Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Dev Cell ; 59(10): 1333-1344.e4, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38579717

RESUMEN

Plant morphogenesis relies exclusively on oriented cell expansion and division. Nonetheless, the mechanism(s) determining division plane orientation remain elusive. Here, we studied tissue healing after laser-assisted wounding in roots of Arabidopsis thaliana and uncovered how mechanical forces stabilize and reorient the microtubule cytoskeleton for the orientation of cell division. We identified that root tissue functions as an interconnected cell matrix, with a radial gradient of tissue extendibility causing predictable tissue deformation after wounding. This deformation causes instant redirection of expansion in the surrounding cells and reorientation of microtubule arrays, ultimately predicting cell division orientation. Microtubules are destabilized under low tension, whereas stretching of cells, either through wounding or external aspiration, immediately induces their polymerization. The higher microtubule abundance in the stretched cell parts leads to the reorientation of microtubule arrays and, ultimately, informs cell division planes. This provides a long-sought mechanism for flexible re-arrangement of cell divisions by mechanical forces for tissue reconstruction and plant architecture.


Asunto(s)
Arabidopsis , División Celular , Microtúbulos , Raíces de Plantas , Microtúbulos/metabolismo , Arabidopsis/metabolismo , Arabidopsis/citología , División Celular/fisiología , Raíces de Plantas/metabolismo , Raíces de Plantas/citología , Raíces de Plantas/crecimiento & desarrollo , Citoesqueleto/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fenómenos Biomecánicos
2.
Dev Cell ; 59(9): 1096-1109.e5, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38518768

RESUMEN

Cell polarity is used to guide asymmetric divisions and create morphologically diverse cells. We find that two oppositely oriented cortical polarity domains present during the asymmetric divisions in the Arabidopsis stomatal lineage are reconfigured into polar domains marking ventral (pore-forming) and outward-facing domains of maturing stomatal guard cells. Proteins that define these opposing polarity domains were used as baits in miniTurboID-based proximity labeling. Among differentially enriched proteins, we find kinases, putative microtubule-interacting proteins, and polar SOSEKIs with their effector ANGUSTIFOLIA. Using AI-facilitated protein structure prediction models, we identify potential protein-protein interaction interfaces among them. Functional and localization analyses of the polarity protein OPL2 and its putative interaction partners suggest a positive interaction with mitotic microtubules and a role in cytokinesis. This combination of proteomics and structural modeling with live-cell imaging provides insights into how polarity is rewired in different cell types and cell-cycle stages.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , División Celular , Polaridad Celular , Estomas de Plantas , Proteómica , Arabidopsis/metabolismo , Arabidopsis/citología , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Estomas de Plantas/metabolismo , Estomas de Plantas/citología , Proteómica/métodos , Polaridad Celular/fisiología , Microtúbulos/metabolismo , Linaje de la Célula , Citocinesis/fisiología , Proteínas Represoras
3.
Curr Opin Plant Biol ; 74: 102370, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37121154

RESUMEN

The development of lateral roots starts with a round of anticlinal, asymmetric cell divisions in lateral root founder cells in the pericycle, deep within the root. The reorientation of the cell division plane occurs in parallel with changes in cell shape and needs to be coordinated with its direct neighbor, the endodermis. This accommodation response requires the integration of biochemical and mechanical signals in both cell types. Recently, it was reported that dynamic changes in the cytoskeleton and possibly the cell wall are part of the molecular mechanism required to correctly orient and position the cell division plane. Here we discuss the latest progress made towards our understanding of the regulation of cell shape and division plane orientation underlying lateral root initiation in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , División Celular , Raíces de Plantas/metabolismo , Forma de la Célula , Proteínas de Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo
4.
J Plant Res ; 134(3): 457-473, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33877466

RESUMEN

The spiral arrangement (phyllotaxis) of leaves is a shared morphology in land plants, and exhibits diversity constrained to the Fibonacci sequence. Phyllotaxis in vascular plants is produced at a multicellular meristem, whereas bryophyte phyllotaxis emerges from a single apical stem cell (AC) that is embedded in a growing tip of the gametophyte. An AC is asymmetrically divided into itself and a single 'merophyte', producing a future leaf and a portion of the stem. Although it has been suggested that the arrangement of merophytes is regulated by a rotation of the division plane of an AC, the quantitative description of the merophyte arrangement and its regulatory mechanism remain unclear. To clarify them, we examined three moss species, Tetraphis pellucida, Physcomitrium patens, and Niphotrichum japonicum, which exhibit 1/3, 2/5, and 3/8 spiral phyllotaxis, respectively. We measured the angle between the centroids of adjacent merophytes relative to the AC centroid on cross-transverse sections. At the outer merophytes, this divergence angle converged to nearly 120[Formula: see text] in T. pellucida, 136[Formula: see text] in N. japonicum, and 141[Formula: see text] in P. patens, which was nearly consistent with phyllotaxis, whereas the divergence angle deviated from the converged angle at the inner merophytes near an AC. A mathematical model, which assumes scaling growth of AC and merophytes and a constant angle of division plane rotation, quantitatively reproduced the sequence of the divergence angles. This model showed that successive relocations of the centroid position of an AC upon its division inevitably result in the transient deviation of the divergence angle. As a result, the converged divergence angle was equal to the rotation angle, predicting that the latter is a major regulator of the spiral phyllotaxis diversity in mosses.


Asunto(s)
Briófitas , División Celular , Meristema , Modelos Biológicos , Rotación
5.
Front Plant Sci ; 12: 783783, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35126413

RESUMEN

Stem cutting recalcitrance to adventitious root formation is a major limitation for the clonal propagation or micropropagation of elite genotypes of many forest tree species, especially at the adult stage of development. The interaction between the cell wall-plasma membrane and cytoskeleton may be involved in the maturation-related decline of adventitious root formation. Here, pine homologs of several genes encoding proteins involved in the cell wall-plasma membrane-cytoskeleton continuum were identified, and the expression levels of 70 selected genes belonging to the aforementioned group and four genes encoding auxin carrier proteins were analyzed during adventitious root formation in rooting-competent and non-competent cuttings of Pinus radiata. Variations in the expression levels of specific genes encoding cell wall components and cytoskeleton-related proteins were detected in rooting-competent and non-competent cuttings in response to wounding and auxin treatments. However, the major correlation of gene expression with competence for adventitious root formation was detected in a family of genes encoding proteins involved in sensing the cell wall and membrane disturbances, such as specific receptor-like kinases (RLKs) belonging to the lectin-type RLKs, wall-associated kinases, Catharanthus roseus RLK1-like kinases and leucine-rich repeat RLKs, as well as downstream regulators of the small guanosine triphosphate (GTP)-binding protein family. The expression of these genes was more affected by organ and age than by auxin and time of induction.

6.
Protoplasma ; 256(3): 721-729, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30478505

RESUMEN

In some plant tissue types, new cross-walls tend to divide parental cells equally and to meet parental walls at right angles while tending to have minimal surface area. A previously proposed model that I call the reach model suggests that this feature originates from the tendency of premitotic division-plane selection or of the positioning of microtubule preprophase bands (PPBs) which predict the cortical division site, and that default division-plane selection involves nuclear centering and subsequent PPB microtubule assembly on the cell wall parts closest to the nucleus. In an initial effort to characterize truly default division-plane selection, the present study quantified division orientation and PPB positioning in protoplast-derived isolated elongate tobacco BY-2 cells. In this system, PPB-predicted and actual division planes were mostly oriented transversely, as predicted based on the reach model. Some sample elongate cells had asymmetric shapes that came from clear terminal-size differences and, in those cells, PPB-marked planes tended to be displaced from the centers of centrally located nuclei toward the narrower cell end, again as predicted based on the reach model. Such PPB positioning typically forecasted volumetrically asymmetric transverse division that would produce a smaller daughter cell from a parental cell part including the narrower cell end. These results provide experimental evidence that default division-plane selection tends to be close to or the same as the selection using the reach model's criterion, and that it does not use any criterion that specifically prioritizes the equality or verticality of division.


Asunto(s)
Núcleo Celular/metabolismo , Separación Celular , Nicotiana/citología , Nicotiana/metabolismo , Profase , Línea Celular , Tubulina (Proteína)/metabolismo
7.
Curr Biol ; 28(15): 2365-2376.e5, 2018 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-30033333

RESUMEN

How genes shape diverse plant and animal body forms is a key question in biology. Unlike animal cells, plant cells are confined by rigid cell walls, and cell division plane orientation and growth rather than cell movement determine overall body form. The emergence of plants on land coincided with a new capacity to rotate stem cell divisions through multiple planes, and this enabled three-dimensional (3D) forms to arise from ancestral forms constrained to 2D growth. The genes involved in this evolutionary innovation are largely unknown. The evolution of 3D growth is recapitulated during the development of modern mosses when leafy shoots arise from a filamentous (2D) precursor tissue. Here, we show that a conserved, CLAVATA peptide and receptor-like kinase pathway originated with land plants and orients stem cell division planes during the transition from 2D to 3D growth in a moss, Physcomitrella. We find that this newly identified role for CLAVATA in regulating cell division plane orientation is shared between Physcomitrella and Arabidopsis. We report that roles for CLAVATA in regulating cell proliferation and cell fate are also shared and that CLAVATA-like peptides act via conserved receptor components in Physcomitrella. Our results suggest that CLAVATA was a genetic novelty enabling the morphological innovation of 3D growth in land plants.


Asunto(s)
Bryopsida/genética , Proliferación Celular/genética , Evolución Molecular , Proteínas de Plantas/genética , Evolución Biológica , Bryopsida/crecimiento & desarrollo , Bryopsida/metabolismo , Proteínas de Plantas/metabolismo
8.
Planta ; 244(5): 1125-1143, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27460945

RESUMEN

MAIN CONCLUSION: The matrix cell wall materials, in developing Zea mays stomatal complexes are asymmetrically distributed, a phenomenon appearing related to the local cell wall expansion and deformation, the establishment of cell polarity, and determination of the cell division plane. In cells of developing Zea mays stomatal complexes, definite cell wall regions expand determinately and become locally deformed. This differential cell wall behavior is obvious in the guard cell mother cells (GMCs) and the subsidiary cell mother cells (SMCs) that locally protrude towards the adjacent GMCs. The latter, emitting a morphogenetic stimulus, induce polarization/asymmetrical division in SMCs. Examination of immunolabeled specimens revealed that homogalacturonans (HGAs) with a high degree of de-esterification (2F4- and JIM5-HGA epitopes) and arabinogalactan proteins are selectively distributed in the extending and deformed cell wall regions, while their margins are enriched with rhamnogalacturonans (RGAs) containing highly branched arabinans (LM6-RGA epitope). In SMCs, the local cell wall matrix differentiation constitutes the first structural event, indicating the establishment of cell polarity. Moreover, in the premitotic GMCs and SMCs, non-esterified HGAs (2F4-HGA epitope) are preferentially localized in the cell wall areas outlining the cytoplasm where the preprophase band is formed. In these areas, the forthcoming cell plate fuses with the parent cell walls. These data suggest that the described heterogeneity in matrix cell wall materials is probably involved in: (a) local cell wall expansion and deformation, (b) the transduction of the inductive GMC stimulus, and


Asunto(s)
Pared Celular/metabolismo , Estomas de Plantas/crecimiento & desarrollo , Estomas de Plantas/metabolismo , Zea mays/citología , Zea mays/metabolismo , Epítopos/metabolismo , Indicadores y Reactivos , Microtúbulos/metabolismo , Mucoproteínas/metabolismo , Proteínas de Plantas/metabolismo , Estomas de Plantas/citología , Factores de Tiempo
9.
Proc Natl Acad Sci U S A ; 113(30): E4294-303, 2016 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-27436908

RESUMEN

Cell geometry has long been proposed to play a key role in the orientation of symmetric cell division planes. In particular, the recently proposed Besson-Dumais rule generalizes Errera's rule and predicts that cells divide along one of the local minima of plane area. However, this rule has been tested only on tissues with rather local spherical shape and homogeneous growth. Here, we tested the application of the Besson-Dumais rule to the divisions occurring in the Arabidopsis shoot apex, which contains domains with anisotropic curvature and differential growth. We found that the Besson-Dumais rule works well in the central part of the apex, but fails to account for cell division planes in the saddle-shaped boundary region. Because curvature anisotropy and differential growth prescribe directional tensile stress in that region, we tested the putative contribution of anisotropic stress fields to cell division plane orientation at the shoot apex. To do so, we compared two division rules: geometrical (new plane along the shortest path) and mechanical (new plane along maximal tension). The mechanical division rule reproduced the enrichment of long planes observed in the boundary region. Experimental perturbation of mechanical stress pattern further supported a contribution of anisotropic tensile stress in division plane orientation. Importantly, simulations of tissues growing in an isotropic stress field, and dividing along maximal tension, provided division plane distributions comparable to those obtained with the geometrical rule. We thus propose that division plane orientation by tensile stress offers a general rule for symmetric cell division in plants.


Asunto(s)
Arabidopsis/citología , Forma de la Célula , Meristema/citología , Brotes de la Planta/citología , Algoritmos , División Celular , Linaje de la Célula , Microscopía Confocal , Modelos Biológicos , Estrés Mecánico
10.
New Phytol ; 203(4): 1175-1193, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24923680

RESUMEN

The role of YODA MITOGEN ACTIVATED PROTEIN KINASE KINASE KINASE 4 (MAPKKK4) upstream of MITOGEN ACTIVATED PROTEIN KINASE 6 (MPK6) was studied during post-embryonic root development of Arabidopsis thaliana. Loss- and gain-of-function mutants of YODA (yda1 and ΔNyda1) were characterized in terms of root patterning, endogenous auxin content and global proteomes. We surveyed morphological and cellular phenotypes of yda1 and ΔNyda1 mutants suggesting possible involvement of auxin. Endogenous indole-3-acetic acid (IAA) levels were up-regulated in both mutants. Proteomic analysis revealed up-regulation of auxin biosynthetic enzymes tryptophan synthase and nitrilases in these mutants. The expression, abundance and phosphorylation of MPK3, MPK6 and MICROTUBULE ASSOCIATED PROTEIN 65-1 (MAP65-1) were characterized by quantitative polymerase chain reaction (PCR) and western blot analyses and interactions between MAP65-1, microtubules and MPK6 were resolved by quantitative co-localization studies and co-immunoprecipitations. yda1 and ΔNyda1 mutants showed disoriented cell divisions in primary and lateral roots, abortive cytokinesis, and differential subcellular localization of MPK6 and MAP65-1. They also showed deregulated expression of TANGLED1 (TAN1), PHRAGMOPLAST ORIENTING KINESIN 1 (POK1), and GAMMA TUBULIN COMPLEX PROTEIN 4 (GCP4). The findings that MPK6 localized to preprophase bands (PPBs) and phragmoplasts while the mpk6-4 mutant transformed with MPK6AEF (alanine (A)-glutamic acid (E)-phenylanine (F)) showed a root phenotype similar to that of yda1 demonstrated that MPK6 is an important player downstream of YODA. These data indicate that YODA and MPK6 are involved in post-embryonic root development through an auxin-dependent mechanism regulating cell division and mitotic microtubule (PPB and phragmoplast) organization.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/enzimología , División Celular , Ácidos Indolacéticos/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Raíces de Plantas/embriología , Regulación hacia Arriba , Arabidopsis/efectos de los fármacos , Arabidopsis/embriología , División Celular/efectos de los fármacos , Citocinesis/efectos de los fármacos , Técnica del Anticuerpo Fluorescente , Ácidos Indolacéticos/farmacología , Interfase , Meristema/citología , Meristema/efectos de los fármacos , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Mitosis/efectos de los fármacos , Mutación/genética , Fenotipo , Fosforilación/efectos de los fármacos , Epidermis de la Planta/citología , Raíces de Plantas/anatomía & histología , Raíces de Plantas/citología , Unión Proteica/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Proteómica , Regulación hacia Arriba/efectos de los fármacos
11.
Plant Cell Physiol ; 54(6): 827-37, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23531846

RESUMEN

The plane of symmetric plant cell division tends to be selected so that the new cross-wall halving the cell volume has the least possible area, and several cases of such selection are best represented by a recently formulated model which promotes the view that the strength of the least area tendency is the only criterion for selecting the plane. To test this model, the present study examined the divisions of two types of shape-standardized tobacco BY-2 cell, oblate-spheroidal (os) cells prepared from protoplasts and spheri-cylindrical (sc) cells with unusual double-wall structures prepared from plasmolyzed cells. Measurements of cell shape parameters and division angles revealed that both cell types most frequently divide nearly along their short axes. While os cells did not exhibit any other division angle bias, sc cell division was characterized by another bias which made the frequency of longitudinal divisions secondarily high. The geometry of sc cells barely allows the longitudinal cross-walls to have locally minimum areas. Nevertheless, a comparison of detected and hypothetical standard divisions indicates that the frequency of longitudinal sc cell division can be significantly higher than that predicted when the longitudinal cross-walls are assumed to have locally minimum areas smaller than their original areas. These results suggest that, even in isolated plant cell types, the strength of the least area tendency is not the only criterion for selecting the division plane. The possibility that there is another basic, though often hidden, criterion is discussed.


Asunto(s)
División Celular , Forma de la Célula , Nicotiana/citología , Pared Celular/metabolismo
12.
Plant Signal Behav ; 3(9): 678-80, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19704824

RESUMEN

In addition to the mechanical forces of the external environment, the individual plant cell is also subject to multiple subtle biophysical forces that arise from neighboring cell growth and division within the tissue. To maintain a normal cell shape and division pattern, the plant cell is proposed to have the ability to sense and respond to repetitive subtle mechanical stimulations via nuclear-directed migration. It has been demonstrated that the nucleus is alert and highly sensitive to repetitive mechanical stimulations. Furthermore, the cytoplasm reacts to local mechanical stimulation in a compartmentalized fashion. The nucleus therefore plays a role as a chief organizer and active defender in response to mechanical stimulation. This finding provides new insight on the role of mechanical stimulation in regulating cell division and the consequent spatial positioning and shape of cells inside tissues. The finding also revealed that it necessitates further study into the reason for cytoplasmic functional compartmentalization in response to simulation in the context of cell evolution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA