Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros











Intervalo de año de publicación
1.
Genes Dev ; 38(3-4): 98-114, 2024 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-38485267

RESUMEN

Cell diversification is at the base of increasing multicellular organism complexity in phylogeny achieved during ontogeny. However, there are also functions common to all cells, such as cell division, cell migration, translation, endocytosis, exocytosis, etc. Here we revisit the organelles involved in such common functions, reviewing recent evidence of unexpected differences of proteins at these organelles. For instance, centrosomes or mitochondria differ significantly in their protein composition in different, sometimes closely related, cell types. This has relevance for development and disease. Particularly striking is the high amount and diversity of RNA-binding proteins at these and other organelles, which brings us to review the evidence for RNA at different organelles and suborganelles. We include a discussion about (sub)organelles involved in translation, such as the nucleolus and ribosomes, for which unexpected cell type-specific diversity has also been reported. We propose here that the heterogeneity of these organelles and compartments represents a novel mechanism for regulating cell diversity. One reason is that protein functions can be multiplied by their different contributions in distinct organelles, as also exemplified by proteins with moonlighting function. The specialized organelles still perform pan-cellular functions but in a cell type-specific mode, as discussed here for centrosomes, mitochondria, vesicles, and other organelles. These can serve as regulatory hubs for the storage and transport of specific and functionally important regulators. In this way, they can control cell differentiation, plasticity, and survival. We further include examples highlighting the relevance for disease and propose to examine organelles in many more cell types for their possible differences with functional relevance.


Asunto(s)
Mitocondrias , Orgánulos , Orgánulos/metabolismo , Mitocondrias/metabolismo , División Celular , Ribosomas/metabolismo , Diferenciación Celular
2.
Genomics Proteomics Bioinformatics ; 19(3): 461-474, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34954425

RESUMEN

During early embryonic development, cell fate commitment represents a critical transition or "tipping point" of embryonic differentiation, at which there is a drastic and qualitative shift of the cell populations. In this study, we presented a computational approach, scGET, to explore the gene-gene associations based on single-cell RNA sequencing (scRNA-seq) data for critical transition prediction. Specifically, by transforming the gene expression data to the local network entropy, the single-cell graph entropy (SGE) value quantitatively characterizes the stability and criticality of gene regulatory networks among cell populations and thus can be employed to detect the critical signal of cell fate or lineage commitment at the single-cell level. Being applied to five scRNA-seq datasets of embryonic differentiation, scGET accurately predicts all the impending cell fate transitions. After identifying the "dark genes" that are non-differentially expressed genes but sensitive to the SGE value, the underlying signaling mechanisms were revealed, suggesting that the synergy of dark genes and their downstream targets may play a key role in various cell development processes.The application in all five datasets demonstrates the effectiveness of scGET in analyzing scRNA-seq data from a network perspective and its potential to track the dynamics of cell differentiation. The source code of scGET is accessible at https://github.com/zhongjiayuna/scGET_Project.


Asunto(s)
Análisis de la Célula Individual , Programas Informáticos , Diferenciación Celular/genética , Desarrollo Embrionario/genética , Entropía , Perfilación de la Expresión Génica , Análisis de Secuencia de ARN
3.
Histochem Cell Biol ; 156(4): 333-347, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34272603

RESUMEN

Early B-cell factor-1 (EBF1) is a transcription factor with an important role in cell lineage specification and commitment during the early stage of cell maturation. Originally described during B-cell maturation, EBF1 was subsequently identified as a crucial molecule for proper cell fate commitment of mesenchymal stem cells into adipocytes, osteoblasts and muscle cells. In vessels, EBF1 expression and function have never been documented. Our data indicate that EBF1 is highly expressed in peri-endothelial cells in both tumor vessels and in physiological conditions. Immunohistochemistry, quantitative reverse transcription polymerase chain reaction (RT-qPCR) and fluorescence-activated cell sorting (FACS) analysis suggest that EBF1-expressing peri-endothelial cells represent bona fide pericytes and selectively express well-recognized markers employed in the identification of the pericyte phenotype (SMA, PDGFRß, CD146, NG2). This observation was also confirmed in vitro in human placenta-derived pericytes and in human brain vascular pericytes (HBVP). Of note, in accord with the key role of EBF1 in the cell lineage commitment of mesenchymal stem cells, EBF1-silenced HBVP cells showed a significant reduction in PDGFRß and CD146, but not CD90, a marker mostly associated with a prominent mesenchymal phenotype. Moreover, the expression levels of VEGF, angiopoietin-1, NG2 and TGF-ß, cytokines produced by pericytes during angiogenesis and linked to their differentiation and activation, were also significantly reduced. Overall, the data suggest a functional role of EBF1 in the cell fate commitment toward the pericyte phenotype.


Asunto(s)
Pericitos/metabolismo , Transactivadores/genética , Células Cultivadas , Humanos , Pericitos/citología , Transactivadores/metabolismo
4.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-922094

RESUMEN

During early embryonic development, cell fate commitment represents a critical transition or "tipping point" of embryonic differentiation, at which there is a drastic and qualitative shift of the cell populations. In this study, we presented a computational approach, scGET, to explore the gene-gene associations based on single-cell RNA sequencing (scRNA-seq) data for critical transition prediction. Specifically, by transforming the gene expression data to the local network entropy, the single-cell graph entropy (SGE) value quantitatively characterizes the stability and criticality of gene regulatory networks among cell populations and thus can be employed to detect the critical signal of cell fate or lineage commitment at the single-cell level. Being applied to five scRNA-seq datasets of embryonic differentiation, scGET accurately predicts all the impending cell fate transitions. After identifying the "dark genes" that are non-differentially expressed genes but sensitive to the SGE value, the underlying signaling mechanisms were revealed, suggesting that the synergy of dark genes and their downstream targets may play a key role in various cell development processes.The application in all five datasets demonstrates the effectiveness of scGET in analyzing scRNA-seq data from a network perspective and its potential to track the dynamics of cell differentiation. The source code of scGET is accessible at https://github.com/zhongjiayuna/scGET_Project.

5.
Stem Cell Res Ther ; 11(1): 536, 2020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-33308295

RESUMEN

BACKGROUND: Skeletal muscle is a complex and heterogeneous tissue accounting for approximately 40% of body weight. Excessive ectopic lipid accumulation in the muscle fascicle would undermine the integrity of skeletal muscle in humans but endow muscle with marbling-related characteristics in farm animals. Therefore, the balance of myogenesis and adipogenesis is of great significance for skeletal muscle homeostasis. Significant DNA methylation occurs during myogenesis and adipogenesis; however, DNA methylation pattern of myogenic and adipogenic precursors derived from skeletal muscle remains unknown yet. METHODS: In this study, reduced representation bisulfite sequencing was performed to analyze genome-wide DNA methylation of adipogenic and myogenic precursors derived from the skeletal muscle of neonatal pigs. Integrated analysis of DNA methylation and transcription profiles was further conducted. Based on the results of pathway enrichment analysis, myogenic precursors were transfected with CACNA2D2-overexpression plasmids to explore the function of CACNA2D2 in myogenic differentiation. RESULTS: As a result, 11,361 differentially methylated regions mainly located in intergenic region and introns were identified. Furthermore, 153 genes with different DNA methylation and gene expression level between adipogenic and myogenic precursors were characterized. Subsequently, pathway enrichment analysis revealed that DNA methylation programing was involved in the regulation of adipogenic and myogenic differentiation potential through mediating the crosstalk among pathways including focal adhesion, regulation of actin cytoskeleton, MAPK signaling pathway, and calcium signaling pathway. In particular, we characterized a new role of CACNA2D2 in inhibiting myogenic differentiation by suppressing JNK/MAPK signaling pathway. CONCLUSIONS: This study depicted a comprehensive landmark of DNA methylome of skeletal muscle-derived myogenic and adipogenic precursors, highlighted the critical role of CACNA2D2 in regulating myogenic differentiation, and illustrated the possible regulatory ways of DNA methylation on cell fate commitment and skeletal muscle homeostasis.


Asunto(s)
Adipogénesis , Metilación de ADN , Adipogénesis/genética , Animales , Diferenciación Celular , Desarrollo de Músculos/genética , Músculo Esquelético/metabolismo , Porcinos
6.
Bioessays ; 42(4): e1900108, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32105359

RESUMEN

Studies performed in absence of gravitational constraint show that a living system is unable to choose between two different phenotypes, thus leading cells to segregate into different, alternative stable states. This finding demonstrates that the genotype does not determine by itself the phenotype but requires additional, physical constraints to finalize cell differentiation. Constraints belong to two classes: holonomic (independent of the system's dynamical states, as being established by the space-time geometry of the field) and non-holonomic (modified during those biological processes to which they contribute in shaping). This latter kind of "constraints", in which dynamics works on the constraint to recreate them, have emerged as critical determinants of self-organizing systems, by manifesting a "closure of constraints." Overall, the constraints act by harnessing the "randomness" represented by the simultaneous presence of equiprobable events restraining the system within one attractor. These results cast doubt on the mainstream scientific concept and call for a better understanding of causation in cell biology.


Asunto(s)
Reprogramación Celular/genética , Epigénesis Genética , Genotipo , Fenotipo , Ingeniería Celular , Ambiente , Gravitación , Humanos , Cinética , Modelos Teóricos
7.
Proc Natl Acad Sci U S A ; 116(35): 17361-17370, 2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-31413199

RESUMEN

Mutations in transcription factor p63 are associated with developmental disorders that manifest defects in stratified epithelia including the epidermis. The underlying cellular and molecular mechanism is however not yet understood. We established an epidermal commitment model using human induced pluripotent stem cells (iPSCs) and characterized differentiation defects of iPSCs derived from ectrodactyly, ectodermal dysplasia, and cleft lip/palate (EEC) syndrome patients carrying p63 mutations. Transcriptome analyses revealed stepwise cell fate transitions during epidermal commitment: Specification from multipotent simple epithelium to basal stratified epithelia and ultimately to the mature epidermal fate. Differentiation defects of EEC iPSCs caused by p63 mutations occurred during the specification switch from the simple epithelium to the basal-stratified epithelial fate. Single-cell transcriptome and pseudotime analyses of cell states identified mesodermal activation that was associated with the deviated commitment route of EEC iPSCs. Integrated analyses of differentially regulated genes and p63-dependent dynamic genomic enhancers during epidermal commitment suggest that p63 directly controls epidermal gene activation at the specification switch and has an indirect effect on mesodermal gene repression. Importantly, inhibitors of mesodermal induction enhanced epidermal commitment of EEC iPSCs. Our findings demonstrate that p63 is required for specification of stratified epithelia, and that epidermal commitment defects caused by p63 mutations can be reversed by repressing mesodermal induction. This study provides insights into disease mechanisms underlying stratified epithelial defects caused by p63 mutations and suggests potential therapeutic strategies for the disease.


Asunto(s)
Labio Leporino/genética , Fisura del Paladar/genética , Displasia Ectodérmica/genética , Epitelio/metabolismo , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética , Epidermis/embriología , Epidermis/metabolismo , Epitelio/embriología , Expresión Génica , Perfilación de la Expresión Génica , Humanos , Inmunohistoquímica , Células Madre Pluripotentes Inducidas/metabolismo , Queratinocitos/metabolismo , Mutación , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo
8.
Open Biol ; 9(2): 180243, 2019 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-30958098

RESUMEN

Precise specification of cell fate or identity within stem cell lineages is critical for ensuring correct stem cell lineage progression and tissue homeostasis. Failure to specify cell fate or identity in a timely and robust manner can result in developmental abnormalities and diseases such as cancer. However, the molecular basis of timely cell fate/identity specification is only beginning to be understood. In this review, we discuss key regulatory strategies employed in cell fate specification and highlight recent results revealing how timely and robust cell fate/identity commitment is achieved through transcriptional control.


Asunto(s)
Diferenciación Celular/fisiología , Linaje de la Célula/fisiología , Proliferación Celular/fisiología , Modelos Biológicos , Células Madre/citología , Animales , División Celular Asimétrica/genética , División Celular Asimétrica/fisiología , Diferenciación Celular/genética , Linaje de la Célula/genética , Proliferación Celular/genética , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Regulación de la Expresión Génica , Receptores Notch/genética , Receptores Notch/metabolismo , Células Madre/metabolismo
9.
Mol Cell Endocrinol ; 468: 19-30, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29410272

RESUMEN

A fundamental goal in biology is to understand how distinct cell types containing the same genetic information arise from a single stem cell throughout development. Sex determination is a key developmental process that requires a unidirectional commitment of an initially bipotential gonad towards either the male or female fate. This makes sex determination a unique model to study cell fate commitment and differentiation in vivo. We have focused this review on the accumulating evidence that epigenetic mechanisms contribute to the bipotential state of the fetal gonad and to the regulation of chromatin accessibility during and immediately downstream of the primary sex-determining switch that establishes the male fate.


Asunto(s)
Epigénesis Genética , Animales , Cromatina/metabolismo , Metilación de ADN/genética , Genes sry , Histonas/metabolismo , Masculino , Factores de Transcripción SOX/genética , Factores de Transcripción SOX/metabolismo
10.
Prog Biophys Mol Biol ; 134: 55-67, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29307754

RESUMEN

Data obtained by studying mammalian cells in absence of gravity strongly support the notion that cell fate specification cannot be understood according to the current molecular model. A paradigmatic case in point is provided by studying cell populations growing in absence of gravity. When the physical constraint (gravity) is 'experimentally removed', cells spontaneously allocate into two morphologically different phenotypes. Such phenomenon is likely enacted by the intrinsic stochasticity, which, in turn, is successively 'canalized' by a specific gene regulatory network. Both phenotypes are thermodynamically and functionally 'compatibles' with the new, modified environment. However, when the two cell subsets are reseeded into the 1g gravity field the two phenotypes collapse into one. Gravity constraints the system in adopting only one phenotype, not by selecting a pre-existing configuration, but more precisely shaping it de-novo through the modification of the cytoskeleton three-dimensional structure. Overall, those findings highlight how macro-scale features are irreducible to lower-scale explanations. The identification of macroscale control parameters - as those depending on the field (gravity, electromagnetic fields) or emerging from the cooperativity among the field's components (tissue stiffness, cell-to-cell connectivity) - are mandatory for assessing boundary conditions for models at lower scales, thus providing a concrete instantiation of top-down effects.


Asunto(s)
Diferenciación Celular , Células/citología , Fenotipo , Ingravidez , Animales , Adhesión Celular , Recuento de Células , Humanos
11.
Front Mol Neurosci ; 10: 353, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29163030

RESUMEN

The basic helix-loop-helix (bHLH) protein family has previously been shown to be involved in the development of mesodiencephalic dopaminergic (mdDA) neurons in the murine midbrain. Specifically, Ngn2 and Mash1 are known to have a role in the specification of neural progenitors in the ventricular zone (VZ) of the midbrain towards an mdDA neuronal cell-fate. Furthermore, other members of the bHLH protein family, the E-box factors, are expressed in the developing midbrain and are thought to have a role in neuronal differentiation. Here we show that the E-box factor Tcf12 is implicated in early and late development of mdDA neurons. Tcf12 is expressed in the midbrain and in young TH-expressing mdDA neurons throughout development. Tcf12lox/lox;En1cre/+ embryos, that lose Tcf12 at ~embryonic day (E)9 throughout the En1 expression domain, have a changed spatial expression of Lmx1a and Nurr1 and a consistent loss of rostral TH expression. Expression of the subset marker Ahd2 is initially delayed, but recovers during development, eventually showing an ~10% increase in AHD2-expressing cells at postnatal day (P)30. Tcf12lox/lox;Pitx3cre/+ embryos, that lose Tcf12 at ~E12 in post-mitotic mdDA neurons, show no effect on the amount of TH-expressing neurons in the developing midbrain. However, similar as to Tcf12lox/lox;En1cre/+ embryos, subset specification is delayed during development. Taken together, we have identified Tcf12 as a novel factor in mdDA neuronal development. It serves a dual function; one in early cell-fate commitment of neural progenitors and one late in subset specification.

12.
Dev Cell ; 40(6): 537-551.e6, 2017 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-28350987

RESUMEN

Asymmetric stem cell division establishes an initial difference between a stem cell and its differentiating sibling, critical for maintaining homeostasis and preventing carcinogenesis. Yet the mechanisms that consolidate and lock in such initial fate bias remain obscure. Here, we use Drosophila neuroblasts to demonstrate that the super elongation complex (SEC) acts as an intrinsic amplifier to drive cell fate commitment. SEC is highly expressed in neuroblasts, where it promotes self-renewal by physically associating with Notch transcription activation complex and enhancing HES (hairy and E(spl)) transcription. HES in turn upregulates SEC activity, forming an unexpected self-reinforcing feedback loop with SEC. SEC inactivation leads to neuroblast loss, whereas its forced activation results in neural progenitor dedifferentiation and tumorigenesis. Our studies unveil an SEC-mediated intracellular amplifier mechanism in ensuring robustness and precision in stem cell fate commitment and provide mechanistic explanation for the highly frequent association of SEC overactivation with human cancers.


Asunto(s)
Linaje de la Célula , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Animales , Desdiferenciación Celular , Autorrenovación de las Células , Drosophila melanogaster/genética , Femenino , Genes de Insecto , Masculino , Unión Proteica , Subunidades de Proteína/metabolismo , Receptores Notch/metabolismo , Transducción de Señal , Activación Transcripcional/genética
13.
Front Cell Dev Biol ; 4: 128, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27882316

RESUMEN

Our conception of the human genome, long focused on the 2% that codes for proteins, has profoundly changed since its first draft assembly in 2001. Since then, an unanticipatedly expansive functionality and convolution has been attributed to the majority of the genome that is transcribed in a cell-type/context-specific manner into transcripts with no apparent protein coding ability. While the majority of these transcripts, currently annotated as long non-coding RNAs (lncRNAs), are functionally uncharacterized, their prominent role in embryonic development and tissue homeostasis, especially in the context of the heart, is emerging. In this review, we summarize and discuss the latest advances in understanding the relevance of lncRNAs in (re)building the heart.

14.
Bacteriophage ; 5(1): e1012930, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26459429

RESUMEN

A key event in the lifecycle of a temperate bacteriophage is the choice between lysis and lysogeny upon infection of a susceptible host cell. In a recent paper, we showed that a prolonged period exists after the decision to lysogenize, during which bacteriophage λ can abandon the initial decision, and instead develop lytically, as a response to the accumulation of the late lytic regulatory protein Q. Here, we present evidence that expression of Q does not induce replication of λ DNA, suggesting that the DNA to be packaged into the resulting phage progeny was already present at the time of the initial decision to lysogenize. We summarize our findings in a working model of the key determinants of the duration of the post-decision period during which it is possible for the infected cell to switch from the lysogeny decision to successful lytic development.

15.
Development ; 142(21): 3661-74, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26395491

RESUMEN

Multiciliated cells are abundant in the epithelial surface of different tissues, including cells lining the walls of the lateral ventricles in the brain and the airway epithelium. Their main role is to control fluid flow and defects in their differentiation are implicated in many human disorders, such as hydrocephalus, accompanied by defects in adult neurogenesis and mucociliary disorder in the airway system. Here we show that Mcidas, which is mutated in human mucociliary clearance disorder, and GemC1 (Gmnc or Lynkeas), previously implicated in cell cycle progression, are key regulators of multiciliated ependymal cell generation in the mouse brain. Overexpression and knockdown experiments show that Mcidas and GemC1 are sufficient and necessary for cell fate commitment and differentiation of radial glial cells to multiciliated ependymal cells. Furthermore, we show that GemC1 and Mcidas operate in hierarchical order, upstream of Foxj1 and c-Myb transcription factors, which are known regulators of ependymal cell generation, and that Notch signaling inhibits GemC1 and Mcidas function. Our results suggest that Mcidas and GemC1 are key players in the generation of multiciliated ependymal cells of the adult neurogenic niche.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Epéndimo/citología , Células Ependimogliales/citología , Células Ependimogliales/metabolismo , Neurogénesis , Proteínas Nucleares/metabolismo , Animales , Proteínas Portadoras/genética , Proteínas de Ciclo Celular/genética , Epéndimo/metabolismo , Factores de Transcripción Forkhead/metabolismo , Ratones , Proteínas Nucleares/genética , Proteínas Proto-Oncogénicas c-myb/metabolismo , Receptores Notch/metabolismo , Transducción de Señal , Células Madre/citología , Células Madre/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA