Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Mater ; : e2409292, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39221668

RESUMEN

Gas-evolving reactions (GERs) are important in many electrochemical energy conversion technologies and chemical industries. The operation of GERs at high current densities is critical for their industrial implementation but remains challenging as it poses stringent requirements on the electrodes in terms of reaction kinetics, mass transfer, and electron transport. Here the general and rational design of self-standing carbon electrodes with vertically aligned porous channels, appropriate pore size distribution, and high surface area as supports for loading a variety of catalytic species by facile electrodeposition are reported. These electrodes simultaneously possess high intrinsic activity, large numbers of active sites, and efficient transport highways for ions, gases, and electrons, resulting in significant performance improvements at high current densities in diverse GERs such as urea oxidation, hydrogen evolution, and oxygen evolution reactions, as well as overall urea/water electrolyzers. As an example, the carbon electrode decorated with Ni(OH)2 demonstrates a record-high current density of 1000 mA cm-2 at 1.360 V versus the reversible hydrogen electrode, largely outperforming the conventional nickel foam-based counterpart and the state-of-the-art electrodes.

2.
ADMET DMPK ; 12(3): 487-527, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39091901

RESUMEN

Background and purpose: The increase in diabetes cases has become a major concern in the healthcare sector, necessitating the development of efficient and minimal diagnostic methods. This study aims to provide a comprehensive examination of electrochemical biosensors for detecting diabetes mellitus biomarkers, with a special focus on the utilization of carbon-based electrodes. Review approach: A detailed analysis of electrochemical biosensors incorporating various carbon electrodes, including screen-printed carbon electrodes, glassy carbon electrodes, and carbon paste electrodes, is presented. The advantages of carbon-based electrodes in biosensor design are highlighted. The review covers the detection of several key diabetes biomarkers, such as glucose, glycated hemoglobin (HbA1c), glycated human serum albumin (GHSA), insulin, and novel biomarkers. Key results: Recent developments in electrochemical biosensor technology over the last decade are summarized, emphasizing their potential in clinical applications, particularly in point-of-care settings. The utilization of carbon-based electrodes in biosensors is shown to offer significant advantages, including enhanced sensitivity, selectivity, and cost-effectiveness. Conclusion: This review underscores the importance of carbon-based electrodes in the design of electrochemical biosensors and raises awareness for the detection of novel biomarkers for more specific and personalized diabetes mellitus cases. The advancements in this field highlight the potential of these biosensors in future clinical applications, especially in point-of-care diagnostics.

3.
Biomimetics (Basel) ; 9(7)2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39056867

RESUMEN

Sensitivity in the sub-nanomolar concentration region is required to determine important protein biomarkers, e.g., ferritin. As a prerequisite for high sensitivity, in this paper, the affinity of the functional monomer to the macromolecular target ferritin in solution was compared with the value for the respective molecularly imprinted polymer (MIP)-based electrodes, and the influence of various surface modifications of the electrode was investigated. The analytical performance of ferritin sensing was investigated using three different carbon electrodes (screen-printed carbon electrodes, single-walled-carbon-nanotube-modified screen-printed carbon electrodes, and glassy carbon electrodes) covered with a scopoletin-based MIP layer. Regardless of the electrode type, the template molecule ferritin was mixed with the functional monomer scopoletin, and electropolymerization was conducted using multistep amperometry. All stages of MIP preparation were followed by evaluating the diffusional permeability of the redox marker ferricyanide/ferrocyanide through the polymer layer by differential pulse voltammetry. The best results were obtained with glassy carbon electrodes. The MIP sensor responded up to 0.5 µM linearly with a Kd of 0.30 µM. Similar results were also obtained in solution upon the interaction of scopoletin and ferritin using fluorescence spectroscopy, resulting in the quenching of the scopoletin signal, with a calculated Kd of 0.81 µM. Moreover, the binding of 1 µM ferritin led to 49.6% suppression, whereas human serum albumin caused 8.6% suppression.

4.
Adv Mater ; 36(33): e2404561, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38884377

RESUMEN

Carbon-based perovskite solar cells (C-PSCs) have the advantages of low-cost and high-stability, but their photovoltaic performance is limited by severe defect-induced recombination and low hole extraction efficiency. 1D perovskite is proven to effectively passivate the defects on the perovskite surface, therefore reducing non-radiative recombination loss. However, the unsuitable energy level of most 1D perovskite renders an undesired downward band bending for 3D perovskite, resulting in a high hole extraction barrier and reduced hole extraction efficiency. Therefore, rational design and selection of 1D perovskites as the modifiers are essential in balancing defect passivation and hole extraction. In this work, based on simulation calculations, thiocholine iodide (TchI) is selected to prepare 1D perovskite with high work function and then constructs TchPbI3/CsPbI3 1D/3D perovskite heterojunction. Experimental results show that this strategy eliminates the hole extraction barrier at the perovskite/carbon interface, which improves the hole extraction efficiency of corresponding devices. Meanwhile, the strong interaction between the thiol group and Pb suppresses defect-induced recombination effectively and improves the stability of CsPbI3. The assembled C-PSCs exhibit a champion efficiency of 19.08% and a certified efficiency of 18.7%. To the best of the knowledge, this is a new efficiency record for inorganic C-PSCs.

5.
Adv Mater ; 36(26): e2312340, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38578242

RESUMEN

The advancement of active electrode materials is essential to meet the demand for multifaceted soft robotic interactions. In this study, a new type of porous carbonaceous sphere (PCS) for a multimodal soft actuator capable of both magnetoactive and electro-ionic responses is reported. The PCS, derived from the simultaneous oxidative and reductive breakdown of specially designed cobalt-based metal-organic frameworks (Co-MOFs) with varying metal-to-ligand ratios, exhibits a high specific surface area of 529 m2 g-1 and a saturated magnetization of 142.7 Am2 kg-1. The size of the PCS can be controlled through the Ostwald ripening mechanism, while the porous structure can be regulated by adjusting the metal-to-ligand mol ratio. Its exceptional compatibility with poly(3,4-ethylene-dioxythiophene)-poly(styrenesulfonate) enables the creation of uniform electrode, crucial for producing soft actuators that work in both magnetic and electrical fields. Operated at an ultralow voltage of 1 V, the PCS-based actuator generates a blocking force of 47.5 mN and exhibits significant bending deflection even at an oscillation frequency of 10 Hz. Employing this simultaneous multimodal actuation ensures the dynamic and complex motions of a balancing bird robot and a dynamic eagle robot. This advancement marks a significant step toward the realization of more dynamic and versatile soft robotic systems.

6.
Mikrochim Acta ; 191(4): 208, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38499898

RESUMEN

The identification and correction of negative factors, such as 4-ethylphenol and ethanethiol, is important to comply with food safety regulations and avoid economic losses to wineries. A simple amperometric measurement procedure that facilitates the simultaneous quantification of both compounds in the gas phase has been developed using fullerene and cobalt (II) phthalocyanine-modified dual screen-printed electrodes coated with a room temperature ionic liquid-based gel polymer electrolyte. The replacement of the typical aqueous supporting electrolyte by low-volatility ones improves both operational and storage lifetime. Under the optimum conditions of the experimental variables, Britton Robinson buffer pH 5 and applied potentials of + 0.86 V and + 0.40 V for each working electrode (vs. Ag ref. electrode), reproducibility values of 7.6% (n = 3) for 4-ethylphenol and 6.6% (n = 3) for ethanethiol were obtained, as well as capability of detection values of 23.8 µg/L and decision limits of 1.3 µg/L and 9.2 µg/L (α = ß = 0.05), respectively. These dual electrochemical devices have successfully been applied to the headspace detection of both compounds in white and red wines, showing their potential to be routinely used for rapid analysis control in wineries.

7.
Talanta ; 272: 125761, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38364564

RESUMEN

The biggest allure of heterogeneous electro-Fenton (HEF) processes largely fails on its high efficiency for the degradation of a plethora of hazardous compounds present in water, but still challenging to search for good and cost-effective electrocatalyst. In this work, carbon black (CB) and oxidised carbon black (CBox) materials were investigated as cathodes in the electrochemical production of hydrogen peroxide involved in HEF reaction for the degradation of 2-phenylphenol (2PP) as a target pollutant. The electrodes were fabricated by employing carbon cloth as support, and the highest H2O2 production yields were obtained for the CBox, pointing out the beneficial effect of the hydrophilic character of the electrode and oxygen-type functionalization of the carbonaceous surface. HEF degradation of 2PP was explored at -0.7 V vs. Ag/AgCl exhibiting the best conversion rates and degradation grade (total organic carbon) for the CBox-based cathode. In addition, the incorporation of an electrochemical sensor of 2PP in line with the HEF reactor was accomplished by the use of screen-printed electrodes (SPE) in order to monitor the pollutant degradation. The electrochemical sensor performance was evaluated from the oxidation of 2PP in the presence of Fe2+ ions by using square wave voltammetry (SWV) technique. The best electrochemical sensor performance was based on SPE modified with Meldola Blue showing a high sensitivity, low detection limit (0.12 ppm) and wide linear range (0.5-21 ppm) with good reproducibility (RSD 2.3 %). The all-in-one electrochemical station has been successfully tested for the degradation and quantification of 2PP, obtaining good recoveries analysing spiked waters from different water matrices origins.

8.
Small Methods ; : e2301531, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38308413

RESUMEN

Hole-transporting layer-free carbon-based perovskite solar cells (HTL-free C-PSCs) hold great promise for photovoltaic applications due to their low cost and outstanding stability. However, the low power conversion efficiency (PCE) of HTL-free C-PSCs mainly results from grain boundaries (GBs). Here, epitaxial growth is proposed to rationally design a hybrid nanostructure of PbI2 nanosheets/perovskite with the desired photovoltaic properties. A post-treatment technique using tri(2,2,2-trifluoromethyl) phosphate (TFEP) to induce in situ epitaxial growth of PbI2 nanosheets at the GBs of perovskite films realizes high-performance HTL-free C-PSCs. The structure model and high-resolution transmission electron microscope unravel the epitaxial growth mechanism. The epitaxial growth of oriented PbI2 nanosheets generates the PbI2 /perovskite heterojunction, which not only passivates defects but forms type-I band alignment, avoiding carrier loss. Additionally, Fourier-transform infrared spectroscopy, 31 P NMR, and 1 H NMR spectra reveal the passivation effect and hydrogen bonding interaction between TFEP and perovskite. As a result, the VOC is remarkably boosted from 1.04 to 1.10 V, leading to a substantial gain in PCE from 14.97% to 17.78%. In addition, the unencapsulated PSC maintains the initial PCE of 80.1% for 1440 h under air ambient of 40% RH. The work offers a fresh perspective on the rational design of high-performance HTL-free C-PSCs.

9.
Mikrochim Acta ; 191(2): 112, 2024 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-38286966

RESUMEN

For the first time, a tumour hypoxia marker detection has been developed using two-dimensional layered composite modified electrodes in biological and environmental samples. The concept of TaB2 and V4C3-based MXene composite materials is not reported hitherto using ball-milling and thermal methods and it remains the potentiality of the present work. The successful formation is confirmed through various characterisation techniques like X-ray crystallography, scanning electron microscopy photoelectron, and impedance spectroscopy. A reliable and repeatable electrochemical sensor based on TaB2@V4C3/SPCE was developed for quick and extremely sensitive detection of pimonidazole by various electroanalytical methods. It has been shown that the modified electrode intensifies the reduction peak current and causes a decrease in the potential for reduction, in comparison with the bare electrode. The proposed sensor for pimonidazole reduction has strong electrocatalytic activity and high sensitivity, as demonstrated by the cyclic voltammetry approach. Under the optimal experimental circumstances, differential pulse voltammetry techniques were utilised for generating the wide linear range (0.02 to 928.51 µM) with a detection limit of 0.0072 µM. The resultant data demonstrates that TaB2@V4C3/SPCE nano-sensor exhibits excellent stability, reliability, and repeatability in the determination of pimonidazole. Additionally, the suggested sensor was successfully used to determine the presence of pimonidazole in several real samples, such as human blood serum, urine, water, and drugs.


Asunto(s)
Carbono , Nitroimidazoles , Tantalio , Humanos , Carbono/química , Vanadio , Reproducibilidad de los Resultados , Límite de Detección , Electrodos , Compuestos de Boro
10.
Talanta ; 270: 125603, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38194860

RESUMEN

The present work introduces two novel approaches to fabricate simple and cost-effective pH and temperature probes. Sinusoidal voltage methodologies were employed to electrodeposit polyaniline (PANI) at different growth times (10-20 min) on the surface of an affordable Sonogel-Carbon electrode to conform a robust pH sensor. The presence of PANI and its phases were corroborated by electrochemical means. The sensibility, reversibility and selectivity of the produced sensor were very adequate to apply it in physiological samples. In this regard, the proposed sensor was evaluated in artificial blood serum as well as untreated plasma samples obtaining outstanding results in comparison with a gold reference technique (error <2 %). In addition, a new composite sonogel material, intrinsically modified with multiwalled carbon nanotubes, was attached on top of an electrode couple to one-step fabricate a new temperature probe, relating resistance of the probe with the surroundings temperature. In this case, an optical microscopy characterization was performed to study the sturdiness of the layer. Remarkably, suitable results in terms of sensitivity and selectivity were obtained. The probes were assessed in artificial and untreated plasma samples as well, with the corresponding validation step (error <1 %) by using a commercial temperature probe.

11.
Nanomaterials (Basel) ; 14(2)2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38251144

RESUMEN

The persistence and potential toxicity of emergent pollutants pose significant threats to biodiversity and human health, emphasizing the need for sensors capable of detecting these pollutants at extremely low concentrations before treatment. This study focuses on the development of glassy carbon electrodes (GCEs) modified by films of poly-tris(4-(4-(carbazol-9-yl)phenyl)silanol (PTPTCzSiOH), poly-4,4'-Di(carbazol-9-yl)-1,1'-biphenyl (PCBP), and poly-1,3,5-tri(carbazol-9-yl)benzene (PTCB) for the detection of metronidazole (MNZ) in aqueous media. The films were characterized using electrochemical, microscopy, and spectroscopy techniques, including scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Monomers were electropolymerized through cyclic voltammetry and chronoamperometry techniques. Computational methods at the B3LYP/def2-TZVP level were employed to investigate the structural and electrochemical properties of the monomers. The electrochemical detection of MNZ utilized the linear sweep voltammetry technique. Surface characterization through SEM and XPS confirmed the proper electrodeposition of polymer films. Notably, MPN-GCEs exhibited higher detection signals compared to bare GCEs up to 3.6 times in the case of PTPTCzSiOH-GCEs. This theoretical study provides insights into the structural, chemical, and electronic properties of the polymers. The findings suggest that polymer-modified GCEs hold promise as candidates for the development of electrochemical sensors.

12.
Small Methods ; 8(1): e2300716, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37732360

RESUMEN

"Perovskite/carbon" interface is a bottle-neck for hole-conductor-free, carbon-electrode basing perovskite solar cells due to the energy mismatch and concentrated defects. In this article, in-situ healing strategy is proposed by doping octylammonium iodide into carbon paste that used to prepare carbon-electrode on perovskite layer. This strategy is found to strengthen interfacial contact and reduce interfacial defects on one hand, and slightly elevate the work function of the carbon-electrode on other hand. Due to this effect, charge extraction is accelerated, while recombination is obviously reduced. Accordingly, power conversion efficiency of the hole-conductor-free, planar perovskite solar cells is upgraded by ≈50%, or from 11.65 (± 1.59) % to 17.97 (± 0.32) % (AM1.5G, 100 mW cm-2 ). The optimized device shows efficiency of 19.42% and open-circuit voltage of 1.11 V. Meanwhile, moisture-stability is tested by keeping the unsealed devices in closed chamber with relative humidity of 85%. The "in-situ healing" strategy helps to obtain T80 time of >450 h for the carbon-electrode basing devices, which is four times of the reference ones. Thus, a kind of "internal encapsulation effect" has also been reached. The "in situ healing" strategy facilitates the fabrication of efficient and stable hole-conductor-free devices basing on carbon-electrode.

13.
Mikrochim Acta ; 190(12): 461, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37926729

RESUMEN

Microfluidic cotton thread-based electroanalytical devices (µTEDs) are analytical systems with attractive features such as spontaneous passive flow, low cost, minimal waste production, and good sensitivity. Currently, sample injection in µTEDs is performed by hand using manual micropipettes, which have drawbacks such as inconstant speed and position, dependence of skilled analysts, and need of physical effort of operator during prolonged times, leading to poor reproducibility and risk of strain injury. As an alternative to these inconveniences, we propose, for the first time, the use of electronic micropipettes to carry out automated injections in µTEDs. This new approach avoids all disadvantages of manual injections, while also improving the performance, experience, and versatility of µTEDs. The platform developed here is composed by three 3D-printed electrodes (detector) attached to a 3D-printed platform containing an adjustable holder that keeps the electronic pipette in the same x/y/z position. As a proof-of-concept, both injection modes (manual and electronic) were compared using three model analytes (nitrite, paracetamol, and 5-hydroxytryptophan) on µTED with amperometric detection. As result, improved analytical performance (limits of detection between 2.5- and 5-fold lower) was obtained when using electronic injections, as well as better repeatability/reproducibility and higher analytical frequencies. In addition, the determination of paracetamol in urine samples suggested better precision and accuracy for automated injection. Thus, electronic injection is a great advance and changes the state-of-art of µTEDs, mainly considering the use of more modern and versatile electronic pipettes (wider range of pre-programmed modes), which can lead to the development of even more automated systems.

14.
Nanomaterials (Basel) ; 13(19)2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37836281

RESUMEN

Carbon-based perovskite solar cells (C-PSCs) have the impressive characteristics of good stability and potential commercialization. The insulating layers play crucial roles in charge modulation at the buried perovskite interface in mesoporous C-PSCs. In this work, the effects of three different tunnel oxide layers on the performance of air-processed C-PSCs are scrutinized to unveil the passivating quality. Devices with ZrO2-passivated TiO2 electron contacts exhibit higher power conversion efficiencies (PCEs) than their Al2O3 and SiO2 counterparts. The porous feature and robust chemical properties of ZrO2 ensure the high quality of the perovskite absorber, thus ensuring the high repeatability of our devices. An efficiency level of 14.96% puts our device among the state-of-the-art hole-conductor-free C-PSCs, and our unencapsulated device maintains 88.9% of its initial performance after 11,520 h (480 days) of ambient storage. These results demonstrate that the function of tunnel oxides at the perovskite/electron contact interface is important to manipulate the charge transfer dynamics that critically affect the performance and stability of C-PSCs.

15.
J Electrochem Soc ; 170(9)2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37807977

RESUMEN

Thermoplastic carbon electrodes (TPEs) are an alternative form of carbon composite electrodes that have shown excellent electrochemical performance with applications in biological sensing. However, little has been done to apply TPEs to environmental sensing, specifically heavy metal analysis. The work here focuses on lead analysis and based on their electrochemical properties, TPEs are expected to outperform other carbon composite materials; however, despite testing multiple formulations, TPEs showed inferior performance. Detailed electrode characterization was conducted to examine the cause for poor lead sensing behavior. X-Ray photoelectron spectroscopy (XPS) was used to analyze the surface functional groups, indicating that acidic and alkaline functional groups impact lead electrodeposition. Further, scanning electron microscopy (SEM) and electrochemical characterization demonstrated that both the binder and graphite can influence the surface morphology, electroactive area, and electron kinetics.

16.
ACS Appl Mater Interfaces ; 15(41): 48826-48837, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37812816

RESUMEN

Natural salinity gradients are a promising source of so-called "blue energy", a renewable energy source that utilizes the free energy of mixing for power generation. One promising blue energy technology that converts these salinity gradients directly into electricity is reverse electrodialysis (RED). Used at its full potential, it could provide a substantial portion of the world's electricity consumption. Previous theoretical and experimental works have been done on optimizing RED devices, with the latter often focusing on precious and expensive metal electrodes. However, in order to rationally design and apply RED devices, we need to investigate all related transport phenomena─especially the fluidics of salinity gradient mixing and the redox electrolyte at various concentrations, which can have complex intertwined effects─in a fully functioning and scalable system. Here, guided by fundamental electrochemical and fluid dynamics theories, we work with an iron-based redox electrolyte with carbon electrodes in a RED device with tunable microfluidic environments and study the fundamental effects of electrolyte concentration and flow rate on the potential-driven redox activity and power output. We focus on optimizing the net power output, which is the difference between the gross power output generated by the RED device and the pumping power input, needed for salinity gradient mixing and redox electrolyte reactions. We find through this holistic approach that the electrolyte concentration in the electrode rinse solution is crucial for increasing the electrical current, while the pumping power input depends nonlinearly on the membrane separation distance. Finally, from this understanding, we designed a five cell-pair (CP) RED device that achieved a net power density of 224 mW m-2 CP-1, a 60% improvement compared to the nonoptimized case. This study highlights the importance of the electrode rinse solution fluidics and composition when rationally designing RED devices based on scalable carbon-based electrodes.

17.
J Colloid Interface Sci ; 652(Pt B): 1356-1366, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37659305

RESUMEN

Sodium-ion hybrid capacitors (SIHCs) have attracted extensive interest due to their applications in sodium-ion batteries and capacitors, which have been considered expectable candidates for large-scale energy storage systems. The crucial issues for achieving high-performance SIHCs are the reaction kinetics imbalances between the slow Faradic battery-type anodes and fast non-Faradaic capacitive cathodes. Herein, we propose a simple self-template strategy to prepare kinetically well-matched porous framework dual-carbon electrodes for high-performance SIHCs, which stem from the single precursor, sodium ascorbate. The porous framework carbon (PFC) is obtained by direct calcination of sodium ascorbate followed by a washing process. The sodium-ion half cells with PFC anodes exhibit high reversible capacity and fast electrochemical kinetics for sodium storage. Moreover, the as-obtained PFC can be further converted to porous framework activated carbon (PFAC) with rich porosity and a high specific surface area, which displays high capacitive properties. By using kinetically well-matched battery-type PFC anodes and capacitive PFAC cathodes, dual-carbon SIHCs are successfully assembled, which can work well in 0-4 V. The optimal PFC//PFAC SIHC exhibits high energy density (101.6 Wh kg-1 at 200 W kg-1), power density (20 kW kg-1 at 51.1 Wh kg-1), and cyclic performance (71.8 % capacitance attenuation over 10,000 cycles).

18.
Mikrochim Acta ; 190(8): 312, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37470849

RESUMEN

The development of miniaturized, sustainable and eco-friendly analytical sensors with low production cost is a current trend worldwide. Within this idea, this work presents  the innovative use of masked stereolithography (MSLA) 3D-printed substrates for the easy fabrication of pencil-drawn electrochemical sensors (MSLA-3D-PDE). The use of a non-toxic material such as pencil (electrodes) together with a biodegradable 3D printing resin (substrate) allowed the production of devices that are quite cheap (ca. US$ 0.11 per sensor) and with low environmental impact. Compared to paper, which is the most used substrate for manufacturing pencil-drawn electrodes, the MSLA-3D-printed substrate has the advantages of not absorbing water (hydrophobicity) or becoming crinkled and weakened when in contact with solutions. These features provide more reproducible, reliable, stable, and long-lasting sensors. The MSLA-3D-PDE, in conjunction with the custom cell developed, showed excellent robustness and electrochemical performance similar to that observed of the glassy carbon electrode, without the need of any activation procedure. The analytical applicability of this platform was explored through the quantification of omeprazole in pharmaceuticals. A limit of detection (LOD) of 0.72 µmol L-1 was achieved, with a linear range of 10 to 200 µmol L-1. Analysis of real samples provided results that were highly concordant with those obtained by UV-Vis spectrophotometry (relative error ≤ 1.50%). In addition, the greenness of this approach was evaluated and confirmed by a quantitative methodology (Eco-Scale index). Thus, the MSLA-3D-PDE appears as a new and sustainable tool with great potential of use in analytical electrochemistry.

19.
Chemosphere ; 337: 139315, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37392799

RESUMEN

Since bisphenol A (BPA) and dimethyl bisphenol A (DM-BPA) are human endocrine disruptors (EDCs) with tiny potential differences (44 mV) and widespread applications, there is a lack of published reports on their simultaneous detection. Therefore, this study reports a novel electrochemical detection system capable of simultaneous direct detection of BPA and DM-BPA using screen-printed carbon electrodes (SPCE) as a sensing platform. To improve the electrochemical performance of the SPCE, the SPCE was modified by using a combination of Pt nanoparticles modified with single-walled carbon nanotubes (Pt@SWCNTs), MXene (Ti3C2), and graphene oxide (GO). In addition, the GO in Pt@SWCNTs-MXene-GO was reduced to reduced graphene oxide (rGO) by the action of electric field (-1.2 V), which significantly improved the electrochemical properties of the composites and effectively solved the problem of dispersion of the modified materials on the electrode surface. Under optimal experimental conditions, Pt@SWCNTs-Ti3C2-rGO/SPCE exhibited a suitable detection range (0.006-7.4 µmol L-1) and low detection limits (2.8 and 3 nmol L-1, S/N = 3) for the simultaneous detection of BPA (0.392 V vs. Ag/AgCl) and DM-BPA (0.436 V vs. Ag/AgCl)). Thus, this study provides new insights into detecting compounds with similar structures and slight potential differences. Finally, the developed sensor's reproducibility, stability, interference resistance and accuracy were demonstrated with satisfactory results.


Asunto(s)
Grafito , Nanotubos de Carbono , Humanos , Nanotubos de Carbono/química , Reproducibilidad de los Resultados , Grafito/química , Técnicas Electroquímicas/métodos , Electrodos
20.
ADMET DMPK ; 11(2): 151-173, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37325116

RESUMEN

Various applications of electrochemical sensors and biosensors have been reported in many fields. These include pharmaceuticals, drug detection, cancer detection, and analysis of toxic elements in tap water. Electrochemical sensors are characterised by their low cost, ease of manufacture, rapid analysis, small size and ability to detect multiple elements simultaneously. They also allow the reaction mechanisms of analytes, such as drugs, to be taken into account, giving a first indication of their fate in the body or their pharmaceutical preparation. Several materials are used in the construction of sensors, such as graphene, fullerene, carbon nanotubes, carbon graphite, glassy carbon, carbon clay, graphene oxide, reduced graphene oxide, and metals. This review covers the most recent progress in electrochemical sensors used to analyze drugs and metabolites in pharmaceutical and biological samples. We have highlighted carbon paste electrodes (CPE), glassy carbon electrodes (GCE), screen-printed carbon electrodes (SPCE) and reduced graphene oxide electrodes (rGOE). The sensitivity and analysis speed of electrochemical sensors can be improved by modifying them with conductive materials. Different materials used for modification have been reported and demonstrated, such as molecularly imprinted polymers, multiwalled carbon nanotubes, fullerene (C60), iron(III) nanoparticles (Fe3O4NP), and CuO micro-fragments (CuO MF). Manufacturing strategies and the detection limit of each sensor have been reported.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA