Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 536
Filtrar
1.
J Environ Sci (China) ; 149: 301-313, 2025 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39181644

RESUMEN

Catalytic purification of sulphur-containing malodorous gases has attracted wide attention because of its advantages of high purification efficiency, low energy consumption and lack of secondary pollution. The selection of efficient catalysts is the key to the problem, while the preparation and optimisation of catalysts depend on the analysis of experimental results and in-depth mechanistic analysis. By analysing the published literature, bibliometric analysis can identify existing research hotspots, the areas of interest and predict development trends, which can help to identify hot catalysts in the catalytic purification of sulphur-containing odours and to investigate their catalytic purification mechanisms. Therefore, this paper uses bibliometric analysis, based on Web Of Science and CNKI databases, CiteSpace and VOS viewer software to collate and analyse the literature on the purification of sulphur-containing odour pollutants, to identify the current research hotspots, to summarise the progress of research on the catalytic purification of different types of sulphur-containing odours, and to analyse their reaction mechanisms and kinetics. On this basis, the research progress of catalytic purification of different kinds of sulfur odour is summarized, and the reaction mechanism and dynamics are summarized.


Asunto(s)
Odorantes , Azufre , Odorantes/análisis , Azufre/química , Contaminantes Atmosféricos/análisis , Catálisis , Gases
2.
J Environ Sci (China) ; 147: 523-537, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003068

RESUMEN

Due to its high efficiency, Fe(II)-based catalytic oxidation has been one of the most popular types of technology for treating growing organic pollutants. A lot of chemical Fe sludge along with various refractory pollutants was concomitantly produced, which may cause secondary environmental problems without proper disposal. We here innovatively proposed an effective method of achieving zero Fe sludge, reusing Fe resources (Fe recovery = 100%) and advancing organics removal (final TOC removal > 70%) simultaneously, based on the in situ formation of magnetic Ca-Fe layered double hydroxide (Fe3O4@CaFe-LDH) nano-material. Cations (Ca2+ and Fe3+) concentration (≥ 30 mmol/L) and their molar ratio (Ca:Fe ≥ 1.75) were crucial to the success of the method. Extrinsic nano Fe3O4 was designed to be involved in the Fe(II)-catalytic wastewater treatment process, and was modified by oxidation intermediates/products (especially those with COO- structure), which promoted the co-precipitation of Ca2+ (originated from Ca(OH)2 added after oxidation process) and by-produced Fe3+ cations on its surface to in situ generate core-shell Fe3O4@CaFe-LDH. The oxidation products were further removed during Fe3O4@CaFe-LDH material formation via intercalation and adsorption. This method was applicable to many kinds of organic wastewater, such as bisphenol A, methyl orange, humics, and biogas slurry. The prepared magnetic and hierarchical CaFe-LDH nanocomposite material showed comparable application performance to the recently reported CaFe-LDHs. This work provides a new strategy for efficiently enhancing the efficiency and economy of Fe(II)-catalyzed oxidative wastewater treatment by producing high value-added LDHs materials.


Asunto(s)
Oxidación-Reducción , Eliminación de Residuos Líquidos , Aguas Residuales , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/química , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Catálisis , Hierro/química
3.
Chemistry ; : e202402780, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39256166

RESUMEN

It is urgent to develop an efficient and stable non-noble metal catalyst for selective C-H bond oxidation of cyclohexane. Herein, a series of V-W oxides supported on TiO2 catalysts (V-W/TiO2) were fabricated. The V-W/TiO2 catalysts exhibited much higher catalytic activity for the selective oxidation of cyclohexane to KA oil, compared to that of V/TiO2 and W/TiO2 catalysts. The good distribution of active metals and the synergistic effect were responsible for the enhanced catalytic activity. H2-TPR results disclosed that the presence of V in V-W/TiO2 affected the reducibility of W6+ species, and XPS verified that an electronic interaction was formed between them. Such results led to good catalytic reusability of V-W/TiO2 catalyst during the reactions, and no obvious activity loss was found after six runs. The reaction mechanism was investigated, and the results verified that hydroxyl radicals generated from H2O2 homolysis were the main active oxidative species. Theoretical study revealed that V dopant could regulate electronic structure of adjacent O atom, facilitating the adsorption of cyclohexane, and lower energy was needed for the rate-limiting step over V-W/TiO2 during the whole oxidation reaction. This work developed an efficient V-W/TiO2 catalyst for the selective oxidation of cyclohexane via a synergistic effect.

4.
Artículo en Inglés | MEDLINE | ID: mdl-39291640

RESUMEN

Proton exchange membrane fuel cells have strict requirements for the CO concentration in H2-rich fuel gas. Here, from the perspective of industrial practicability, a highly dispersed Pt catalyst (2-4 nm) supported on activated carbon (AC), which was modified by electronic promoters (K+) and structural promoters (isopropanol), is studied in detail. Compared with traditional metal oxide supports, the K-Pt/AC catalysts, which benefit from the tuned charge distribution, achieve a significant reduction of CO (from 1% to <0.1 ppb) under H2-rich conditions and show potential for used in large-scale industrial hydrogen purification. Experimental results and theoretical calculations reveal that the K atom, with its lower electronegativity, contributes to the shift of surface Pt2+ to a lower binding energy due to the presence of oxygen species on the AC surface. This facilitates oxygen activation and accelerates desorption of the CO2 product, thereby accelerating the reaction process and enabling the deep removal of CO in a hydrogen-rich atmosphere.

5.
Environ Sci Technol ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39270042

RESUMEN

Chlorinated volatile organic compounds come from a wide range of sources and are highly toxic, posing a serious threat to biological health and the environment. Herein, a high-efficiency and energy-saving photothermal synergistic catalytic oxidation method was developed for the removal of 1,2-dichloroethane (1,2-DCE). Compared to traditional thermocatalysis, the 1,2-DCE conversion over Ru-U6S in photothermal synergistic catalysis at 340 °C increased by approximately 44% not only reducing energy consumption but also avoiding the instability of MOF structure caused by high reaction temperature. The excellent photothermal catalytic oxidation activity was derived from the synergistic effect of photo- and thermocatalysis. Ru-U6S demonstrated excellent 1,2-DCE adsorption capacity and stronger light utilization and could produce more reactive oxygen species (•OH and •O2-) after light illumination, which participated in the oxidation reaction, promoting the release of the active site of the catalyst. The results of H2O-TPD and NH3-DRIFTS exhibited that the use of S-containing ligands in the synthesis process increased the hydroxyl groups and Brønsted acid sites, significantly improved the selectivity of CO2 and HCl in the oxidation process, and reduced the release of chlorine-containing byproducts. This work provides a high-efficiency and energy-saving strategy for removing chlorinated volatile organic compounds and increasing the selectivity of ideal products directly with MOFs directly.

6.
J Hazard Mater ; 479: 135691, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39217925

RESUMEN

Although enhancing the catalytic oxidation activity is a hotspot in thermal-driven catalytic disposal of persistent organic pollutants, few studies have managed to improve catalysts' water-resistance properties. Herein, we developed Fe2-xMnxO3 perovskite to boost the catalytic oxidation of hexabromocyclododecane under humidity by modulating its super-exchange interaction (SEI, Fe3+ + Mn3+ → Fe2+ + Mn4+). Fe0.4Mn1.6O3, with the strongest SEI, exhibits the biggest oxidation rate-constant, which is 3 times higher than that of commonly used Fe2O3 without SEI. Notably, unlike Fe2O3 which deactivates at a relative humidity of 5 %. Fe0.4Mn1.6O3 maintains its activity and is even boosted by 22 % compared to dry conditions. Mechanistic insights reveal that SEI between Fe and Mn enhances the reactivity of Mn4+- linked Olatt by lowering the reductive temperature from Mn4+ to Mn3+. Meanwhile, SEI promotes the adsorption of the associatively adsorbed H2O (HOH-type water) by reducing adsorption energy, thereby facilitating the formation of hydroxyl species, which are crucial for the oxidation process under humidity.

7.
ChemSusChem ; : e202401444, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39221979

RESUMEN

Rise of the mute assassin "carbon monoxide (CO)" levels impact all aerobic life. The elevated rates of CO concentration endure climatic and geographical characteristics that exacerbate air pollution. Herein, a simple approach for hydrothermal leaching (HyTL) of Al3TM-Rh0.5 (Target material (TM) = Zr, V, Ce) and Al3TM (TM = Zr, V, Ce) intermetallic compounds produces leached products of ZrO2, VO2, and CeO2 with Rhodium (Rh) as an active component. The characterization result reveals the HyTL process and the presence of the active Rh element that elevated the performance of HyTL-Al3Zr-Rh0.5 towards CO conversion compared to other samples. Further, the cubic ZrO2 phase selectively forms after HyTL at 130 oC even though the formation of the cubic ZrO2 phase takes place at a high temperature. Moreover, the presence of Rh promotes higher catalytic activity in all the cases with low temperatures. The advancement in the present study towards the catalytic oxidation of CO over the hydrothermally leached ZrO2-Rh nanocatalyst guarantees the perspective of the aggregation-activation process.

8.
J Hazard Mater ; 479: 135687, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39236538

RESUMEN

Hematite, a commonly stable iron oxide in the environment, which can not only adsorb Cd in the environment, but also catalyze the photochemical oxidation of Mn(II) in the environment. However, the impact of Mn(II) on the structure of hematite and the adsorption of Cd during the surface oxidation of hematite remains unknown. In this study, we investigated the surface and structural changes of hematite after the photochemical oxidation of Mn(II), as well as the geochemical behavior of Cd during this process. The results demonstrate that Mn(II) was oxidized to Mn(III/IV) on the hematite surface, with some Mn(III) being incorporated into the hematite structure. Simulations using XRD data showed that higher Mn(II) concentrations resulted in increased levels of Mn doping, leading to significant variations in the hematite unit cell. This was further confirmed through FTIR and Raman spectroscopy characterization. The oxidation of Mn(II) on the hematite surface resulted in a shift in surface charge from positive to negative, enhancing the adsorption capacity of Cd. However, when Mn(II) exceeded 0.4 mM, the immobilization of Cd within the system decreased. This was attributed to the competitive adsorption of Mn(II) and a reduction in the relative abundance of Mn(IV) oxides.

9.
Chemosphere ; 364: 143174, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39181465

RESUMEN

Air pollution is a long-standing environmental challenge as well an important economic subject. Hydrogen sulfide is one the major pollutants in the industrial releases. This review focuses on the thermochemical treatment of hydrogen sulfide based on the most recent works to date regarding its removal. By analyzing fundamental steps in chemical reaction engineering, some useful factors are emphasized since they are often neglected in scientific studies, catalysts design and process scale-up. From processing side, the fluid flow conditions including velocity, H2S concentration, relative humidity, temperature and pressure strongly influence the kinetic behavior and so the catalytic performance of the H2S removal reactor. From material side, the catalyst properties including nature, porosity, pore types, size, sites distribution and layer structuration largely influence the removal performance via among others the accessibility to catalytic sites, pores connection and mass transfer resistance. Plasma-assisted catalytic removal of H2S combines many novelties in comparison with a classical thermo-catalytic process. From patents review, we can see that main concerns are about electrodes mounting, reactor lifetime and modular design to solve the problems in the industrial practice. We attempt to provide for scientists, engineers and industrialists a guidance on the design of catalysts and processes for H2S removal which could be applied in laboratorial studies and industrial processes as well.

10.
Environ Res ; 262(Pt 2): 119865, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39216735

RESUMEN

With the widespread application of ternary lithium-ion batteries (TLBs) in various fields, the disposal of spent TLBs has become a globally recognized issue. This study proposes a novel method for reutilizing metal resources from TLBs. Through selective oxidation, manganese in a leaching solution of TLBs was converted into MnO2 with α, γ, and δ crystal phases (referred to as T-MnO2) for catalytic oxidation of volatile organic compounds (VOCs), while efficiently separating manganese from high-value metals such as nickel, cobalt, and lithium, achieving a manganese recovery rate of 99.99%. Compared to similar MnO2 prepared from pure materials, T-MnO2 exhibited superior degradation performance for toluene and chlorobenzene, with T90 decreasing by around 30 °C. The acidic synthesis environment provided by the leaching solution and the doping of trace metals altered the physicochemical properties of T-MnO2, such as increased specific surface area, elevated surface manganese valence, and improved redox performance and oxygen vacancy properties, enhancing its catalytic oxidation capacity. Furthermore, the degradation pathway of toluene on T-γ-MnO2 was inferred using thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS) and in-situ DRIFTs. This study provides a novel approach for recycling spent TLBs and treating VOCs catalytically.

11.
J Hazard Mater ; 477: 135389, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39094309

RESUMEN

Enhancing catalytic activity while inhibiting the generation of chlorine byproducts is essential in the catalytic oxidation process of chlorinated volatile organic compounds (CVOCs). In this study, Cr-modified Co/WNb catalysts were synthesized and utilized for the degradation of dichloromethane (DCM). It was found that the moderate introduction of Cr exposed more Cr6+ on the catalyst surface due to the interaction between cobalt and chromium oxides, which promoted the generation of more chemisorbed oxygen on the surface, thus improving the redox properties and enhancing the activity of the catalysts. Additionally, the introduction of Cr increased the B acid sites of the catalysts, promoting the breaking of C-Cl bonds and the removal of dissociated Cl- Meanwhile, the improved redox properties also allowed further oxidation of the dissociated activated intermediate products and inhibited the generation of chlorine byproducts. The catalyst activity was optimal when the Cr to Co molar ratio was 4, which the T90 of DCM was 256 °C and the monochloromethane selectivity was only 1.7 %. Moreover, Co4Cr/WNb showed excellent chlorine and water resistance, making it an ideal candidate for CVOC degradation.

12.
Environ Sci Technol ; 58(35): 15836-15845, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39169771

RESUMEN

The design of a catalyst with multifunctional sites is one of the effective methods for low-temperature catalytic oxidation of chlorinated volatile organic compounds (CVOCs). The loss of redox sites and competitive adsorption of H2O prevalent in the treatment of industrial exhaust gases are the main reasons for the weak mineralization ability and poor water vapor resistance of V-based catalysts. In this work, platinum (Pt) is selected to combine with the V/CeO2 catalyst, which provides more redox sites and H2O dissociative activation sites and further enhances its catalytic performance. The results show that PtV/CeO2 achieves 90% of the CO2 yield at 318 °C and maintains excellent catalytic activity rather than continuous deactivation within 15 h after water vapor injection. The formation of Pt-O-V bonds enhances the redox ability and promotes deep oxidation of polychlorinated intermediates, accounting for the significantly improved mineralization ability of PtV/CeO2. The dissociative activation effect of Pt on H2O molecules strengthens the migration and activation of V-adsorbed H2O, precluding V-poisoning and notably improving water resistance. This study lays a solid foundation for the efficient degradation of chlorobenzene under humid conditions.


Asunto(s)
Clorobencenos , Oxidación-Reducción , Platino (Metal) , Agua , Catálisis , Platino (Metal)/química , Clorobencenos/química , Agua/química , Vanadio/química , Cerio/química
13.
Heliyon ; 10(14): e34199, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39130433

RESUMEN

Perfluoroalkyl substances (PFAS) are emerging contaminants present in various water sources. Their bioaccumulation and potential toxicity necessitate proper treatment to ensure safe water quality. Although iron-based monometallic photocatalysts have been reported to exhibit rapid and efficient PFAS degradation, the impact of bimetallic photocatalysts is unknown. In addition, the mechanistic effects of utilizing a support are poorly understood and solely based on physicochemical properties. This study investigates the efficacy of bimetallic photocatalysts (Fe2O3/Mn2O3) in inducing the photo-Fenton reaction for the degradation of perfluorooctane sulfonate (PFOS) and perfluorononanoic acid (PFNA) under various conditions. The rapid removal of both PFAS was observed within 10 min, with a maximum efficiency exceeding 97 % for PFOS under UV exposure, aided by the photocatalytic activation (photo-Fenton) of the oxidant (H2O2). Contrary to expectations, the use of the SiO2 support material did not significantly improve the removal efficiency. The efficacy of PFNA decreased despite SiO2 providing larger surface areas for Fe2O3/Mn2O3 loading. Further analysis revealed that the adsorption of PFAS onto the catalyst surfaces owing to electrostatic interactions contributed to the removal efficiency, where the degradation efficacy was worse than that of the catalyst with SiO2. This is because adsorption hindered the effective contact of H2O2 with catalytic reaction sites, thereby impeding the generation of hydroxyl (·OH) radicals. This study indicates the importance of considering chemical properties, including surface charge, in catalyst design to ensure effective degradation, focusing on physicochemical properties, such as surface area might overlook crucial factors.

14.
J Colloid Interface Sci ; 678(Pt A): 520-531, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39214004

RESUMEN

As our previous works found, alkali metals have a common promotion effect on supported noble metals catalysts for formaldehyde (HCHO) oxidation. As second-group elements, alkaline earth metals (AEMs) are neighbors to the first-group elements and share some properties in common. However, detailed investigations into the specific mechanisms underlying AEMs' effects on HCHO oxidation remain limited. In this study, we found that Ba addition showed a similar promotion effect on HCHO oxidation for Pd/TiO2. Ba species stabilized Pd groups, improved the dispersion, and even caused a large number of monatomic-like Pd sites to appear, which may be attributed to the electronic interaction between promoter and metal (EIPM) between Ba and Pd. Besides, AEM loading had the important effect of increasing the electron density of metallic Pd nanoparticles, which further improved the ability for O2 activation and so enhanced the mobility of chemisorbed oxygen on the catalyst surface. For Pd/TiO2, the HCHO oxidation path is mainly HCHO→HCOOH→HCOO→H2O+CO2. By contrast, for Pd-Ba/TiO2, with more surface-active species, the formate intermediate was more likely to be directly oxidized into H2O and CO2, which is a more effective reaction pathway. The details of the EIPM between Pd and Ba were investigated by GPAW (DFT calculation module) in ASE (Atomic Simulation Environment). The AEM Ba acted as an electron donor and could interact with Pd d orbital electrons through BaO sp orbital electrons. Ba species were highly dispersed on the carrier due to the Ba-Ti interaction. Ba species dispersed over large areas stabilized the Pd particles and donated electrons to Pd. Therefore, adding an AEM is an efficacious strategy to improve the performance of the catalytic oxidation of HCHO.

15.
Molecules ; 29(16)2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39202902

RESUMEN

Formaldehyde (HCHO) is identified as the most toxic chemical among 45 organic compounds found in industrial wastewater, posing significant harm to both the environment and human health. In this study, a novel approach utilizing the Lanthanum-manganese complex oxide (LaMnO3)/peroxymonosulfate (PMS) system was proposed for the effective removal of HCHO from wastewater. Perovskite-Type LaMnO3 was prepared by sol-gel method. The chemical compositions and morphology of LaMnO3 samples were analyzed through thermogravimetric analysis (TG), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The effects of LaMnO3 dosage, PMS concentration, HCHO concentration, and initial pH on the HCHO removal rate were investigated. When the concentration of HCHO is less than 1.086 mg/mL (5 mL), the dosage of LaMnO3 is 0.06 g, and n(PMS)/n(HCHO) = 2.5, the removal rate of HCHO is more than 96% in the range of pH = 5-13 at 25 °C for 10 min. Compared with single-component MnO2, the perovskite structure of LaMnO3 is beneficial to the catalytic degradation of HCHO by PMS. It is an efficient Fenton-like oxidation process for treating wastewater containing HCHO. The LaMnO3 promoted the formation of SO4•- and HO•, which sequentially oxidized HCHO to HCOOH and CO2.

16.
ACS Appl Mater Interfaces ; 16(35): 46247-46258, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39171971

RESUMEN

Formaldehyde (HCHO), a ubiquitous gaseous pollutant in indoor environments, threatens human health under long-term exposure, necessitating its effective elimination. Due to its advantages in enhancing mass transfer and effectively exposing active sites, aerogels with a three-dimensional (3D) interconnected network structure are expected to achieve efficient and stable decomposition of HCHO at ambient temperature. However, how to realize the self-assembly of transition metal oxides to construct high-purity 3D network aerogels is still a huge challenge. Herein, the cation-induced self-assembly strategy was developed to construct high-purity self-standing 3D network manganese dioxide aerogels. The interaction between cations and the surface groups of nanowires is crucial for successful self-assembly, which leads to the cross-winding of nanowires with each other, forming a 3D-structured network. The K+-induced 3D-MnO2 exhibited excellent catalytic performance for HCHO, which could continuously and steadily decompose HCHO into CO2 and H2O at ambient temperature. Thanks to the 3D interconnected network structure, on the one hand, it provides a large specific surface area and porosity, reducing mass transfer resistance and promoting the adsorption of HCHO and O2 molecules. On the other hand, it is more important to fully expose the active sites, which can generate more surface active oxygen species and achieve effective recycling and regeneration. Importantly, 3D-MnO2 has a strong ability to capture and activate water molecules in the atmosphere, which could be further involved in the replenishment of the consumed hydroxyl groups. This study proposes a strategy for self-assembly of transition metal oxides through cation-induction, which provides a new catalyst design approach for the room temperature decomposition of VOCs.

17.
J Hazard Mater ; 476: 135016, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38986407

RESUMEN

Formaldehyde (FA) is a hazardous indoor air pollutant with carcinogenic propensity. Oxidation of FA in the dark at low temperature (DLT) is a promising strategy for its elimination from indoor air. In this light, binary manganese-cobalt oxide (0.1 to 5 mol L-1-MnCo2O4) is synthesized and modified in an alkaline medium (0.1-5 mol L-1 potassium hydroxide) for FA oxidation under room temperature (RT) conditions. Accordingly, 1-MnCo2O4 achieves 100 % FA conversion at RT (50 ppm and 7022 h-1 gas hourly space velocity (GHSV)). The catalytic activity of 1-MnCo2O4 is assessed further as a function of diverse variables (e.g., catalyst mass, relative humidity, FA concentration, molecular oxygen (O2) content, flow rate, and time on-stream). In situ diffuse reflectance infrared Fourier-transform spectroscopy confirms that FA molecules are adsorbed onto the active surface sites of 1-MnCo2O4 and oxidized into water (H2O) and carbon dioxide (CO2) through dioxymethylene (DOM) and formate (HCOO-) as the reaction intermediates. According to the density functional theory simulations, the higher catalytic activity of 1-MnCo2O4 can be attributed to the combined effects of its meritful surface properties (e.g., the firmer attachment of FA molecules, lower energy cost of FA adsorption, and lower desorption energy for CO2 and H2O). This work is the first report on the synthesis of alkali (KOH)-modified MnCo2O4 and its application toward the FA oxidative removal at RT in the dark. The results of this study are expected to provide valuable insights into the development of efficient and cost-effective non-noble metal catalysts against indoor FA at DLT.

18.
J Hazard Mater ; 476: 135113, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38996683

RESUMEN

An depth understanding of the fundamental interactions between surface termination and catalytic activity is crucial to prompt the properties of functional perovskite materials. The elastic energy due to size mismatch and electrostatic attraction of the charged Sr dopant by positively charged oxygen vacancies induced inert A-site surface enrichment rearrangement for perovskites. Lower temperatures could reduce A-site enrichment, but it is difficult to form perovskite crystals. La0.8Sr0.2CoO3-δ (LSCO) as a model perovskite oxide was modified with additive urea to reduce the crystallization temperature, and suppress Sr segregation. The LSCO catalysts with 600 °C annealing temperature (LSCO-600) exhibited a 19.4-fold reaction reactivity of toluene oxidation than that with 800 °C annealing temperature (LSCO-800). Combined surface-sensitive and depth-resolved techniques for surface and sub-surface analysis, surface Sr enrichment was effectively suppressed due to decreased oxygen vacancy concentration and smaller electrostatic driving force. DFT calculations and in-situ DRIFTs spectra well revealed that tuning the surface composition/termination affected the intrinsic reactivity. The catalyst surface with lower Sr enrichment could easily adsorb toluene, cleave, and decompose benzene rings, thus contributing to toluene degradation to CO2. This work demonstrates a green and efficient way to control surface composition and termination at the atomic scale for higher catalytic activity.

19.
Artículo en Inglés | MEDLINE | ID: mdl-39063490

RESUMEN

With increasingly stringent emission limits on sulfur and sulfur-containing substances, the reduction and removal of sulfur compounds from fuels has become an urgent task. Emissions of sulfur-containing compounds pose a significant threat to the environment and human health. Ionic liquids (ILs) have attracted much attention in recent years as green solvents and functional materials, and their unique properties make them useful alternatives to conventional desulfurization organic solvents. This paper reviews the advantages and disadvantages of traditional desulfurization technologies such as hydrodesulfurization, oxidative desulfurization, biological desulfurization, adsorptive desulfurization, extractive desulfurization, etc. It focuses on the synthesis of ionic liquids and their applications in oxidative desulfurization, extractive desulfurization, extractive oxidative desulfurization, and catalytic oxidative desulfurization, and it analyzes the problems of ionic liquids that need to be solved urgently in desulfurization, looking forward to the development of sulfuric compounds as a kind of new and emerging green solvent in the field of desulfurization.


Asunto(s)
Tecnología Química Verde , Líquidos Iónicos , Líquidos Iónicos/química , Tecnología Química Verde/métodos , Azufre/química , Compuestos de Azufre/química , Oxidación-Reducción
20.
Molecules ; 29(14)2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39064995

RESUMEN

The development of economical catalysts that exhibit both high activity and durability for chlorinated volatile organic compounds (CVOCs) elimination remains a challenge. The oxidizing and acidic sites play a crucial role in the oxidation process of CVOCs; herein, praseodymium (Pr) was introduced into CrOx catalysts via in situ pyrolysis of MIL-101(Cr). With the decomposition of the ligand, a mixed micro-mesoporous structure was formed within the M-Cr catalyst, thereby reducing the contact resistance between catalyst active sites and the 1,2-dichloroethane molecule. Moreover, the synergistic interaction between chromium and praseodymium facilitates Oß species and acidic sites, significantly enhancing the low-temperature catalytic performance and durability of the M-PrCr catalyst for 1,2-dichloroethane (1,2-DCE) oxidation. The M-30PrCr catalyst possess enhanced active oxygen sites and acid sites, thereby exhibiting the highest catalytic activity and stability. This study may provide a novel and promising strategy for practical applications in the elimination of 1,2-DCE.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA