Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 205
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(36): 47137-47149, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39106079

RESUMEN

With their low immunogenicity and excellent deliverability, extracellular vesicles (EVs) are promising platforms for drug delivery systems. In this study, hydrophobic molecule loading techniques were developed via an exchange reaction based on supramolecular chemistry without using organic solvents that can induce EV disruption and harmful side effects. To demonstrate the availability of an exchanging reaction to prepare drug-loading EVs, hydrophobic boron cluster carborane (CB) was introduced to EVs (CB@EVs), which is expected as a boron agent for boron neutron capture therapy (BNCT). The exchange reaction enabled the encapsulation of CB to EVs without disrupting their structure and forming aggregates. Single-particle analysis revealed that an exchanging reaction can uniformly introduce cargo molecules to EVs, which is advantageous in formulating pharmaceuticals. The performance of CB@EVs as boron agents for BNCT was demonstrated in vitro and in vivo. Compared to L-BPA, a clinically available boron agent, and CB delivered with liposomes, CB@EV systems exhibited the highest BNCT activity in vitro due to their excellent deliverability of cargo molecules via an endocytosis-independent pathway. The system can deeply penetrate 3D cultured spheroids even in the presence of extracellular matrices. The EV-based system could efficiently accumulate in tumor tissues in tumor xenograft model mice with high selectivity, mainly via the enhanced permeation and retention effect, and the deliverability of cargo molecules to tumor tissues in vivo enhanced the therapeutic benefits of BNCT compared to the L-BPA/fructose complex. All of the features of EVs are also advantageous in establishing anticancer agent delivery platforms.


Asunto(s)
Terapia por Captura de Neutrón de Boro , Vesículas Extracelulares , Terapia por Captura de Neutrón de Boro/métodos , Animales , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Ratones , Humanos , Boranos/química , Boro/química , Compuestos de Boro/química , Compuestos de Boro/farmacología , Línea Celular Tumoral , Portadores de Fármacos/química , Ratones Desnudos , Ratones Endogámicos BALB C
2.
Molecules ; 29(16)2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39202996

RESUMEN

The field of carborane research has witnessed continuous development, leading to the construction and development of a diverse range of crystalline porous materials for various applications. Moreover, innovative synthetic approaches are expanding in this field. Since the first report of carborane-based crystalline porous materials (CCPMs) in 2007, the synthesis of carborane ligands, particularly through innovative methods, has consistently posed a significant challenge in discovering new structures of CCPMs. This paper provides a comprehensive summary of recent advances in various synthetic approaches for CCPMs, along with their applications in different domains. The primary challenges and future opportunities are expected to stimulate further multidisciplinary development in the field of CCPMs.

3.
Front Chem ; 12: 1389694, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39148666

RESUMEN

The continuous preparation scheme EPO-Poly-indol-nido-carborane (E-P-INDOLCAB), L100-55-Poly-indol-nido-carborane (L-P-INDOLCAB), RS-Poly-indol-nido-carborane (S-P-INDOLCAB), and RL-Poly-indol-nido-carborane (R-P-INDOLCAB) were used to prepare the four types of acrylic resin-coated nido-carborane indole fluorescent polymers. After testing their spectral properties and the fluorescence stability curve trend at various acidic pH values (3.4 and 5.5, respectively), L-P-INDOLCAB and S-P-INDOLCAB were determined to be the best polymers. The stable states of the two polymers and the dispersion of the nanoparticles on the system's surface during Atomic Force Microscope (AFM) test are shown by the zeta potentials of -23 and -42 mV. The dispersion of nanoparticles on the system's surface and the stable condition of the two polymers were examined using zeta potential and atomic force microscopy (AFM). Transmission electron microscopy (TEM) can also confirm these findings, showing that the acrylic resin securely encases the interior to form an eyeball. Both polymers' biocompatibility with HELA cells was enhanced in cell imaging, closely enclosing the target cells. The two complexes displayed strong inhibitory effects on PC-3 and HeLa cells when the concentration was 20 ug/mL, as validated by subsequent cell proliferation toxicity studies.

4.
Front Chem ; 12: 1402640, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39036658

RESUMEN

The water-soluble nido-carborane was prepared by alkali treatment of o-carborane. A polymer PInd containing a polyindole structure was synthesized and employed to label the modified o-carborane. Subsequently, four polymeric nanomaterials were synthesized with the objective of encapsulating them in order to enhance its bioavailability. The experimental results showed that the fluorescent complex encapsulated by the pH-sensitive polymer A had the best UV absorption and fluorescence intensity, and thus A-PInd-C was chosen for subsequent experiments. The Transmission electron microscopy images revealed that the compounds exhibited a rounded internal morphology, with the layers exhibiting a tightly stacked arrangement. The AFM imaging revealed that the surface of the sample exhibited a relatively uniform and smooth appearance. In vitro release experiments conducted under acidic conditions demonstrated that A-PInd-C was released in a predominantly linear manner, with a maximum release rate of 80% observed within 48 h. Cellular imaging experiments showed that the compound could enter HeLa and HCT-116 cells and was mainly distributed around the nucleus, especially in the acidic environment. The results of the cell proliferation toxicity experiments demonstrated that A-PInd-C exhibited inhibitory effects on HeLa, PC-3 and L02 cells. Among these, the inhibitory effect on PC-3 cells was the most pronounced, reaching up to 70%. In conclusion, this paper solves the problem of poor bioavailability of carborane by improving the boron containing compounds and also makes the system have potential for Boron neutron capture therapy.

5.
Pharmaceutics ; 16(6)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38931918

RESUMEN

Cancer is one of the leading causes of global mortality, and its incidence is increasing annually. Neutron capture therapy (NCT) is a unique anticancer modality capable of selectively eliminating tumor cells within normal tissues. The development of accelerator-based, clinically mountable neutron sources has stimulated a worldwide search for new, more effective compounds for NCT. We synthesized magnetic iron oxide nanoparticles (NPs) that concurrently incorporate boron and gadolinium, potentially enhancing the effectiveness of NCT. These magnetic nanoparticles underwent sequential modifications through silane polycondensation and allylamine graft polymerization, enabling the creation of functional amino groups on their surface. Characterization was performed using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy dispersive X-ray (EDX), dynamic light scattering (DLS), thermal gravimetric analysis (TGA), and transmission electron microscopy (TEM). ICP-AES measurements indicated that boron (B) content in the NPs reached 3.56 ppm/mg, while gadolinium (Gd) averaged 0.26 ppm/mg. Gadolinium desorption was observed within 4 h, with a peak rate of 61.74%. The biocompatibility of the NPs was confirmed through their relatively low cytotoxicity and sufficient cellular tolerability. Using NPs at non-toxic concentrations, we obtained B accumulation of up to 5.724 × 1010 atoms per cell, sufficient for successful NCT. Although limited by its content in the NP composition, the Gd amount may also contribute to NCT along with its diagnostic properties. Further development of the NPs is ongoing, focusing on increasing the boron and gadolinium content and creating active tumor targeting.

6.
Chemistry ; 30(41): e202401704, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38758081

RESUMEN

We synthesized 2-(1-1,2-dicarbadodecaboranyl(12))-6,6,12,12-tetramethyl-7,8,11,12-tetrahydro-6H,10H-phenaleno[1,9-fg]pyrido[3,2,1-ij]quinoline (4), a julolidine-like pyrenyl-o-carborane, with pyrene substituted at the 2,7-positions on the HOMO/LUMO nodal plane. Using solid state molecular structures, photophysical data, cyclic voltammetry, DFT and LR-TDDFT calculations, we compare o-carborane and B(Mes)2 (Mes=2,4,6-Me3C6H2) as acceptor groups. Whereas the π-acceptor strength of B(Mes)2 is sufficient to drop the pyrene LUMO+1 below the LUMO, the carborane does not do this. We confirm the π-donor strength of the julolidine-like moiety, however, which raises the pyrene HOMO-1 above the HOMO. In contrast to the analogous pyrene-2-yl-o-carborane, 2-(1-1,2-dicarbadodecaboranyl(12))-pyrene VI, which exhibits dual fluorescence, because the rate of internal conversion between locally-excited (LE) and charge transfer (CT) (from the pyrene to the carborane) states is faster than the radiative decay rate, leading to a thermodynamic equilibrium between the 2 states, 4 shows only single fluorescence, as the CT state involving the carborane as the acceptor moiety in not kinetically accessible, so a more localized CT emission involving the julolidine-like pyrene moiety is observed.

7.
Appl Radiat Isot ; 209: 111330, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38657372

RESUMEN

Boron neutron capture therapy (BNCT) has received extensive attention as an advanced binary radiotherapy method. However, BNCT still faces poor selectivity of boron agent and is insufficient boron content in tumor tissues. To improve the tumor-targeted ability and boron content, this research aims to design, synthesize and preliminary evaluate a new borane agent Carborane-FAPI, which coupling the o-carborane to the compound skeleton of a mature fibroblast activating protein (FAP) inhibitor (FAPI). FAP is a tumor-associated antigen. FAP expressed lowly in normal organs and highly expressed in tumors, so it is a potential target for diagnosis and treatment. Boronophenylalanine (BPA) is the most widely investigated BNCT drug in present. Compared with BPA, the boron content of a single molecule is increased and drug targeting is enhanced. The results show that Carboaren-FAPI has low toxicity to normal cells, and selective enrichment in tumor tissues. It is a promising boron drug that has the potential to be used in BNCT.


Asunto(s)
Boranos , Terapia por Captura de Neutrón de Boro , Boro , Terapia por Captura de Neutrón de Boro/métodos , Humanos , Animales , Ratones , Proteínas de la Membrana/metabolismo , Endopeptidasas , Serina Endopeptidasas/metabolismo , Gelatinasas/metabolismo , Compuestos de Boro/uso terapéutico , Compuestos de Boro/farmacocinética , Línea Celular Tumoral
8.
Chemistry ; 30(35): e202401246, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38630894

RESUMEN

A thorough understanding of the internal conversion process between excited states is important for the designing of ideal multiple-emissive materials. However, it is hard to experimentally measure both the energy barriers and gaps between the excited states of a compound. For a long time, it is dubious if what was measured is the energy gap or barrier between two excited states. In this paper, we designed 1-(pyren-2'-yl)-9,12-di(p-tolyl)-o-carborane (2), which shows dual-emission in solution. Temperature-dependent fluorescence measurements show that the two emission bands in hexane are corresponding to two different excited states. The ratio of the emission bands is controlled by thermodynamics at higher temperatures and by kinetics at lower temperatures. Thus, the energy barrier and energy gaps between the two excited states of 2 can be experimentally estimated.

9.
Chemistry ; 30(34): e202401154, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38627216

RESUMEN

A method was developed to link two or three o-carborane moieties to form a series of carboranyl dithioester bridging ligands via in situ substitution of haloalkanes by tetraphenylphosphonium carboranyldithiocarboxylates. Based on these ligands, direct B-H activation without the assistance of Ag(I) and alkali was successfully achieved with half-sandwich Ir(III) substrate [Cp*IrCl2]2 to yield corresponding bimetallic or trimetallic complexes. Single crystal structure analyses of the B-H activated complexes and corresponding SnCl2-inserted derivatives confirm the selective B(3)-H activation in these complexes.

10.
Angew Chem Int Ed Engl ; 63(19): e202402363, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38497318

RESUMEN

Crystalline frameworks represent a cutting-edge frontier in material science, and recently, there has been a surge of interest in energetic crystalline frameworks. However, the well-established porosity often leads to diminished output energy, necessitating a novel approach for performance enhancement. Thiol-yne coupling, a versatile metal-free click reaction, has been underutilized in crystalline frameworks. As a proof of concept, we herein demonstrate the potential of this approach by introducing the energy-rich, size-matched, and reductive 1,2-dicarbadodecaborane-1-thiol (CB-SH) into an acetylene-functionalized framework, Zn(AIm)2, via thiol-yne click reaction. This innovative decoration strategy resulted in a remarkable 46.6 % increase in energy density, a six-fold reduction in ignition delay time (4 ms) with red fuming nitric acid as the oxidizer, and impressive enhancement of stability. Density functional theory calculations were employed to elucidate the mechanism by which CB-SH promotes hypergolic ignition. The thiol-yne click modification strategy presented here permits engineering of crystalline frameworks for the design of advanced energetic materials.

11.
Adv Sci (Weinh) ; 11(11): e2309016, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38233207

RESUMEN

A novel class of o-carboranyl luminophores, 2CB-BuDABNA (1) and 3CB-BuDABNA (2) is reported, in which o-carborane moieties are incorporated at the periphery of the B,N-doped multi-resonance thermally activated delayed fluorescence (MR-TADF) core. Both compounds maintain the inherent local emission characteristics of their MR-emitting core, exhibiting intense MR-TADF with high photoluminescence quantum yields in toluene and rigid states. In contrast, the presence of the dark lowest-energy charge transfer state, induced by cage rotation in THF, is suggested to be responsible for emission quenching in a polar solvent. Despite the different arrangement of the cage on the DABNA core, both 1 and 2 show red-shifted emissions compared to the parent compound BuDABNA (3). By utilizing 1 as the emitter, high-efficiency blue organic light-emitting diodes (OLEDs) are achieved with a remarkable maximum external quantum efficiency of 25%, representing the highest reported efficiency for OLEDs employing an o-carboranyl luminophore as the emitter.

12.
Chempluschem ; 89(6): e202300759, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38263504

RESUMEN

This study proposes an innovative strategy to enhance the pharmacophore model of antimicrobial bismuth thiolato complex drugs by substituting hydrocarbon ligand structures with boron clusters, particularly icosahedral closo-dicarbadodecaborane (C2B10H12, carboranes). The hetero- and homoleptic mercaptocarborane complexes BiPh2L (1) and BiL3 (2) (L=9-S-1,2-C2B10H11) were prepared from 9-mercaptocarborane (HL) and triphenylbismuth. Comprehensive characterization using NMR, IR, MS, and XRD techniques confirmed their successful synthesis. Evaluation of antimicrobial activity in a liquid broth microdilution assay demonstrated micromolar to submicromolar minimum inhibitory concentrations (MIC) suggesting high effectiveness against S. aureus and limited efficacy against E. coli. This study highlights the potential of boron-containing bismuth complexes as promising antimicrobial agents, especially targeting Gram-positive bacteria, thus contributing to the advancement of novel therapeutic approaches.


Asunto(s)
Antibacterianos , Bismuto , Escherichia coli , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus , Bismuto/química , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Escherichia coli/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Diseño de Fármacos , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Complejos de Coordinación/síntesis química , Boranos/química , Boranos/farmacología , Compuestos de Sulfhidrilo/química , Estructura Molecular , Relación Estructura-Actividad , Compuestos de Boro/química , Compuestos de Boro/farmacología , Humanos
13.
Mol Oncol ; 18(2): 280-290, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37727134

RESUMEN

Success of chemotherapy is often hampered by multidrug resistance. One mechanism for drug resistance is the elimination of anticancer drugs through drug transporters, such as breast cancer resistance protein (BCRP; also known as ABCG2), and causes a poor 5-year survival rate of human patients. Co-treatment of chemotherapeutics and natural compounds, such as baicalein, is used to prevent chemotherapeutic resistance but is limited by rapid metabolism. Boron-based clusters as meta-carborane are very promising phenyl mimetics to increase target affinity; we therefore investigated the replacement of a phenyl ring in baicalein by a meta-carborane to improve its affinity towards the human ABCG2 efflux transporter. Baicalein strongly inhibited the ABCG2-mediated efflux and caused a fivefold increase in mitoxantrone cytotoxicity. Whereas the baicalein derivative 5,6,7-trimethoxyflavone inhibited ABCG2 efflux activity in a concentration of 5 µm without reversing mitoxantrone resistance, its carborane analogue 5,6,7-trimethoxyborcalein significantly enhanced the inhibitory effects in nanomolar ranges (0.1 µm) and caused a stronger increase in mitoxantrone toxicity reaching similar values as Ko143, a potent ABCG2 inhibitor. Overall, in silico docking and in vitro studies demonstrated that the modification of baicalein with meta-carborane and three methoxy substituents leads to an enhanced reversal of ABCG2-mediated drug resistance. Thus, this seems to be a promising basis for the development of efficient ABCG2 inhibitors.


Asunto(s)
Antineoplásicos , Flavanonas , Mitoxantrona , Humanos , Mitoxantrona/farmacología , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Resistencia a Antineoplásicos , Proteínas de Neoplasias/metabolismo , Antineoplásicos/farmacología
14.
Bioorg Chem ; 143: 106976, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38000350

RESUMEN

Over the last decades, the medicinal chemistry of boron-based compounds has been extensively explored, designing valuable small molecule drugs to tackle diseases and conditions, such as cancer, infections, inflammatory and neurological disorders. Notably, boron has proven to also be a valuable element for the development of inhibitors of the metalloenzymes carbonic anhydrases (CAs), a class of drug targets with significant potential in medicinal chemistry. Incorporating boron into carbonic anhydrase inhibitors (CAIs) can modulate the ligand ability to recognize the target and/or influence selectivity towards different CA isoforms, using the tail approach and boron-based tails. The electron-deficient nature of boron and its associated properties have also led to the discovery of novel zinc-binding CAIs, such as boronic acids and the benzoxaboroles, capable of inhibiting the CAs upon a Lewis acid-base mechanism of action. The present manuscript reviews the state-of-the-art of boron-based CAIs. As research in the applications of boron compounds in medicinal chemistry continues, it is anticipated that new boron-based CAIs will soon expand the current array of such compounds. However, further research is imperative to fully unlock the potential of boron-based CAIs and to advance them towards clinical applications.


Asunto(s)
Anhidrasas Carbónicas , Neoplasias , Humanos , Inhibidores de Anhidrasa Carbónica/farmacología , Inhibidores de Anhidrasa Carbónica/química , Boro/farmacología , Anhidrasas Carbónicas/metabolismo , Isoformas de Proteínas , Compuestos de Boro , Relación Estructura-Actividad
15.
Chemistry ; 30(11): e202303695, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38085103

RESUMEN

Strained compounds constitute a highly topical area of research in chemistry. Borirene and borirane both feature a BC2 three-membered ring. They can be viewed as the structural analogues of cyclopropane and cyclopropene, where a CH2 unit of the carbonaceous counterparts is replaced with BH, respectively. Indeed, this structural variation introduces numerous intriguing aspects. For instance, borirane and borirene are both Lewis acidic due to the presence of a tricoordinate borane center. In addition, borirene is 2π aromatic according to Hückel's rule. In addition to their ability to form adducts with Lewis bases and the capacity of borirenes to act as ligands in coordination with metals, both borirenes and boriranes exhibit ring-opening reactivity due to the considerable ring strain. Under specific conditions, coordinated boriranes can even cleave two BC bonds to serve as formal borylene sources (although the reaction mechanisms are quite complex). On the other hand, recent successful syntheses of benzoborienes and their carborane-based three-dimensional analogues (also referred to as carborane-fused boriranes) have introduced novel perspectives to this field. For instance, they display excellent ring-expanding reactivity, possibly attributed to the boosted ring strain arising from the fusion of borirenes with benzene and boriranes with o-carborane. Importantly, their applications as valuable "BC2 " synthons have become increasingly evident along with the newly disclosed reactivity. Additionally, the boosted Lewis acidity of carborane-fused boriranes, thanks to the potent electron-withdrawing effect of o-carborane, combined with their readiness for ring enlargement, makes them promising candidates as electron-accepting building blocks in the construction of chemically responsive luminescent materials. This review provides a summary of the synthesis and reactivity of borirene and borirane derivatives, with the aim of encouraging the design of new borierene- and borirane-based molecules and inspiring further exploration of their potential applications.

16.
ChemMedChem ; 19(2): e202300506, 2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-38012078

RESUMEN

Multidrug resistance is a major challenge in clinical cancer therapy. In particular, overexpression of certain ATP-binding cassette (ABC) transporter proteins, like the efflux transporter ABCG2, also known as breast cancer resistance protein (BCRP), has been associated with the development of resistance to applied chemotherapeutic agents in cancer therapies, and therefore targeted inhibition of BCRP-mediated transport might lead to reversal of this (multidrug) resistance (MDR). In a previous study, we have described the introduction of a boron-carbon cluster, namely closo-dicarbadodecaborane or carborane, as an inorganic pharmacophore into a polymethoxylated 2-phenylquinazolin-4-amine backbone. In this work, the scope was extended to the corresponding amide derivatives. As most of the amide derivatives suffered from poor solubility, only the amide derivative QCe and the two amine derivatives DMQCc and DMQCd were further investigated. Carboranes are often considered as sterically demanding phenyl mimetics or isosteres. Therefore, the organic phenyl and sterically demanding adamantyl analogues of the most promising carborane derivatives were also investigated. The studies showed that the previously described DMQCd, a penta-methoxylated N-carboranyl-2-phenylquinazolin-4-amine, was by far superior to its organic analogues in terms of cytotoxicity, inhibition of the human ABCG2 transporter, as well as the ability to reverse BCRP-mediated mitoxantrone resistance in MDCKII-hABCG2 and HT29 colon cancer cells. Our results indicate that DMQCd is a promising candidate for further in vitro as well as in vivo studies in combination therapy for ABCG2-overexpressing cancers.


Asunto(s)
Antineoplásicos , Humanos , Antineoplásicos/farmacología , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Resistencia a Antineoplásicos , Proteínas de Neoplasias/metabolismo , Transportadoras de Casetes de Unión a ATP/farmacología , Amidas/farmacología , Aminas/farmacología , Línea Celular Tumoral
17.
Pharmaceuticals (Basel) ; 16(11)2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-38004447

RESUMEN

The ABCG2 transporter protein, as part of several known mechanisms involved in multidrug resistance, has the ability to transport a broad spectrum of substrates out of the cell and is, therefore, considered as a potential target to improve cancer therapies or as an approach to combat drug resistance in cancer. We have previously reported carborane-functionalized quinazoline derivatives as potent inhibitors of human ABCG2 which effectively reversed breast cancer resistance protein (BCRP)-mediated mitoxantrone resistance. In this work, we present the evaluation of our most promising carboranyl BCRP inhibitors regarding their toxicity towards ABCG2-expressing cancer cell lines (MCF-7, doxorubicin-resistant MCF-7 or MCF-7 Doxo, HT29, and SW480) and, consequently, with the co-administration of an inhibitor and therapeutic agent, their ability to increase the efficacy of therapeutics with the successful inhibition of ABCG2. The results obtained revealed synergistic effects of several inhibitors in combination with doxorubicin or cisplatin. Compounds DMQCa, DMQCc, and DMQCd showed a decrease in IC50 value in ABCB1- and ABCG2-expressing SW480 cells, suggesting a possible targeting of both transporters. In an HT29 cell line, with the highest expression of ABCG2 among the tested cell lines, using co-treatment of doxorubicin and DMQCd, the effective inhibitory concentration of the antineoplastic agent could be reduced by half. Interestingly, co-treatment of compound QCe with cisplatin, which is not an ABCG2 substrate, showed synergistic effects in MCF-7 Doxo and HT29 cells (IC50 values halved or reduced by 20%, respectively). However, a literature-known upregulation of cisplatin-effluxing ABC transporters and their effective inhibition by the carborane derivatives emerges as a possible reason.

18.
Int J Mol Sci ; 24(20)2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37894752

RESUMEN

A series of C- and B-substituted nido-carborane derivatives with a pendant pyridyl group was prepared. The synthesized compounds were used as ligands in the complexation reactions with bis(triphenylphosphine)nickel(II) and palladium(II) chlorides to give six new metallacomplexes with unusual η5:κ1(N)-coordination of the metal center. The single crystal structures of 1-(NC5H4-2'-S)-1,2-C2B10H11, 1-(NC5H4-2'-CH2S)-1,2-C2B10H11, Cs [7-(NC5H4-2'-CH2S)-7,8-C2B9H11] closo- and nido-carboranes and 3-Ph3P-3-(4(7)-NC5H4-2'-S)-closo-3,1,2-NiC2B9H10 and 3-Ph3P-3-(4(7)-NC5H4-2'-CH2S)-closo-3,1,2-NiC2B9H10 metallacarboranes were determined using single crystal X-ray diffraction.


Asunto(s)
Níquel , Paladio , Níquel/química , Paladio/química , Compuestos de Boro/química , Piridinas
19.
Curr Med Chem ; 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37818562

RESUMEN

Nucleosides containing carboranes are one of the most important boron delivery agents for boron neutron capture therapy, BNCT, which are good substrates of hTK1. The development of several nucleosides containing carboranes at early stages led to the discovery of the first generation of 3CTAs by incorporating a hydrocarbon spacer between the thymidine scaffold and carborane cluster and attaching dihydroxylpropyl group on the second carbon (C2) atom of the carborane cluster (e.g., N5 and N5-2OH). Phosphorylation rate, tumor cellular uptake, and retention have been evaluated in parallel to change the length of the tether arm of spacers in these compounds. Many attempts were reported and discussed to overcome the disadvantage of the first generation of 3CTAs by a) incorporating modified spacers between thymidine and carborane clusters, such as ethyleneoxide, polyhydroxyl, triazole, and tetrazole units, b) attaching hydrophilic groups at C2 of the carborane cluster, c) transforming lipophilic closo-carboranes to hydrophilic nidocarborane. The previous modifications represented the second generation of 3CTAs to improve the hydrogen bond formation with the hTK1 active site. Moreover, amino acid prodrugs were developed to enhance biological and physicochemical properties. The structure-activity relationship (SAR) of carboranyl thymidine analogues led to the roadmap for the development of the 3rd generation of the 3CTAs for BNCT.

20.
Chemistry ; 29(72): e202302486, 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-37792507

RESUMEN

Boron neutron capture therapy (BNCT) is a promising modality for cancer treatment because of its minimal invasiveness. To maximize the therapeutic benefits of BNCT, the development of efficient platforms for the delivery of boron agents is indispensable. Here, carborane-integrated immunoliposomes were prepared via an exchanging reaction to achieve HER-2-targeted BNCT. The conjugation of an anti-HER-2 antibody to carborane-integrated liposomes successfully endowed these liposomes with targeting properties toward HER-2-overexpressing human ovarian cancer cells (SK-OV3); the resulting BNCT activity toward SK-OV3 cells obtained using the current immunoliposomal system was 14-fold that of the l-BPA/fructose complex, which is a clinically available boron agent. Moreover, the growth of spheroids treated with this system followed by thermal neutron irradiation was significantly suppressed compared with treatment with the l-BPA/fructose complex.


Asunto(s)
Boranos , Terapia por Captura de Neutrón de Boro , Humanos , Liposomas , Terapia por Captura de Neutrón de Boro/métodos , Boro , Compuestos de Boro , Fructosa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA