Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
IUBMB Life ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39264710

RESUMEN

Fragmentation/loss of the structural protein elastin represents the precipitating event translating to aortic expansion and subsequent aneurysm formation. The present study tested the hypothesis that greater protein expression of tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) and neointimal growth secondary to a reduction of medial elastin content represent sex-dependent events limiting aortic vessel expansion in females. TIMP-1 protein levels were higher in the ascending aorta of female versus male patients diagnosed with a bicuspid aortic valve (BAV). The latter paradigm was recapitulated in the aorta of adult male and female rats complemented by greater TIMP-2 expression in females. CaCl2 (0.5 M) treatment of the infrarenal aorta of adult male and female rats increased the in situ vessel diameter and expansion was significantly smaller in females despite a comparable reduction of medial elastin content. The preferential appearance of a neointimal region of the CaCl2-treated infrarenal aorta of female rats may explain in part the smaller in situ expansion and neointimal growth correlated positively with the % change of the in situ diameter. Neointimal formation was secondary to a significant increase in the density of medial/neointimal vascular smooth muscle cells (VSMCs) that re-entered the G2-M phase whereas VSMC cell cycle re-entry was attenuated in the CaCl2-treated infrarenal aorta of male rats. Thus, greater TIMP-1 expression in the aorta of female BAV patients may prevent excessive elastin fragmentation and preferential neointimal growth following CaCl2-treatment of the infrarenal aorta of female rats represents a sex-dependent biological event limiting vessel expansion secondary to a significant loss of the structural protein.

2.
J Pharmacol Sci ; 156(1): 1-8, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39068030

RESUMEN

Accumulation of advanced glycation end-products (AGEs) in the brain contributes significantly to cognitive impairment in patients with diabetes by disrupting the post-mitotic state of neuronal cells, thereby triggering ectopic cell cycle re-entry (CCR) and subsequent neuronal apoptosis. Cinnamaldehyde (CINA), a potential mitigator of cognitive impairment due to its blood glucose-lowering properties, warrants exploration for its role in counteracting diabetes-related neurological damage. In this study, we examined the neuroprotective effect of CINA on AGE-damaged SH-SY5Y human neuroblastoma cells differentiated in vitro. We investigated the impact of CINA on AGE-induced neuronal CCR and apoptosis, finding that it substantially suppressed aberrant DNA replication, precluded cells from entering the mitotic preparatory phase, and diminished apoptosis. Additionally, CINA inhibited the expression of eIF4E without altering S6K1 phosphorylation. These findings indicate that CINA safeguards neuronal cells from AGE-related damage by preventing abnormal CCR, preserving the post-mitotic state of neuronal cells, and reducing AGE-induced apoptosis, potentially through the inhibition of eIF4E-controlled cell proliferation. Our results highlight the prospective utility of CINA in managing diabetic neuropathy.


Asunto(s)
Acroleína , Apoptosis , Ciclo Celular , Productos Finales de Glicación Avanzada , Neuronas , Fármacos Neuroprotectores , Acroleína/análogos & derivados , Acroleína/farmacología , Humanos , Productos Finales de Glicación Avanzada/metabolismo , Apoptosis/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Ciclo Celular/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Línea Celular Tumoral , Neuropatías Diabéticas/prevención & control , Neuropatías Diabéticas/metabolismo , Neuropatías Diabéticas/tratamiento farmacológico , Replicación del ADN/efectos de los fármacos , Fosforilación/efectos de los fármacos
3.
Am J Physiol Cell Physiol ; 325(2): C406-C419, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-36745530

