Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Membranes (Basel) ; 13(5)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37233531

RESUMEN

In the present work, Pebax-1657, a commercial multiblock copolymer (poly(ether-block-amide)), consisting of 40% rigid amide (PA6) groups and 60% flexible ether (PEO) linkages, was selected as the base polymer for preparing dense flat sheet mixed matrix membranes (MMMs) using the solution casting method. Carbon nanofillers, specifically, raw and treated (plasma and oxidized) multi-walled carbon nanotubes (MWCNTs) and graphene nanoplatelets (GNPs) were incorporated into the polymeric matrix in order to improve the gas-separation performance and polymer's structural properties. The developed membranes were characterized by means of SEM and FTIR, and their mechanical properties were also evaluated. Well-established models were employed in order to compare the experimental data with theoretical calculations concerning the tensile properties of MMMs. Most remarkably, the tensile strength of the mixed matrix membrane with oxidized GNPs was enhanced by 55.3% compared to the pure polymeric membrane, and its tensile modulus increased 3.2 times compared to the neat one. In addition, the effect of nanofiller type, structure and amount to real binary CO2/CH4 (10/90 vol.%) mixture separation performance was evaluated under elevated pressure conditions. A maximum CO2/CH4 separation factor of 21.9 was reached with CO2 permeability of 384 Barrer. Overall, MMMs exhibited enhanced gas permeabilities (up to fivefold values) without sacrificing gas selectivity compared to the corresponding pure polymeric membrane.

2.
Polymers (Basel) ; 15(2)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36679281

RESUMEN

Poly(ethylene 2,5-furandicarboxylate) (PEF) nanocomposites reinforced with Graphene nanoplatelets (GNPs) and Carbon nanotubes (CNTs) were in situ synthesized in this work. PEF is a biobased polyester with physical properties and is the sustainable counterpart of Polyethylene Terephthalate (PET). Its low crystallizability affects the processing of the material, limiting its use to packaging, films, and textile applications. The crystallization promotion and the reinforcement of PEF can lead to broadening its potential applications. Therefore, PEF nanocomposites reinforced with various loadings of GNPs, CNTs, and hybrids containing both fillers were prepared, and the effect of each filler on their structural characteristics was investigated by X-ray Diffraction (XRD), Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR), and X-Ray Photoelectron Spectroscopy (XPS). The morphology and structural properties of a hybrid PEF nanocomposite were evaluated by Transmission Electron Microscopy (TEM). The thermo-oxidative degradation, as well as lifetime predictions of PEF nanocomposites, in an ambient atmosphere, were studied using Thermogravimetric Analysis (TGA). Results showed that the fillers' incorporation in the PEF matrix induced changes in the lamellar thickness and increased crystallinity up to 27%. TEM analysis indicated the formation of large CNTs aggregates in the case of the hybrid PEF nanocomposite as a result of the ultrasonication process. Finally, the presence of CNTs caused the retardation of PEF's carbonization process. This led to a slightly longer lifetime under isothermal conditions at higher temperatures, while at ambient temperature the PEF nanocomposites' lifetime is shorter, compared to neat PEF.

3.
Polymers (Basel) ; 14(24)2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36559830

RESUMEN

We report measurements of linear and nonlinear elastic properties of polystyrene-based nanocomposites with six types of nanofillers, including single and binary mixtures of allotropic carbon nanoparticles. Composite samples were fabricated by the same technology and contained the same filler concentration (5% wt.), which allowed for a direct comparison of their properties. It was shown that the most significant variations of linear and nonlinear elastic properties occur in different nanocomposites. In particular, the most pronounced enhancements of linear elastic moduli (in about 50%) obtained in tensile and flexural tests and in dynamic mechanical analysis were recorded in the sample filled with spherical fullerene nanoparticles. While the most profound rise of absolute values of nonlinear elastic moduli (tens of times) was obtained in the sample filled with the mixture of carbon nanotubes and graphene. The observed tendencies demonstrated the synergistic effect of fillers of different dimensionality on the elastic properties of nanocomposites.

4.
Polymers (Basel) ; 14(23)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36501620

RESUMEN

The commercial viability of fuel cells for vehicle application has been examined in the context of lightweight material options, as well as in combination with improvements in fuel cell powertrain. Investigation into ultra-lightweight bipolar plates (BPs), the main component in terms of the weight effect, is of great importance to enhance energy efficiency. This research aims to fabricate a layered carbon fiber/epoxy composite structure for BPs. Two types of carbon fillers (COOH-MWCNT and COOH-GNP) reinforced with woven carbon fiber sheets (WCFS) have been utilized. The conceptual idea is to reduce molding cycle time by improving the structural, electrical, and mechanical properties of BPs. Reducing the reactive molding cycle time is required for commercial production possibility. The desired crosslink density of 97%, observed at reactive molding time, was reduced by 83% at 140 °C processing temperature. The as-fabricated BPs demonstrate excellent electrical conductivity and mechanical strength that achieved the DOE standard. Under actual fuel cell operation, the as-fabricated BPs show superior performance to commercial furan-based composite BPs in terms of the cell potential and maximum power. This research demonstrates the practical and straightforward way to produce high-performance and reliable BPs with a rapid production rate for actual PEMFC utilization.

5.
Nanomaterials (Basel) ; 12(4)2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35215037

RESUMEN

Nanomechanical definition of the properties of composite specimens based on polylactic acid (PLA) was made in the present study. Research activities with accent on biodegradable polymer nanocomposites have fundamental significance originated from the worldwide plastic waste pollution. To receive hybrid nanocomposites with high level of homogeneity, the low cost and environmentally friendly melt extrusion method has been applied. The role of graphene nanoplatelets (GNPs) and multiwall carbon nanotubes (MWCNTs) as reinforcing nanoparticles dispersed in the polymer matrix was thoroughly investigated. Quasi-static nanoindentation analysis was enriched by performance of accelerated property mapping and nanodynamic mechanical testing in order to fully describe the nanoscale surface homogeneity and stress relaxation behavior of the nanocomposite specimens. That novelty of the research approach had a well-marked contribution over the detection of the new samples' nanomechanical features as a function of the type of carbon nanofiller. Refined nanoscratch experiments uncovered the resistance of the materials against notches by means of measurement of the coefficient of friction and accurate estimation of the residual penetration depth.

6.
Polymers (Basel) ; 12(9)2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32942610

RESUMEN

The key to the preparation of polymer nanocomposites with new or improved properties resides in the homogeneous dispersion of the filler and in the efficient load transfer between components through strong filler/polymer interfacial interactions. This paper reports on the preparation of a series of nanocomposites of graphene and a polyolefin using different experimental approaches, with the final goal of obtaining multifunctional materials. A high-density polyethylene (HDPE) is employed as the matrix, while unmodified and chemically modified graphene fillers are used. By selecting the correct combination as well as the adequate preparation process, the nanocomposites display optimized thermal and mechanical properties, while also conferring good gas barrier properties and significant levels of electrical conductivity.

7.
Polymers (Basel) ; 12(6)2020 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-32560245

RESUMEN

In this work, hybrid filler systems consisting of multi-walled carbon nanotubes (MWCNTs) and nano carbon black (nCB) were incorporated by melt mixing in low-density polyethylene (LDPE). To hybrid systems a mixture of MWCNTs and nCB a mass ratio of 1:1 and 3:1 were used. The purpose was to study if the synergistic effects can be achieved on tensile strength and electrical and thermal conductivity. The dispersion state of carbon nanofillers in the LDPE matrix has been evaluated with scanning electron microscopy. The melting and crystallization behavior of all nanocomposites was not significantly influenced by the nanofillers. It was found that the embedding of both types of carbon nanofillers into the LDPE matrix caused an increase in the value of Young's modulus. The results of electrical and thermal conductivity were compared to LDPE nanocomposites containing only nCB or only MWCNTs presented in earlier work LDPE/MWCNTs. It was no synergistic effects of nCB in multi-walled CNTs and nCB hybrid nanocomposites regarding mechanical properties, electrical and thermal conductivity, and MWCNTs dispersion. Since LDPE/MWCNTs nanocomposites exhibit higher electrical conductivity than LDPE/MWCNTs + nCB or LDPE/nCB nanocomposites at the same nanofiller loading (wt.%), it confirms our earlier study that MWCNTs are a more efficient conductive nanofiller. The presence of MWCNTs and their concentration in hybrid nanocomposites was mainly responsible for the improvement of their thermal conductivity.

8.
Micromachines (Basel) ; 10(1)2019 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-30669252

RESUMEN

The effect of carbon nanotubes, graphene-like platelets, and another carbonaceous fillers of natural origin on the electrical conductivity of polymeric materials was studied. With the aim of keeping the filler content and the material cost as low as possible, the effect of laser surface treatments on the conductivity of polymer composites with filler load below the percolation threshold was also investigated. These treatments allowed processing in situ conductive tracks on the surface of insulating polymer-based materials. The importance of the kinds of fillers and matrices, and of the laser process parameters was studied. Carbon nanotubes were also used to obtain piezoresistive composites. The electrical response of these materials to a mechanical load was investigated in view of their exploitation for the production of pressure sensors and switches based on the piezoresistive effect. It was found that the piezoresistive behavior of composites with very low filler concentration can be improved with proper laser treatments.

9.
Nanomaterials (Basel) ; 8(4)2018 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-29690551

RESUMEN

In this paper, the electrical and thermal conductivity and morphological behavior of low density polyethylene (LDPE)/multi-walled carbon nanotubes (MWCNTs) + graphene nanoplatelets (GNPs) hybrid nanocomposites (HNCs) have been studied. The distribution of MWCNTs and the hybrid of MWCNTs/GNPs within the polymer matrix has been investigated with scanning electron microscopy (SEM). The results showed that the thermal and electrical conductivity of the LDPE-based nanocomposites increased along with the increasing content of carbon nanofillers. However, one could observe greater improvement in the thermal and electrical conductivity when only MWCNTs have been incorporated. Moreover, the improvement in tensile properties and thermal stability has been observed when carbon nanofillers have been mixed with LDPE. At the same time, the increasing content of MWCNTs and MWCNTs/GNPs caused an increase in the melt viscosity with only little effect on phase transition temperatures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA