RESUMEN
Root-associated fungal endophytes may facilitate nitrogen (N) absorption in plants, leading to benefits in photosynthesis and growth. Here, we investigated whether endophytic insect pathogenic fungi (EIPF) are capable of transferring soil N to the crop species Chenopodium quinoa. We evaluated nutrient uptake, carbon allocation, and morpho-physiological performance in C. quinoa in symbiosis with two different EIPF (Beauveria and Metarhizium) under contrasting soil N supply. A controlled experiment was conducted using two plant groups: (1) plants subjected to low N level (5 mM urea) and (2) plants subjected to high N level (15 mM urea). Plants from each group were then inoculated with different EIPF strains, either Beauveria (EIPF1+), Metarhizium (EIPF2+) or without fungus (EIPF-). Differences in N and C content, amino acids, proteins, soluble sugars, starch, glutamine synthetase, glutamate dehydrogenase, and physiological (photosynthesis, stomatal conductance, transpiration), and morphological performance between plant groups under each treatment were examined. We found that both Beauveria and Metarhizium translocated N from the soil to the roots of C. quinoa, with positive effects on photosynthesis and plant growth. These effects, however, were differentially affected by fungal strain as well as by N level. Additionally, an improvement in root C and sugar content was observed in presence of EIPF, suggesting translocation of carbohydrates from leaves to roots. Whereas both strains were equally effective in N transfer to roots, Beauveria seemed to exert less demand in C. quinoa for photosynthesis-derived carbohydrates compared to Metarhizium. Our study revealed positive effects of EIPF on N transfer and morpho-physiological performance in crops, highlighting the potential of these fungi as an alternative to chemical fertilizers in agriculture systems.
RESUMEN
While droughts predominantly induce immediate reductions in plant carbon uptake, they can also exert long-lasting effects on carbon fluxes through associated changes in leaf area, soil carbon, etc. Among other mechanisms, shifts in carbon allocation due to water stress can contribute to the legacy effects of drought on carbon fluxes. However, the magnitude and impact of these allocation shifts on carbon fluxes and pools remain poorly understood. Using data from a wet tropical flux tower site in French Guiana, we demonstrate that drought-induced carbon allocation shifts can be reliably inferred by assimilating Net Biosphere Exchange (NBE) and other observations within the CARbon DAta MOdel fraMework. This model-data fusion system allows inference of optimized carbon and water cycle parameters and states from multiple observational data streams. We then examined how these inferred shifts affected the duration and magnitude of drought's impact on NBE during and after the extreme event. Compared to a static allocation scheme analogous to those typically implemented in land surface models, dynamic allocation reduced average carbon uptake during drought recovery by a factor of 2.8. Additionally, the dynamic model extended the average recovery time by 5 months. The inferred allocation shifts influenced the post-drought period by altering foliage and fine root pools, which in turn modulated gross primary productivity and heterotrophic respiration for up to a decade. These changes can create a bust-boom cycle where carbon uptake is enhanced some years after a drought, compared to what would have occurred under drought-free conditions. Overall, allocation shifts accounted for 65% [45%-75%] of drought legacy effects in modeled NBE. In summary, drought-induced carbon allocation shifts can play a substantial role in the enduring influence of drought on cumulative land-atmosphere CO2 exchanges and should be accounted for in ecosystem models.
Asunto(s)
Ciclo del Carbono , Sequías , Clima Tropical , Guyana Francesa , Bosques , Carbono/metabolismo , Modelos TeóricosRESUMEN
The concentration of atmospheric CO2 and temperature are pivotal components of ecosystem productivity, carbon balance, and food security. In this study, we investigated the impacts of a warmer climate (+2 °C above ambient temperature) and an atmosphere enriched with CO2 (600 ppm) on gas exchange, antioxidant enzymatic system, growth, nutritive value, and digestibility of a well-watered, managed pasture of Megathyrsus maximus, a tropical C4 forage grass, under field conditions. Elevated [CO2] (eC) improved photosynthesis and reduced stomatal conductance, resulting in increased water use efficiency and plant C content. Under eC, stem biomass production increased without a corresponding increase in leaf biomass, leading to a smaller leaf/stem ratio. Additionally, eC had negative impacts on forage nutritive value and digestibility. Elevated temperature (eT) increased photosynthetic gains, as well as stem and leaf biomass production. However, it reduced P and K concentration, forage nutritive value, and digestibility. Under the combined conditions of eC and eT (eCeT), eT completely offset the effects of eC on the leaf/stem ratio. However, eT intensified the effects of eC on photosynthesis, leaf C concentration, biomass accumulation, and nutritive value. This resulted in a forage with 12% more acid detergent fiber content and 28% more lignin. Additionally, there was a decrease of 19% in crude protein leading to a 15% decrease in forage digestibility. These changes could potentially affect animal feeding efficiency and feedback climate change, as ruminants may experience an amplification in methane emissions. Our results highlight the critical significance of conducting multifactorial field studies when evaluating plant responses to climate change variables.
Asunto(s)
Dióxido de Carbono , Ecosistema , Animales , Dióxido de Carbono/metabolismo , Agua/metabolismo , Atmósfera , Fotosíntesis , Poaceae/metabolismo , Hojas de la Planta/metabolismo , Valor NutritivoRESUMEN
Forest dynamics and tree species composition vary substantially between Paleotropical and Neotropical forests, but these broad biogeographic regions are treated uniformly in many land models. To assess whether these regional differences translate into variation in productivity and carbon (C) storage, we compiled a database of climate, tree stem growth, litterfall, aboveground net primary production (ANPP), and aboveground biomass across tropical rainforest sites spanning 33 countries throughout Central and South America, Asia, and Australasia, but excluding Africa due to a paucity of available data. Though the sum of litterfall and stem growth (ANPP) did not differ between regions, both stem growth and the ratio of stem growth to litterfall were higher in Paleotropical forests compared to Neotropical forests across the full observed range of ANPP. Greater C allocation to woody growth likely explains the much larger aboveground biomass estimates in Paleotropical forests (~29%, or ~80 Mg DW/ha, greater than in the Neotropics). Climate was similar in Paleo- and Neotropical forests, thus the observed differences in C likely reflect differences in the evolutionary history of species and forest structure and function between regions. Our analysis suggests that Paleotropical forests, which can be dominated by tall-statured Dipterocarpaceae species, may be disproportionate hotspots for aboveground C storage. Land models typically treat these distinct tropical forests with differential structures as a single functional unit, but our findings suggest that this may overlook critical biogeographic variation in C storage potential among regions.
Asunto(s)
Bosques , Clima Tropical , África , Asia , Biomasa , Carbono/análisis , América del Sur , ÁrbolesRESUMEN
Are short-term responses by tropical rainforest to drought (e.g. during El Niño) sufficient to predict changes over the long-term, or from repeated drought? Using the world's only long-term (16-year) drought experiment in tropical forest we examine predictability from short-term measurements (1-2 years). Transpiration was maximized in droughted forest: it consumed all available throughfall throughout the 16 years of study. Leaf photosynthetic capacity [Formula: see text] was maintained, but only when averaged across tree size groups. Annual transpiration in droughted forest was less than in control, with initial reductions (at high biomass) imposed by foliar stomatal control. Tree mortality increased after year three, leading to an overall biomass loss of 40%; over the long-term, the main constraint on transpiration was thus imposed by the associated reduction in sapwood area. Altered tree mortality risk may prove predictable from soil and plant hydraulics, but additional monitoring is needed to test whether future biomass will stabilize or collapse. Allocation of assimilate differed over time: stem growth and reproductive output declined in the short-term, but following mortality-related changes in resource availability, both showed long-term resilience, with partial or full recovery. Understanding and simulation of these phenomena and related trade-offs in allocation will advance more effectively through greater use of optimization and probabilistic modelling approaches.This article is part of a discussion meeting issue 'The impact of the 2015/2016 El Niño on the terrestrial tropical carbon cycle: patterns, mechanisms and implications'.
Asunto(s)
Sequías , Transpiración de Plantas , Bosque Lluvioso , Árboles/fisiología , Clima Tropical , Brasil , El Niño Oscilación del Sur , Estaciones del Año , Suelo/química , Árboles/crecimiento & desarrolloRESUMEN
Tropical montane cloud forests (TMCFs) harbour high levels of biodiversity and large carbon stocks. Their location at high elevations make them especially sensitive to climate change, because a warming climate is enhancing upslope species migration, but human disturbance (especially fire) may in many cases be pushing the treeline downslope. TMCFs are increasingly being affected by fire, and the long-term effects of fire are still unknown. Here, we present a 28-year chronosequence to assess the effects of fire and recovery pathways of burned TMCFs, with a detailed analysis of carbon stocks, forest structure and diversity. We assessed rates of change of carbon (C) stock pools, forest structure and tree-size distribution pathways and tested several hypotheses regarding metabolic scaling theory (MST), C recovery and biodiversity. We found four different C stock recovery pathways depending on the selected C pool and time since last fire, with a recovery of total C stocks but not of aboveground C stocks. In terms of forest structure, there was an increase in the number of small stems in the burned forests up to 5-9 years after fire because of regeneration patterns, but no differences on larger trees between burned and unburned plots in the long term. In support of MST, after fire, forest structure appears to approximate steady-state size distribution in less than 30 years. However, our results also provide new evidence that the species recovery of TMCF after fire is idiosyncratic and follows multiple pathways. While fire increased species richness, it also enhanced species dissimilarity with geographical distance. This is the first study to report a long-term chronosequence of recovery pathways to fire suggesting faster recovery rates than previously reported, but at the expense of biodiversity and aboveground C stocks.
Asunto(s)
Incendios , Bosques , Árboles , Biodiversidad , Carbono , Cambio Climático , Perú , Factores de Tiempo , Clima TropicalRESUMEN
In agroforestry systems, shade trees strongly affect the physiology of the undergrown crop. However, a major paradigm is that the reduction in absorbed photosynthetically active radiation is, to a certain extent, compensated by an increase in light-use efficiency, thereby reducing the difference in net primary productivity between shaded and non-shaded plants. Due to the large spatial heterogeneity in agroforestry systems and the lack of appropriate tools, the combined effects of such variables have seldom been analysed, even though they may help understand physiological processes underlying yield dynamics. In this study, we monitored net primary productivity, during two years, on scales ranging from individual coffee plants to the entire plot. Absorbed radiation was mapped with a 3D model (MAESPA). Light-use efficiency and net assimilation rate were derived for each coffee plant individually. We found that although irradiance was reduced by 60% below crowns of shade trees, coffee light-use efficiency increased by 50%, leaving net primary productivity fairly stable across all shade levels. Variability of aboveground net primary productivity of coffee plants was caused primarily by the age of the plants and by intraspecific competition among them (drivers usually overlooked in the agroforestry literature) rather than by the presence of shade trees.