RESUMEN

The present study tested the hypothesis that protein kinase C-α (PKC-α) recruitment in the presence of the p38α/ß MAPK inhibitor SB203580 facilitated the appearance and cell cycle re-entry of nestin(+)-neonatal rat ventricular cardiomyocytes (NNVMs) and induced a transcript profile delineating a proliferative phenotype. Phorbol 12,13-dibutyrate (PDBu) treatment did not induce de novo nestin expression or increase the cell cycle re-entry of 1-day-old NNVMs but significantly increased runt-related transcription factor 1 (Runx1) and p16 cell cycle inhibitor (CDKN2a) mRNA levels and downregulated epithelial cell transforming 2 (ECT2) mRNA expression. SB203580 administration to PDBu-treated NNVMs induced de novo nestin expression, preferentially increased the density (normalized to 500 NNVMs) of nestin(+)-NNVMs that incorporated 5-bromo-2'-deoxyuridine (PDBu, 1.4 ± 3 vs. PDBu/SB203580, 128 ± 34; n = 5 independent litters), significantly inhibited CDKN2a and Runx1 mRNA upregulation and reversed ECT2 mRNA downregulation. PDBu treatment of NNVMs reduced PKC-α, protein kinase-δ (PKC-δ) and protein kinase-ε (PKC-ε) protein levels and GF109203X (conventional PKC isoform inhibitor) selectively attenuated PKC-α protein downregulation. GF109203X administration to PDBu/SB203580-treated NNVMs significantly reduced the density of nestin(+)-NNVMs that incorporated 5-bromo-2'-deoxyuridine (PDBu/SB203580/GF109203X, 40 ± 46; n = 5). Moreover, GF109203X/PDBu/SB203580 treatment unmasked the predominant appearance of a separate NNVM population that incorporated 5-bromo-2'-deoxyuridine (PDBu/SB203580/GF109203X, 192 ± 42; n = 5) delineated by the absence of de novo nestin expression. Sotrastaurin (conventional/novel PKC isoform inhibitor) administration to PDBu/SB203580-treated NNVMs significantly attenuated the density of nestin(+)-NNVMs (PDBu/SB203580/sotrastaurin, 8 ± 10; n = 4) and nestin(-)-NNVMs (PDBu/SB203580/sotrastaurin, 64 ± 30; n = 4) that incorporated 5-bromo-2'-deoxyuridine. These data reveal that the neonatal rat heart contains at least two separate populations of NNVMs that re-enter the cell cycle and the preferential appearance of nestin(+)- or nestin(-)-NNVMs is driven by distinct PKC isoforms in the presence of SB203580.NEW & NOTEWORTHY The appearance of nestin(+)-neonatal rat ventricular cardiomyocytes that re-entered the cell cycle following phorbol ester stimulation in the presence of p38α/ß MAPK inhibitor SB203580 was associated with the inhibition of Runx1 and CDKN2a mRNA upregulation. PKC-α selectively induced the cell cycle re-entry of nestin(+)-neonatal rat ventricular cardiomyocytes. Pharmacological inhibition of PKC-α with concomitant p38α/ß MAPK suppression unmasked the cell cycle re-entry of a second population of neonatal rat ventricular cardiomyocytes in the absence of nestin expression.


Asunto(s)
Miocitos Cardíacos , Proteína Quinasa C , Ratas , Animales , Proteína Quinasa C/metabolismo , Miocitos Cardíacos/metabolismo , Animales Recién Nacidos , Nestina/genética , Nestina/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal , Bromodesoxiuridina , Ciclo Celular , Isoformas de Proteínas , ARN Mensajero/genética , Forbol 12,13-Dibutirato/farmacología
4.
Aging Cell ; 22(2): e13772, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36691110

RESUMEN

Chronic binge-like drinking is a risk factor for age-related dementia, however, the lasting and irreversible effect of alcohol on the brain remains elusive. Transcriptomic changes in brain cortices revealed pro-ageing hallmarks upon chronic ethanol exposure and these changes predominantly occur in neurons. The changes are attributed to a prioritized ethyl alcohol oxidation in these cells via the NADPH-dependent cytochrome pathway. This hijacks the folate metabolism of the 1-carbon network which supports the pathway choice of DNA repair via the non-cell cycle-dependent mismatch repair networks. The lost-in-function of such results in the de-inactivation of the less preferred cell cycle-dependent homologous recombination (HR) repair, forcing these post-mitotic cells to re-engage in a cell cycle-like process. However, mature neurons are post-mitotic. Therefore, instead of successfully completing a full round of cell cycle which is necessary for the completion of HR-mediated repair; these cells are arrested at checkpoints. The resulting persistence of repair intermediates induces and promotes the nuclear accumulation of p21 and cyclin B-a trigger for permanent cell cycle exits and irreversible senescence response. Supplementation of bioactive 5-methyl tetrahydrofolate simultaneously at times with ethyl alcohol exposure supports the fidelity of the 1-carbon network and hence the activity of the mismatch repair. This prevents aberrant and irreversible cell cycle re-entry and senescence events of neurons. Together, our findings offer a direct connection between binge-drinking behaviour and its irreversible impact on the brain, which makes it a potential risk factor for dementia.


Asunto(s)
Senescencia Celular , Reparación del ADN , Ciclo Celular , Senescencia Celular/genética , Neuronas/metabolismo , Etanol/toxicidad , Etanol/metabolismo , Carbono/metabolismo , Daño del ADN
5.
Curr Res Neurobiol ; 4: 100074, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36699152

RESUMEN

Three decades following the introduction of the first Rb knockout (KO) mouse model, the role of this critical protein in regulating brain development during embryogenesis and beyond remains a major scientific interest. Rb is a tumor suppressor gene known as the master regulator of the G1/S checkpoint and control of cell cycle progression in stem and progenitor cells, but also their differentiated progeny. Here, we review the recent literature about the various Rb conditional Knockout (cKO) and inducible Knockout (iKO) models studied thus far, highlighting how findings should always be interpreted in light of the model and context under inquiry especially when studying the role of Rb in neuronal survival. There is indeed evidence of age-specific, cell type-specific and region-specific effects following Rb KO in the embryonic and the adult mouse brain. In terms of modeling neurodegenerative processes in human diseases, we discuss cell cycle re-entry (CCE) as a candidate mechanism underlying the increased vulnerability of Rb-deficient neurons to cell death. Notably, mouse models may limit the extent to which CCE due to Rb inactivation can mimic the pathological course of these disorders, such as Alzheimer's disease. These remarks ought to be considered in future research when studying the consequences of Rb inactivation on neuronal generation and survival in rodents and their corresponding clinical significance in humans.

6.
J Alzheimers Dis ; 94(s1): S429-S451, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35848025

RESUMEN

Chronological aging is by far the strongest risk factor for age-related dementia and Alzheimer's disease. Senescent cells accumulated in the aging and Alzheimer's disease brains are now recognized as the keys to describing such an association. Cellular senescence is a classic phenomenon characterized by stable cell arrest, which is thought to be applicable only to dividing cells. Emerging evidence indicates that fully differentiated post-mitotic neurons are also capable of becoming senescent, with roles in contributing to both brain aging and disease pathogenesis. The key question that arises is the identity of the upstream triggers and the molecular mechanisms that underly such changes. Here, we highlight the potential role of persistent DNA damage response as the major driver of senescent phenotypes and discuss the current evidence and molecular mechanisms that connect DNA repair infidelity, cell cycle re-entry and terminal fate decision in committing neuronal cell senescence.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/patología , Ciclo Celular/fisiología , Senescencia Celular/fisiología , Neuronas/metabolismo , Encéfalo , Daño del ADN
7.
Front Mol Neurosci ; 15: 1006216, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36263378

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder accompanied by the loss and apoptosis of neurons. Neurons abnormally enter the cell cycle, which results in neuronal apoptosis during the course of AD development and progression. However, the mechanisms underlying cell cycle re-entry have been poorly studied. Using neuroblastoma (N) 2a SW and APP/PS1 transgenic (Tg) mice as in vitro and in vivo AD models, we found that the expression of cyclin-dependent kinase (CDK)1/2/4 and cyclin A2/B1/D3/E1 was increased while the protein expression of p18 and p21 was decreased, which led to enhanced cell cycle re-entry in a ß-amyloid protein (Aß)-dependent mechanism. By preparing and treating with the temperature-sensitive chitosan-encapsulated drug delivery system (CS), the abnormal expression of CDK1/2/4, cyclin A2/B1/D3/E1 and p18/21 was partially restored by acetylsalicylic acid (ASA), which decreased the apoptosis of neurons in APP/PS1 Tg mice. Moreover, CDK4 and p21 mediated the effects of ASA on activating transcription factor (TF) EB via peroxisome proliferator-activated receptor (PPAR) α, thus leading to the uptake of Aß by astrocytes in a low-density lipoprotein receptor (Ldlr)-dependent mechanism. Moreover, the mechanisms of Aß-degrading mechanisms are activated, including the production of microtubule-associated protein light chain (LC) 3II and Lamp2 protein by ASA in a PPARα-activated TFEB-dependent manner. All these actions contribute to decreasing the production and deposition of Aß, thus leading to improved cognitive decline in APP/PS1 Tg mice.

8.
J Cell Sci ; 135(15)2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35781573

RESUMEN

Adult stem cells persist in mammalian tissues by entering a state of reversible quiescence, referred to as G0, which is associated with low levels of transcription. Using cultured myoblasts and muscle stem cells, we report that in G0, global RNA content and synthesis are substantially repressed, correlating with decreased RNA polymerase II (RNAPII) expression and activation. Integrating RNAPII occupancy and transcriptome profiling, we identify repressed networks and a role for promoter-proximal RNAPII pausing in G0. Strikingly, RNAPII shows enhanced pausing in G0 on repressed genes encoding regulators of RNA biogenesis (such as Ncl, Rps24, Ctdp1), and release of pausing is associated with increased expression of these genes in G1. Knockdown of these transcripts in proliferating cells leads to induction of G0 markers, confirming the importance of their repression in establishment of G0. A targeted screen of RNAPII regulators revealed that knockdown of Aff4 (a positive regulator of elongation) unexpectedly enhances expression of G0-stalled genes and hastens S phase; however, the negative elongation factor (NELF) complex, a regulator of pausing, appears to be dispensable. We propose that RNAPII pausing contributes to transcriptional control of a subset of G0-repressed genes to maintain quiescence and impacts the timing of the G0-G1 transition. This article has an associated First Person interview with the first authors of the paper.


Asunto(s)
Regulación de la Expresión Génica , ARN Polimerasa II , Animales , Ciclo Celular/genética , Mamíferos/metabolismo , Regiones Promotoras Genéticas/genética , ARN , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Transcripción Genética , Factores de Elongación Transcripcional/genética
9.
Int J Mol Sci ; 23(3)2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-35163665

RESUMEN

Skeletal muscle harbors a pool of stem cells called muscle satellite cells (MuSCs) that are mainly responsible for its robust regenerative capacities. Adult satellite cells are mitotically quiescent in uninjured muscles under homeostasis, but they exit quiescence upon injury to re-enter the cell cycle to proliferate. While most of the expanded satellites cells differentiate and fuse to form new myofibers, some undergo self-renewal to replenish the stem cell pool. Specifically, quiescence exit describes the initial transition of MuSCs from quiescence to the first cell cycle, which takes much longer than the time required for subsequent cell cycles and involves drastic changes in cell size, epigenetic and transcriptomic profiles, and metabolic status. It is, therefore, an essential period indispensable for the success of muscle regeneration. Diverse mechanisms exist in MuSCs to regulate quiescence exit. In this review, we summarize key events that occur during quiescence exit in MuSCs and discuss the molecular regulation of this process with an emphasis on multiple levels of intrinsic regulatory mechanisms. A comprehensive understanding of how quiescence exit is regulated will facilitate satellite cell-based muscle regenerative therapies and advance their applications in various disease and aging conditions.


Asunto(s)
Ciclo Celular , Células Satélite del Músculo Esquelético/citología , Adulto , Animales , Ciclo Celular/genética , Puntos de Control del Ciclo Celular/genética , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Modelos Biológicos , Células Satélite del Músculo Esquelético/metabolismo , Transducción de Señal
10.
J Alzheimers Dis ; 85(3): 1373-1398, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34924393

RESUMEN

BACKGROUND: Neuronal cell cycle re-entry (CCR) is a mechanism, along with amyloid-ß (Aß) oligomers and hyperphosphorylated tau proteins, contributing to toxicity in Alzheimer's disease (AD). OBJECTIVE: This study aimed to examine the putative factors in CCR based on evidence corroboration by combining meta-analysis and co-expression analysis of omic data. METHODS: The differentially expressed genes (DEGs) and CCR-related modules were obtained through the differential analysis and co-expression of transcriptomic data, respectively. Differentially expressed microRNAs (DEmiRNAs) were extracted from the differential miRNA expression studies. The dysregulations of DEGs and DEmiRNAs as binary outcomes were independently analyzed by meta-analysis based on a random-effects model. The CCR-related modules were mapped to human protein-protein interaction databases to construct a network. The importance score of each node within the network was determined by the PageRank algorithm, and nodes that fit the pre-defined criteria were treated as putative CCR-related factors. RESULTS: The meta-analysis identified 18,261 DEGs and 36 DEmiRNAs, including genes in the ubiquitination proteasome system, mitochondrial homeostasis, and CCR, and miRNAs associated with AD pathologies. The co-expression analysis identified 156 CCR-related modules to construct a protein-protein interaction network. Five genes, UBC, ESR1, EGFR, CUL3, and KRAS, were selected as putative CCR-related factors. Their functions suggested that the combined effects of cellular dyshomeostasis and receptors mediating Aß toxicity from impaired ubiquitination proteasome system are involved in CCR. CONCLUSION: This study identified five genes as putative factors and revealed the significance of cellular dyshomeostasis in the CCR of AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Ciclo Celular/fisiología , Perfilación de la Expresión Génica , MicroARNs/genética , Transcriptoma/genética , Algoritmos , Humanos , Neuronas/metabolismo , Mapas de Interacción de Proteínas , Proteínas tau/metabolismo
11.
Front Neurosci ; 15: 752153, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34924930

RESUMEN

Western Pacific Amyotrophic Lateral Sclerosis and Parkinsonism-Dementia Complex (ALS/PDC) is a disappearing prototypical neurodegenerative disorder (tau-dominated polyproteinopathy) linked with prior exposure to phytogenotoxins in cycad seed used for medicine and/or food. The principal cycad genotoxin, methylazoxymethanol (MAM), forms reactive carbon-centered ions that alkylate nucleic acids in fetal rodent brain and, depending on the timing of systemic administration, induces persistent developmental abnormalities of the cortex, hippocampus, cerebellum, and retina. Whereas administration of MAM prenatally or postnatally can produce animal models of epilepsy, schizophrenia or ataxia, administration to adult animals produces little effect on brain structure or function. The neurotoxic effects of MAM administered to rats during cortical brain development (specifically, gestation day 17) are used to model the histological, neurophysiological and behavioral deficits of human schizophrenia, a condition that may precede or follow clinical onset of motor neuron disease in subjects with sporadic ALS and ALS/PDC. While studies of migrants to and from communities impacted by ALS/PDC indicate the degenerative brain disorder may be acquired in juvenile and adult life, a proportion of indigenous cases shows neurodevelopmental aberrations in the cerebellum and retina consistent with MAM exposure in utero. MAM induces specific patterns of DNA damage and repair that associate with increased tau expression in primary rat neuronal cultures and with brain transcriptional changes that parallel those associated with human ALS and Alzheimer's disease. We examine MAM in relation to neurodevelopment, epigenetic modification, DNA damage/replicative stress, genomic instability, somatic mutation, cell-cycle reentry and cellular senescence. Since the majority of neurodegenerative disease lacks a solely inherited genetic basis, research is needed to explore the hypothesis that early-life exposure to genotoxic agents may trigger or promote molecular events that culminate in neurodegeneration.

12.
Life Sci ; 285: 120006, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34606852

RESUMEN

Neurodegenerative diseases (NDDs) are the most common life-threatening disease of the central nervous system and it cause the progressive loss of neuronal cells. The exact mechanism of the disease's progression is not clear and thus line of treatment for NDDs is a baffling issue. During the progression of NDDs, oxidative stress and DNA damage play an important regulatory function, and ultimately induces neurodegeneration. Recently, aberrant cell cycle events have been demonstrated in the progression of different NDDs. However, the pertinent role of signaling mechanism, for instance, post-translational modifications, oxidative stress, DNA damage response pathway, JNK/p38 MAPK, MEK/ERK cascade, actively participated in the aberrant cell cycle reentry induced neuronal cell death. Mounting evidence has demonstrated that aberrant cell cycle re-entry is a major contributing factor in the pathogenesis of NDDs rather than a secondary phenomenon. In the brain of AD patients with mild cognitive impairment, post miotic cell division can be seen in the early stage of the disease. However, in the brain of PD patients, response to various neurotoxic signals, the cell cycle re-entry has been observed that causes neuronal apoptosis. On contrary, the contributing factors that leads to the induction of cell cycle events in mature neurons in HD and ALS brain pathology is remain unclear. Various pharmacological drugs have been developed to reduce the pathogenesis of NDDs, but they are still not helpful in eliminating the cause of these NDDs.


Asunto(s)
Quinasas Ciclina-Dependientes/metabolismo , Ciclinas/metabolismo , Mitosis , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Neuronas/metabolismo , Neuronas/patología , Acetilación , Animales , Histona Desacetilasas/metabolismo , Humanos , Ubiquitina-Proteína Ligasas/metabolismo
13.
Eur J Neurosci ; 54(9): 6987-7005, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34536321

RESUMEN

Oxidative DNA damage induces changes in the neuronal cell cycle and activates a DNA damage response (DDR) to promote repair, but these processes may be altered under a chronic oxidative environment, leading to the accumulation of unrepaired DNA damage and continued activation of a DDR. Failure to repair DNA damage can lead to apoptosis or senescence, which is characterized by a permanent cell cycle arrest. Increased oxidative stress and accumulation of oxidative DNA damage are features of brain ageing and neurodegeneration, but the effects of persistent DNA damage in neurons are not well characterized. We developed a model of persistent oxidative DNA damage in immortalized post-mitotic neurons in vitro by exposing them to a sublethal concentration of hydrogen peroxide following a 'double stress' protocol and performed a detailed characterization of the neuronal transcriptome using microarray analysis. Persistent DNA damage significantly altered the expression of genes involved in cell cycle regulation, DDR and repair mechanisms, and mitochondrial function, suggesting an active DDR response to replication stress and alterations in mitochondrial electron transport chain. Quantitative polymerase chain reaction (qPCR) and functional validation experiments confirmed hyperactivation of mitochondrial Complex I in response to persistent DNA damage. These changes in response to persistent oxidative DNA damage may lead to further oxidative stress, contributing to neuronal dysfunction and ultimately neurodegeneration.


Asunto(s)
Daño del ADN , Transcriptoma , Ciclo Celular , Mitocondrias/metabolismo , Neuronas/metabolismo , Estrés Oxidativo
14.
J Alzheimers Dis ; 82(4): 1769-1783, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34219728

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is a progressive neurodegenerative disorder, and the most common type of dementia. A growing body of evidence has implicated neuroinflammation as an essential player in the etiology of AD. Inflammasomes are intracellular multiprotein complexes and essential components of innate immunity in response to pathogen- and danger-associated molecular patterns. Among the known inflammasomes, the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome plays a critical role in the pathogenesis of AD. OBJECTIVE: We recently developed a novel class of small molecule inhibitors that selectively target the NLRP3 inflammasome. One of the lead compounds, JC124, has shown therapeutic efficacy in a transgenic animal model of AD. In this study we tested the preventative efficacy of JC124 in another strain of transgenic AD mice. METHODS: In this study, 5-month-old female APP/PS1 and matched wild type mice were treated orally with JC124 for 3 months. After completion of treatment, cognitive functions and AD pathologies, as well as protein expression levels of synaptic proteins, were assessed. RESULTS: We found that inhibition of NLRP3 inflammasome with JC124 significantly decreased multiple AD pathologies in APP/PS1 mice, including amyloid-ß (Aß) load, neuroinflammation, and neuronal cell cycle re-entry, accompanied by preserved synaptic plasticity with higher expression of pre- and post-synaptic proteins, increased hippocampal neurogenesis, and improved cognitive functions. CONCLUSION: Our study demonstrates the importance of the NLRP3 inflammasome in AD pathological development, and pharmacological inhibition of NLRP3 inflammasome with small molecule inhibitors represents a potential therapy for AD.


Asunto(s)
Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Cognición/efectos de los fármacos , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Neuropatología , Animales , Encéfalo/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Inmunohistoquímica , Inflamasomas/efectos de los fármacos , Inflamasomas/metabolismo , Inflamación/metabolismo , Ratones , Ratones Transgénicos , Microglía/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Plasticidad Neuronal
15.
Alzheimers Res Ther ; 13(1): 126, 2021 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-34243793

RESUMEN

BACKGROUND: Blood circulating microRNAs that are specific for Alzheimer's disease (AD) can be identified from differentially expressed microRNAs (DEmiRNAs). However, non-reproducible and inconsistent reports of DEmiRNAs hinder biomarker development. The most reliable DEmiRNAs can be identified by meta-analysis. To enrich the pool of DEmiRNAs for potential AD biomarkers, we used a machine learning method called adaptive boosting for miRNA disease association (ABMDA) to identify eligible candidates that share similar characteristics with the DEmiRNAs identified from meta-analysis. This study aimed to identify blood circulating DEmiRNAs as potential AD biomarkers by augmenting meta-analysis with the ABMDA ensemble learning method. METHODS: Studies on DEmiRNAs and their dysregulation states were corroborated with one another by meta-analysis based on a random-effects model. DEmiRNAs identified by meta-analysis were collected as positive examples of miRNA-AD pairs for ABMDA ensemble learning. ABMDA identified similar DEmiRNAs according to a set of predefined criteria. The biological significance of all resulting DEmiRNAs was determined by their target genes according to pathway enrichment analyses. The target genes common to both meta-analysis- and ABMDA-identified DEmiRNAs were collected to construct a network to investigate their biological functions. RESULTS: A systematic database search found 7841 studies for an extensive meta-analysis, covering 54 independent comparisons of 47 differential miRNA expression studies, and identified 18 reliable DEmiRNAs. ABMDA ensemble learning was conducted based on the meta-analysis results and the Human MicroRNA Disease Database, which identified 10 additional AD-related DEmiRNAs. These 28 DEmiRNAs and their dysregulated pathways were related to neuroinflammation. The dysregulated pathway related to neuronal cell cycle re-entry (CCR) was the only statistically significant pathway of the ABMDA-identified DEmiRNAs. In the biological network constructed from 1865 common target genes of the identified DEmiRNAs, the multiple core ubiquitin-proteasome system, that is involved in neuroinflammation and CCR, was highly connected. CONCLUSION: This study identified 28 DEmiRNAs as potential AD biomarkers in blood, by meta-analysis and ABMDA ensemble learning in tandem. The DEmiRNAs identified by meta-analysis and ABMDA were significantly related to neuroinflammation, and the ABMDA-identified DEmiRNAs were related to neuronal CCR.


Asunto(s)
Enfermedad de Alzheimer , MicroARNs , Enfermedad de Alzheimer/genética , Biomarcadores , Biología Computacional , Humanos , Aprendizaje Automático
16.
Neurochem Int ; 148: 105115, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34182065

RESUMEN

Evidence suggests that cell cycle activation plays a role in the pathophysiology of neurodegenerative diseases. Alzheimer's disease is a progressive, terminal neurodegenerative disease that affects memory and other important mental functions. Intracellular deposition of Tau protein, a hyperphosphorylated form of a microtubule-associated protein, and extracellular aggregation of Amyloid ß protein, which manifests as neurofibrillary tangles (NFT) and senile plaques, respectively, characterize this condition. In recent years, however, several studies have concluded that cell cycle re-entry is one of the key causes of neuronal death in the pathogenesis of Alzheimer's disease. The eukaryotic cell cycle is well-coordinated machinery that performs critical functions in cell replenishment, such as DNA replication, cell creation, repair, and the birth of new daughter cells from the mother cell. The complex interplay between the levels of various cyclins and cyclin-dependent kinases (CDKs) at different checkpoints is needed for cell cycle synchronization. CDKIs (cyclin-dependent kinase inhibitors) prevent cyclin degradation and CDK inactivation. Different external and internal factors regulate them differently, and they have different tissue expression and developmental functions. The checkpoints ensure that the previous step is completed correctly before starting the new cell cycle phase, and they protect against the transfer of defects to the daughter cells. Due to the development of more selective and potent ATP-competitive CDK inhibitors, CDK inhibitors appear to be on the verge of having a clinical impact. This avenue is likely to yield new and effective medicines for the treatment of cancer and other neurodegenerative diseases. These new methods for recognizing CDK inhibitors may be used to create non-ATP-competitive agents that target CDK4, CDK5, and other CDKs that have been recognized as important therapeutic targets in Alzheimer's disease treatment.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Quinasas Ciclina-Dependientes/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/farmacología , Animales , Ciclo Celular/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Humanos
17.
Cell Stem Cell ; 28(9): 1533-1548.e6, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-33910058

RESUMEN

Sporadic Alzheimer's disease (AD) exclusively affects elderly people. Using direct conversion of AD patient fibroblasts into induced neurons (iNs), we generated an age-equivalent neuronal model. AD patient-derived iNs exhibit strong neuronal transcriptome signatures characterized by downregulation of mature neuronal properties and upregulation of immature and progenitor-like signaling pathways. Mapping iNs to longitudinal neuronal differentiation trajectory data demonstrated that AD iNs reflect a hypo-mature neuronal identity characterized by markers of stress, cell cycle, and de-differentiation. Epigenetic landscape profiling revealed an underlying aberrant neuronal state that shares similarities with malignant transformation and age-dependent epigenetic erosion. To probe for the involvement of aging, we generated rejuvenated iPSC-derived neurons that showed no significant disease-related transcriptome signatures, a feature that is consistent with epigenetic clock and brain ontogenesis mapping, which indicate that fibroblast-derived iNs more closely reflect old adult brain stages. Our findings identify AD-related neuronal changes as age-dependent cellular programs that impair neuronal identity.


Asunto(s)
Enfermedad de Alzheimer , Células Madre Pluripotentes Inducidas , Anciano , Envejecimiento , Fibroblastos , Humanos , Neuronas
18.
Basic Res Cardiol ; 116(1): 19, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33742276

RESUMEN

Endogenous capability of the post-mitotic human heart holds great promise to restore the injured myocardium. Recent evidence indicates that the extracellular vesicles (EVs) regulate cardiac homeostasis and regeneration. Here, we investigated the molecular mechanism of EVs for self-repair. We isolated EVs from human iPSC-derived cardiomyocytes (iCMs), which were exposed to hypoxic (hEVs) and normoxic conditions (nEVs), and examined their roles in in vitro and in vivo models of cardiac injury. hEV treatment significantly improved the viability of hypoxic iCMs in vitro and cardiac function of severely injured murine myocardium in vivo. Microarray analysis of the EVs revealed significantly enriched expression of the miR-106a-363 cluster (miR cluster) in hEVs vs. nEVs. This miR cluster preserved survival and contractility of hypoxia-injured iCMs and maintained murine left-ventricular (LV) chamber size, improved LV ejection fraction, and reduced myocardial fibrosis of the injured myocardium. RNA-Seq analysis identified Jag1-Notch3-Hes1 as a target intracellular pathway of the miR cluster. Moreover, the study found that the cell cycle activator and cytokinesis genes were significantly up-regulated in the iCMs treated with miR cluster and Notch3 siRNA. Together, these results suggested that the miR cluster in the EVs stimulated cardiomyocyte cell cycle re-entry by repressing Notch3 to induce cell proliferation and augment myocardial self-repair. The miR cluster may represent an effective therapeutic approach for ischemic cardiomyopathy.


Asunto(s)
Proliferación Celular , Vesículas Extracelulares/trasplante , Células Madre Pluripotentes Inducidas/trasplante , MicroARNs/metabolismo , Infarto del Miocardio/cirugía , Miocitos Cardíacos/metabolismo , Receptor Notch3/metabolismo , Regeneración , Animales , Hipoxia de la Célula , Línea Celular , Modelos Animales de Enfermedad , Vesículas Extracelulares/metabolismo , Femenino , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones SCID , MicroARNs/genética , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Miocitos Cardíacos/patología , Receptor Notch3/genética , Recuperación de la Función , Transducción de Señal , Función Ventricular Izquierda
19.
Life Sci ; 263: 118569, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33049278

RESUMEN

Huntington's disease (HD) is an autosomal dominant pathogenic condition that causes progressive degeneration of GABAergic neurons in the brain. The abnormal expansion of the CAG repeats in the exon 1 of the Huntingtin gene (HTT gene) has been associated with the onset and progression of movement disorders, psychiatric disturbance and cognitive decline in HD. Microglial activation and reactive astrogliosis have been recognized as the key pathogenic cellular events in the brains of HD subjects. Besides, HD has been characterized by induced quiescence of neural stem cells (NSCs), reactive neuroblastosis and reduced survival of newborn neurons in the brain. Strikingly, the expression of the mutant HTT gene has been reported to induce the cell cycle re-entry of neurons in HD brains. However, the underlying basis for the induction of cell cycle in neurons and the fate of dedifferentiating neurons in the pathological brain remain largely unknown. Thus, this review article revisits the reports on the regulation of key signaling pathways responsible for altered cell cycle events in diseased brains, with special reference to HD and postulates the occurrence of reactive neuroblastosis as a consequential cellular event of dedifferentiation of neurons. Meanwhile, a substantial number of studies indicate that many neuropathogenic events are associated with the expression of potential glial cell markers by neuroblasts. Taken together, this article represents a hypothesis that transdifferentiation of neurons into glial cells might be highly possible through the transient generation of reactive neuroblasts in the brain upon certain pathological conditions.


Asunto(s)
Encéfalo/patología , Ciclo Celular , Enfermedad de Huntington/patología , Neuroglía/patología , Neuronas/patología , Animales , Encéfalo/metabolismo , Humanos , Enfermedad de Huntington/metabolismo , Neuroglía/metabolismo , Neuronas/metabolismo
20.
Neurobiol Aging ; 90: 125-134, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32184029

RESUMEN

A hexanucleotide repeat expansion on chromosome 9 open reading frame 72 (C9orf72) is associated with familial amyotrophic lateral sclerosis (ALS) and a subpopulation of patients with sporadic ALS and frontotemporal dementia. We used inducible pluripotent stem cells from neurotypic and C9orf72+ (C9+) ALS patients to derive neuronal progenitor cells. We demonstrated that C9+ and neurotypic neuronal progenitor cells differentiate into neurons. The C9+ neurons, however, spontaneously re-expressed cyclin D1 after 12 weeks, suggesting cell cycle re-engagement. Gene profiling revealed significant increases in senescence-associated genes in C9+ neurons. Moreover, C9+ neurons expressed high levels of mRNA for CXCL8, a chemokine overexpressed by senescent cells, while media from C9+ neurons contained significant levels of CXCL8, CXCL1, IL13, IP10, CX3CL1, and reactive oxygen species, which are components of the senescence-associated secretory phenotype. Thus, re-engagement of cell cycle-associated proteins and a senescence-associated secretory phenotype could be fundamental components of neuronal dysfunction in ALS and frontotemporal dementia.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Proteína C9orf72/genética , Ciclo Celular/genética , Senescencia Celular/genética , Expansión de las Repeticiones de ADN , Demencia Frontotemporal/genética , Regulación del Desarrollo de la Expresión Génica/genética , Células Madre Pluripotentes Inducidas/patología , Células Madre/patología , Células Cultivadas , Expresión Génica , Humanos , Interleucina-8/genética , Interleucina-8/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA