RESUMEN
Xanthomonas citri subsp. citri (Xcc) is a bacterium that causes citrus canker, an economically important disease that results in premature fruit drop and reduced yield of fresh fruit. In this study, we demonstrated the involvement of XanB, an enzyme with phosphomannose isomerase (PMI) and guanosine diphosphate-mannose pyrophosphorylase (GMP) activities, in Xcc pathogenicity. Additionally, we found that XanB inhibitors protect the host against Xcc infection. Besides being deficient in motility, biofilm production, and ultraviolet resistance, the xanB deletion mutant was unable to cause disease, whereas xanB complementation restored wild-type phenotypes. XanB homology modeling allowed in silico virtual screening of inhibitors from databases, three of them being suitable in terms of absorption, distribution, metabolism, excretion, and toxicity (ADME/Tox) properties, which inhibited GMP (but not PMI) activity of the Xcc recombinant XanB protein in more than 50%. Inhibitors reduced citrus canker severity up to 95%, similarly to copper-based treatment. xanB is essential for Xcc pathogenicity, and XanB inhibitors can be used for the citrus canker control. IMPORTANCE: Xcc causes citrus canker, a threat to citrus production, which has been managed with copper, being required a more sustainable alternative for the disease control. XanB was previously found on the surface of Xcc, interacting with the host and displaying PMI and GMP activities. We demonstrated by xanB deletion and complementation that GMP activity plays a critical role in Xcc pathogenicity, particularly in biofilm formation. XanB homology modeling was performed, and in silico virtual screening led to carbohydrate-derived compounds able to inhibit XanB activity and reduce disease symptoms by 95%. XanB emerges as a promising target for drug design for control of citrus canker and other economically important diseases caused by Xanthomonas sp.
Asunto(s)
Proteínas Bacterianas , Citrus , Enfermedades de las Plantas , Xanthomonas , Xanthomonas/enzimología , Xanthomonas/genética , Xanthomonas/patogenicidad , Citrus/microbiología , Enfermedades de las Plantas/microbiología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Nucleotidiltransferasas/metabolismo , Nucleotidiltransferasas/genética , Biopelículas/crecimiento & desarrollo , VirulenciaRESUMEN
Species in the Melastomataceae (Myrtales) include trees and woody shrubs that are amongst the most common hosts of Chrysoporthe and related fungi. These fungi cause stem cankers, branch death and in extreme cases, kill their hosts. Chrysoporthe-like fungi were observed on Miconia spp. and Rhynchanthera grandiflora (Melastomataceae) plants during tree disease surveys in south-eastern Brazil including the states of Minas Gerais and Rio de Janeiro. The aims of this study were to isolate and identify the fungi utilising morphological characteristics and phylogenetic analyses. This led to the identification of a new species of Chrysoporthe described here as Chrysoporthe brasilensis sp.nov. Inoculations were conducted on R. grandiflora and M. theaezans, showing that C. brasiliensis is an aggressive pathogen. This study adds to a growing number of reports of new and pathogenic species of Chrysoporthe that potentially threaten native Myrtales globally, including important trees such as Eucalyptus, both in natural ecosystems and in planted forests.
Asunto(s)
Melastomataceae , Filogenia , Enfermedades de las Plantas , Brasil , Melastomataceae/microbiología , Enfermedades de las Plantas/microbiología , ADN de Hongos/genética , Ascomicetos/clasificación , Ascomicetos/genética , Ascomicetos/aislamiento & purificación , ADN Ribosómico/genética , Análisis de Secuencia de ADN , ADN Espaciador Ribosómico/genética , ADN Espaciador Ribosómico/química , Análisis por ConglomeradosRESUMEN
Peptidoglycan hydrolases are enzymes responsible for breaking the peptidoglycan present in the bacterial cell wall, facilitating cell growth, cell division and peptidoglycan turnover. Xanthomonas citri subsp. citri (X. citri), the causal agent of citrus canker, encodes an Escherichia coli M23 peptidase EnvC homolog. EnvC is a LytM factor essential for cleaving the septal peptidoglycan, thereby facilitating the separation of daughter cells. In this study, the investigation focused on EnvC contribution to the virulence and cell separation of X. citri. It was observed that disruption of the X. citri envC gene (ΔenvC) led to a reduction in virulence. Upon inoculation into leaves of Rangpur lime (Citrus limonia Osbeck), the X. citri ΔenvC exhibited a delayed onset of citrus canker symptoms compared with the wild-type X. citri. Mutant complementation restored the wild-type phenotype. Sub-cellular localization confirmed that X. citri EnvC is a periplasmic protein. Moreover, the X. citri ΔenvC mutant exhibited elongated cells, indicating a defect in cell division. These findings support the role of EnvC in the regulation of cell wall organization, cell division, and they clarify the role of this peptidase in X. citri virulence.
RESUMEN
India's commercial advancement and development depend heavily on agriculture. A common fruit grown in tropical settings is citrus. A professional judgment is required while analyzing an illness because different diseases have slight variati ons in their symptoms. In order to recognize and classify diseases in citrus fruits and leaves, a customized CNN - based approach that links CNN with LSTM was developed in this research. By using a CNN - based method, it is possible to automatically differenti ate from healthier fruits and leaves and those that have diseases such fruit blight, fruit greening, fruit scab, and melanoses. In terms of performance, the proposed approach achieves 96% accuracy, 98% sensitivity, 96% Recall, and an F1 - score of 92% for ci trus fruit and leave identification and classification and the proposed method was compared with KNN, SVM, and CNN and concluded that the proposed CNN - based model is more accurate and effective at identifying illnesses in citrus fruits and leaves.
El avance y desarrollo comercial de India dependen en gran medida de la agricultura. Un tipo de fruta comunmente cultivada en en tornos tropicales es el cítrico. Se requiere un juicio profesional al analizar una enfermedad porque diferentes enfermedades tienen ligeras variaciones en sus síntomas. Para reconocer y clasificar enfermedades en frutas y hojas de cítricos, se desarrolló e n esta investigación un enfoque personalizado basado en CNN que vincula CNN con LSTM. Al utilizar un método basado en CNN, es posible diferenciar automáticamente entre frutas y hojas más saludables y aquellas que tienen enfermedades como la plaga de frutas , el verdor de frutas, la sarna de frutas y las melanosis. En términos de desempeño, el enfoque propuesto alcanza una precisión del 96%, una sensibilidad del 98%, una recuperación del 96% y una puntuación F1 del 92% para la identificación y clasificación d e frutas y hojas de cítricos, y el método propuesto se comparó con KNN, SVM y CNN y se concluyó que el modelo basado en CNN propuesto es más preciso y efectivo para identificar enfermedades en frutas y hojas de cítricos.
Asunto(s)
Enfermedades de las Plantas/clasificación , Diagnóstico por Computador , Citrus , Redes Neurales de la Computación , Hojas de la PlantaRESUMEN
Pterodon pubescens Benth is a Brazilian medicinal plant (sucupira, in Brazilian Portuguese). This paper aims to determine the volatile composition and antibacterial activities of hexane extract from P. pubescens seeds (HE-PP). Antibacterial activities were screened by the microdilution broth method in 96-well culture plates and MIC values were expressed as µg/mL. HE-PP was active against several oral bacteria whose MIC values ranged between 12.5 µg/mL and 50 µg/mL and against three mycobacterial strains (MIC = 125 µg/mL and 500 µg/mL). In addition, HE-PP was active against Xanthomonas citri strain (MIC = 100 µg/mL). Cytotoxic activity of the extract was evaluated in human tumour and non-tumour cell lines. HE-PP showed selective cytotoxicity to cervical adenocarcinoma (HeLa cells - IC50 = 53.47 µg/mL). Its major constituents were identified by GC-MS and GC-FID: E-caryophyllene, vouacapane, E-geranylgeraniol and dehydroabietol. Results reinforce the biological potential of HE-PP against a broad spectrum of pathogenic and phytopathogenic bacteria.
RESUMEN
Bacterial canker caused by Pseudomonas syringae pv. syringae (Pss) is responsible for substantial loss to the production of sweet cherry in Chile. To date, the molecular mechanisms of the Pss-sweet cherry interaction and the disease-related genes in the plant are poorly understood. In order to gain insight into these aspects, a transcriptomic analysis of the sweet cherry cultivar 'Lapins' for differentially expressed genes (DEGs) in response to Pss inoculation was conducted. Three Pss strains, A1M3, A1M197, and 11116_b1, were inoculated in young twigs, and RNA was extracted from tissue samples at the inoculation site and distal sections. RNA sequencing and transcriptomic expression analysis revealed that the three strains induced different patterns of responses in local and distal tissues. In the local tissues, A1M3 triggered a much more extensive response than the other two strains, enriching DEGs especially involved in photosynthesis. In the distal tissues, the three strains triggered a comparable extent of responses, among which 11116_b1 induced a group of DEGs involved in defense responses. Furthermore, tissues from various inoculations exhibited an enrichment of DEGs related to carbohydrate metabolism, terpene metabolism, and cell wall biogenesis. This study opened doors to future research on the Pss-sweet cherry interaction, immunity responses, and disease control.
RESUMEN
Coffee canker, or bacterial halo blight (BHB) of coffee, is a disease caused by the phytopathogenic bacterium Pseudomonas syringae pv. garcae (Psg), having been found for the first time in 1955, in the Garça region (State of São Paulo), and which has stood out in the Brazilian coffee plantations in recent years, leading to severe economic losses that seriously affect coffee trade. The treatments available are still scarce, involving frequent spraying of coffee plantations with either copper derivatives or the antibiotic kasugamycin. However, these compounds should be avoided due to environmental toxicity and the development of bacterial resistances. Herein we report the isolation and physical/biological characterisation of two novel lytic phages and their efficacy in the control of Psg. Phages ph002F and ph004F were isolated from coffee plant leaves in Brazil (Sorocaba/SP and Itu/SP cities), using Psg IBSBF-158 as the host. According to the transmission electron microscopy analyses, both phages belong to the class Caudoviricetes and present myovirus-like morphotypes. Phages ph002F and ph004F showed eclipse times of 5 min and 20 min, respectively, and a burst size of 123 PFU/host cell and 12 PFU/host cell, respectively, allowing to conclude they replicate well in Psg IBSBF-158 with latency periods of 50 min. Phage ph002F (reduction of 4.59 log CFU/mL, compared to uninfected culture) was more effective in inactivating Psg than phage ph004F (reduction of 3.85 log CFU/mL) after 10 h of incubation at a MOI of 10. As a cocktail, the two phages were highly effective in reducing the bacterial load (reduction of 5.26 log CFU/mL at a MOI of 0.1 or reduction of 5.03 log CFU/mL at a MOI of 10, relative to untreated culture), after 12 h of treatment. This study provides evidence that the isolated phages are promising candidates against the causative agent of BHB in coffee plants.
RESUMEN
Citrus canker, which is caused by Xanthomonas citri, is a severe disease that affects citrus plants worldwide. This paper aimed to compare, for the first time, the chemical composition and anti-Xanthomonas citri activities of essential oils from Schinus molle fresh and dry leaves (EO-FL and EO-DL, respectively). Anti-X. citri activity of spathulenol, the major constituent of oils, was also evaluated. Activities were screened by the broth microdilution method on 96-well culture plates. Three major constituents were identified in EO-FL and EO-DL by GC-MS and GC-FID: spathulenol, ß-caryophyllene and caryophyllene oxide. EO-DL (MIC = 31.25 µg/mL), EO-FL (MIC = 62.5 µg/mL) and spathulenol (MIC = 100 µg/mL) were active against X. citri strains (resistant, tolerant and sensitive to copper). Even though results showed that in vitro potential of EO-FL, EO-DL and spathulenol against X. citri, further in vivo studies are needed to prove their applicability to the biocontrol of citrus canker.
RESUMEN
Citrus canker, caused by the bacterium Xanthomonas citri (Xcc), is one of the most devastating diseases for the citrus industry. Xylose is a constituent of the cell wall of plants, and the ability of Xcc to use this carbohydrate may play a role in virulence. Xcc has two genes codifying for xylose isomerase (XI), a bifunctional enzyme that interconverts D-xylose into D-xylulose and D-glucose into D-fructose. The aim of this work was to investigate the functional role of the two putative XI ORFs, XAC1776 (xylA1) and XAC4225 (xylA2), in Xcc pathogenicity. XI-coding genes of Xcc were deleted, and the single mutants (XccΔxylA1 or XccΔxylA2) or the double mutant (XccΔxylA1ΔxylA2) remained viable. The deletion of one or both XI genes (xylA1 and/or xylA2) increased the aggressiveness of the mutants, causing disease symptoms. RT-qPCR analysis of wild strain and xylA deletion mutants grown in vivo and in vitro revealed that the highest expression level of hrpX and xylR was observed in vivo for the double mutant. The results indicate that XI depletion increases the expression of the hrp regulatory genes in Xcc. We concluded that the intracellular accumulation of xylose enhances Xcc virulence.
Asunto(s)
Citrus , Xanthomonas , Virulencia/genética , Xilosa/metabolismo , Citrus/metabolismo , Enfermedades de las Plantas/microbiologíaRESUMEN
Plant-pathogen interaction is influenced by multiple environmental factors, including temperature and light. Recent works have shown that light modulates not only the defense response of plants but also the pathogens virulence. Xanthomonas citri subsp. citri (Xcc) is the bacterium responsible for citrus canker, an important plant disease worldwide. The Xcc genome presents four genes encoding putative photoreceptors: one bacteriophytochrome and three blue light photoreceptors, one LOV and two BLUFs (bluf1: XAC2120 and bluf2: XAC3278). The presence of two BLUFs proteins is an outstanding feature of Xcc. In this work we show that the bluf2 gene is functional. The mutant strain, XccΔbluf2, was constructed demonstrating that BLUF2 regulates swimming-type motility, adhesion to leaves, exopolysaccharide production and biofilm formation, features involved in the Xcc virulence processes. An important aspect during the plant-pathogen interaction is the oxidative response of the host and the consequent reaction of the pathogen. We observed that ROS detoxification is regulated by Xcc bluf2 gene. The phenotypes of disease in orange plants produced by WT and XccΔbluf2 strains were evaluated, observing different phenotypes. Altogether, these results show that BLUF2 negatively regulates virulence during citrus canker. This work constitutes the first report on BLUF-like receptors in plant pathogenic bacteria.
Asunto(s)
Citrus , Xanthomonas , Xanthomonas/genética , Xanthomonas/metabolismo , Citrus/metabolismo , Citrus/microbiología , Virulencia , Luz , Enfermedades de las Plantas/microbiología , Hojas de la Planta/metabolismoRESUMEN
Stem blight is a destructive woody disease of blueberry (Vaccinium corymbosum) caused by several species of the family Botryosphaeriaceae. A field survey was conducted in the mayor blueberry production area of Chile, comprising latitudes 32°49'S to 40°55'S, to determine the occurrence and distribution of Botryosphaeriaceae in the region. Together, a multilocus analysis, morphological characterization, and phytopathogenicity testing were used to identify 51 Neofusicoccum isolates belonging to N. nonquaesitum (28 strains), N. parvum (22 strains), and N. australe (1 strain). Of these, N. parvum and N. nonquaesitum were the most commonly found, with N. parvum most frequent from latitude 37°40'S to the north and N. nonquaesitum predominantly located from the same latitude toward the south. Morphological traits of the isolates were consistent with the species identified by molecular techniques, despite the overlapping of conidial size of some isolates among species. Pathogenicity trials showed that the three species were pathogenic to blueberry plants and revealed that N. parvum and N. nonquaesitum were the most aggressive species, although variability in virulence was observed among isolates of N. parvum and N. nonquaesitum.
Asunto(s)
Ascomicetos , Arándanos Azules (Planta) , Chile , Filogenia , Enfermedades de las Plantas , ADN de Hongos , Ascomicetos/genéticaRESUMEN
Transcription activator-like effectors are key virulence factors of Xanthomonas. They are secreted into host plant cells and mimic transcription factors inducing the expression of host susceptibility (S) genes. In citrus, CsLOB1 is a direct target of PthA4, the primary effector associated with citrus canker symptoms. CsLOB1 is a transcription factor, and its expression is required for canker symptoms induced by Xanthomonas citri subsp. citri. Several genes are up-regulated by PthA4; however, only CsLOB1 was described as an S gene induced by PthA4. Here, we investigated whether other up-regulated genes could be direct targets of PthA4 or CsLOB1. Seven up-regulated genes by PthA4 were investigated; however, an expansin-coding gene was more induced than CsLOB1. In Nicotiana benthamiana transient expression experiments, we demonstrate that the expansin-coding gene, referred here to as CsLOB1-INDUCED EXPANSIN 1 (CsLIEXP1), is not a direct target of PthA4, but CsLOB1. Interestingly, CsLIEXP1 was induced by CsLOB1 even without the predicted CsLOB1 binding site, which suggested that CsLOB1 has other unknown binding sites. We also investigated the minimum promoter regulated by CsLOB1, and this region and LOB1 domain were conserved among citrus species and relatives, which suggests that the interaction PthA4-CsLOB1-CsLIEXP1 is conserved in citrus species and relatives. This is the first study that experimentally demonstrated a CsLOB1 downstream target and lays the foundation to identify other new targets. In addition, we demonstrated that the CsLIEXP1 is a putative S gene indirectly induced by PthA4, which may serve as the target for genome editing to generate citrus canker-resistant varieties.
Asunto(s)
Citrus , Xanthomonas , Citrus/genética , Enfermedades de las Plantas/genética , Regiones Promotoras Genéticas/genética , Edición Génica , Xanthomonas/genéticaRESUMEN
Citrus cancer, caused by strains of Xanthomonas citri (Xc) and Xanthomonas aurantifolii (Xa), is one of the most economically important citrus diseases. Although our understanding of the molecular mechanisms underlying citrus canker development has advanced remarkably in recent years, exactly how citrus plants fight against these pathogens remains largely unclear. Using a Xa pathotype C strain that infects Mexican lime only and sweet oranges as a pathosystem to study the immune response triggered by this bacterium in these hosts, we herein report that the Xa flagellin C protein (XaFliC) acts as a potent defence elicitor in sweet oranges. Just as Xa blocked canker formation when coinfiltrated with Xc in sweet orange leaves, two polymorphic XaFliC peptides designated flgIII-20 and flgIII-27, not related to flg22 or flgII-28 but found in many Xanthomonas species, were sufficient to protect sweet orange plants from Xc infection. Accordingly, ectopic expression of XaFliC in a Xc FliC-defective mutant completely abolished the ability of this mutant to grow and cause canker in sweet orange but not Mexican lime plants. Because XaFliC and flgIII-27 also specifically induced the expression of several defence-related genes, our data suggest that XaFliC acts as a main immune response determinant in sweet orange plants.
Asunto(s)
Citrus sinensis , Citrus , Xanthomonas , Citrus/genética , Citrus/microbiología , Flagelina/farmacología , Flagelina/metabolismo , Xanthomonas/genética , Citrus sinensis/microbiología , Percepción , Enfermedades de las Plantas/microbiologíaRESUMEN
Citrus canker, caused by the bacterium Xanthomonas citri subsp. citri (X. citri), is a plant disease affecting Citrus crops worldwide. However, little is known about defense compounds in Citrus. Here, we conducted a mass spectrometry-based metabolomic approach to obtain an overview of the chemical responses of Citrus leaves to X. citri infection. To facilitate result interpretation, the multivariate analyses were combined with molecular networking to identify biomarkers. Metabolite variations among untreated and X. citri-inoculated Citrus samples under greenhouse conditions highlighted induced defense biomarkers. Notably, the plant tryptophan metabolism pathway was activated, leading to the accumulation of N-methylated tryptamine derivatives. This finding was subsequently confirmed in symptomatic leaves in the field. Several tryptamine derivatives showed inhibitory effects in vitro against X. citri. This approach has enabled the identification of new chemically related biomarker groups and their dynamics in the response of Citrus leaves to Xanthomonas infection.
Asunto(s)
Citrus sinensis , Citrus , Xanthomonas , Citrus sinensis/microbiología , Enfermedades de las Plantas/microbiología , Citrus/microbiología , Hojas de la Planta/microbiología , Triptaminas/farmacologíaRESUMEN
Dragon fruit cultivation is an emerging industry in Ecuador. In August of 2020, yellow dragon fruit plants (Hylocereus megalantus) showing brown hardened scabs on cladodes and fruits were observed in a field in Guayas, a coastal province of Ecuador (Fig. 1A). Symptoms were observed in ~ 40% of the assessed plants (n=100) with damage varying from mild (necrotic spots) to severe (canker). Ten cladode sections of ~ 10 cm2 with signs of canker were collected from five affected plants (two from each plant). Symptomatic cladode sections were sliced, surface-sterilized with a solution of 1% sodium hypochlorite, rinsed with sterile water, transferred into potato dextrose agar (PDA) media, and incubated at 28°C for five days in the dark. Three fungal isolates recovered from the cladodes produced colonies with dense dark aerial mycelia that matched the morphological description for Neoscytalidium dimidiatum (Crous et al 2006) (Fig 1B, 1C). Arthric chains of cylindrical conidia were observed under the microscope and presented zero or one septum with sizes between 10.9 ± 0.27 x 4.97 ± 0.36 µm (n=50). Pycnidia produced ellipsoid-shaped conidia, and sizes ranged from 4.5 ± 0.3 x 11.02 ± 0.5 µm (n=50). Cultured isolates were subjected to DNA extractions using the fungal DNA mini kit (Omega, Bio-Tek, Inc) for molecular identification by amplifying the 5.8S rDNA and adjacent internal transcriber spacer (ITS) 1 and 2 regions using primers (ITS1 / ITS4) as described (White et al., 1990). In addition, the ß-tubulin and elongation factor 1-α targets were amplified by primers Bt2a / Bt2b (Glass and Donaldson, 1995) and EF1-728 F / EF1-986R (Carbone and Kohn, 1999), respectively, following the recommended PCR conditions. Amplified products were cloned using a pGEMT-easy kit (Promega, USA) and sequenced. Sequence comparisons for each target revealed that the three isolates were 100% identical to each other. Sequences obtained from a single plant were submitted to NCBI Genbank and assigned acc. Numbers OP377444, OP381216, and OP381217, for the ITS, ß-tubulin, and elongation factor, respectively. BLAST analyses of the three amplified targets confirmed homology to counterparts from N. dimitiatum, with 99-100 % identities to isolates from China (JX524168), United Arab Emirates (MN447201), and Israel (KF020895). To fulfill Koch´s postulates, thirteen 4-month-old healthy plants were inoculated either with the pathogen (n=10) or mock-inoculated (n=3). In addition, two detached yellow dragon fruits and a mock were inoculated following the same protocol as stems. Inoculation was performed by making small wounds on cladodes or fruits using a sterile needle and placing a 2-mm agar plug containing mycelia from a 7-day-old colony. For mock inoculations, 2-mm plugs with clean PDA media were used. The inoculated area was wrapped with black plastic film for seven days at 27 to 32°C. At ten days post-inoculation, brown scab lesions with an orange halo were observed in the inoculated plants but not in the mock-inoculated plants and fruit (Fig. 1D, 1E). N. dimidiatum was re-isolated from experimentally-induced canker lesions, and morphologically identified. Stem canker caused by N. dimidiatum is a severe disease affecting dragon fruit production worldwide (Chuang et al., 2021). In Ecuador, this pathogen was found affecting yellow dragon fruit (H. megalantus) under natural conditions; however, under experimental conditions, red dragon fruit (H. undatus), which is widely produced in several coastal provinces of the country, was also found to be susceptible. Further studies are needed to investigate epidemiological aspects of this important pathogen, which threatens dragon fruit production in Ecuador.
Asunto(s)
Actinidia , Prunus avium , Chile , Enfermedades de las Plantas , Pseudomonas syringae/genéticaRESUMEN
Microorganisms have a limited and highly adaptable repertoire of genes capable of encoding proteins containing single or variable multidomains. The phytopathogenic bacteria Xanthomonas citri subsp. citri (X. citri) (Xanthomonadaceae family), the etiological agent of Citrus Canker (CC), presents a collection of multidomain and multifunctional enzymes (MFEs) that remains to be explored. Recent studies have shown that multidomain enzymes that act on the metabolism of the peptidoglycan and bacterial cell wall, belonging to the Lytic Transglycosylases (LTs) superfamily, play an essential role in X. citri biology. One of these LTs, named XAC4296, apart from the Transglycosylase SLT_2 and Peptidoglycan binding-like domains, contains an unexpected aldose 1-epimerase domain linked to the central metabolism; therefore, resembling a canonical MFE. In this work, we experimentally characterized XAC4296 revealing its role as an MFE and demonstrating its probable gene fusion origin and evolutionary history. The XAC4296 is expressed during plant-pathogen interaction, and the Δ4296 mutant impacts CC progression. Moreover, Δ4296 exhibited chromosome segregation and cell division errors, and sensitivity to ampicillin, suggesting not only LT activity but also that the XAC4296 may also contribute to resistance to ß-lactams. However, both Δ4296 phenotypes can be restored when the mutant is supplemented with sucrose or glutamic acid as a carbon and nitrogen source, respectively; therefore, supporting the epimerase domain's functional relationship with the central carbon and cell wall metabolism. Taken together, these results elucidate the role of XAC4296 as an MFE in X. citri, also bringing new insights into the evolution of multidomain proteins and antimicrobial resistance in the Xanthomonadaceae family.
RESUMEN
Citrus canker is a destructive disease caused by Xanthomonas citri subsp. citri, which affects all commercial sweet orange (Citrus sinensis [L.] Osbeck) cultivars. Salicylic acid (SA) and systemic-acquired resistance (SAR) have been demonstrated to have a crucial role in mediating plant defense responses against this phytopathogen. To induce SAR, SA is converted to methyl salicylate (MeSA) by an SA-dependent methyltransferase (SAMT) and translocated systemically to prime noninfected distal tissues. Here, we generated sweet orange transgenic plants (based on cvs. Hamlin and Valencia) overexpressing the SAMT gene from Citrus (CsSAMT) and evaluated their resistance to citrus canker. We obtained four independent transgenic lines and confirmed their significantly higher MeSA volatilization compared to wild-type controls. Plants overexpressing CsSAMT showed reduced symptoms of citrus canker and bacterial populations in all transgenic lines without compromising plant development. One representative transgenic line (V44SAMT) was used to evaluate resistance response in primary and secondary sites. Without inoculation, V44SAMT modulated CsSAMT, CsNPR1, CsNPR3, and CsWRKY22 expression, indicating that this plant is in a primed defense status. The results demonstrate that MeSA signaling prompts the plant to respond more efficiently to pathogen attacks and induces immune responses in transgenic plants at both primary and secondary infection sites.
RESUMEN
Tomato is one of the most important crops for human consumption. Its production is affected by the actinomycete Clavibacter michiganensis subsp. michiganensis (Cmm), one of the most devastating bacterial pathogens of this crop. Several wild tomato species represent a source of natural resistance to Cmm. Here, we contrasted the transcriptomes of the resistant wild tomato species Solanum arcanum LA2157 and the susceptible species Solanum lycopersicum cv. Ailsa Craig, during the first 24 h of challenge with Cmm. We used three analyses approaches which demonstrated to be complementary: mapping to S. lycopersicum reference genome SL3.0; semi de novo transcriptome assembly; and de novo transcriptome assembly. In a global context, transcriptional changes seem to be similar between both species, although there are some specific genes only upregulated in S. arcanum during Cmm interaction, suggesting that the resistance regulatory mechanism probably diverged during the domestication process. Although S. lycopersicum showed enriched functional groups related to defense, S. arcanum displayed a higher number of induced genes related to bacterial, oomycete, and fungal defense at the first few hours of interaction. This study revealed genes that may contribute to the resistance phenotype in the wild tomato species, such as those that encode for a polyphenol oxidase E, diacyl glycerol kinase, TOM1-like protein 6, and an ankyrin repeat-containing protein, among others. This work will contribute to a better understanding of the defense mechanism against Cmm, and the development of new control methods.
Asunto(s)
Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiología , Transcriptoma , Infecciones Bacterianas/microbiología , Clavibacter , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Genoma de Planta , Interacciones Huésped-Patógeno , Fenotipo , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA-SeqRESUMEN
Clavibacter michiganensis subsp. michiganensis (Cmm) is the causal agent of bacterial canker of tomato. Differences in virulence between Cmm strains have been reported. The aim of this study was the characterization of nine Cmm strains isolated in Chile to reveal the causes of their differences in virulence. The virulence assays in tomato seedlings revealed different levels of severity associated with the strains, with two highly virulent strains and one causing only mild symptoms. The two most virulent showed increased cellulase activity, and no cellulase activity was observed in the strain causing mild symptoms. In three strains, including the two most virulent strains, PCR amplification of the 10 virulence genes analyzed was observed. In the strain causing mild symptoms, no amplification was observed for five genes, including celA. Sequence and cluster analyses of six virulence genes grouped the strains, as has been previously reported, except for gene pelA1. Gene sequence analysis from the genomes of five Chilean strains revealed the presence of deletions in the virulence genes, celB, xysA, pat-1, and phpA. The results of this study allow us to establish correlations between the differences observed in disease severity and the presence/absence of genes and deletions not previously reported.