs, particularly PDL1+ Tregs, as well as their proximity to TCs and CTLs, correlates with unfavorable outcomes, implying the significance of intercellular immune regulation in mediating disease progression.


Asunto(s)
Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/patología , Neoplasias Nasofaríngeas/patología , Linfocitos T Reguladores , Linfocitos Infiltrantes de Tumor , Progresión de la Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA