Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Circulation ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39253856

RESUMEN

BACKGROUND: The docking protein IRS2 (insulin receptor substrate protein-2) is an important mediator of insulin signaling and may also regulate other signaling pathways. Murine hearts with cardiomyocyte-restricted deletion of IRS2 (cIRS2-KO) are more susceptible to pressure overload-induced cardiac dysfunction, implying a critical protective role of IRS2 in cardiac adaptation to stress through mechanisms that are not fully understood. There is limited evidence regarding the function of IRS2 beyond metabolic homeostasis regulation, particularly in the context of cardiac disease. METHODS: A retrospective analysis of an electronic medical record database was conducted to identify patients with IRS2 variants and assess their risk of cardiac arrhythmias. Arrhythmia susceptibility was examined in cIRS2-KO mice. The underlying mechanisms were investigated using confocal calcium imaging of ex vivo whole hearts and isolated cardiomyocytes to assess calcium handling, Western blotting to analyze the involved signaling pathways, and pharmacological and genetic interventions to rescue arrhythmias in cIRS2-KO mice. RESULTS: The retrospective analysis identified patients with IRS2 variants of uncertain significance with a potential association to an increased risk of cardiac arrhythmias compared with matched controls. cIRS2-KO hearts were found to be prone to catecholamine-sensitive ventricular tachycardia and reperfusion ventricular tachycardia. Confocal calcium imaging of ex vivo whole hearts and single isolated cardiomyocytes from cIRS2-KO hearts revealed decreased Ca²+ transient amplitudes, increased spontaneous Ca²+ sparks, and reduced sarcoplasmic reticulum Ca²+ content during sympathetic stress, indicating sarcoplasmic reticulum dysfunction. We identified that overactivation of the AKT1/NOS3 (nitric oxide synthase 3)/CaMKII (Ca2+/calmodulin-dependent protein kinase II)/RyR2 (type 2 ryanodine receptor) signaling pathway led to calcium mishandling and catecholamine-sensitive ventricular tachycardia in cIRS2-KO hearts. Pharmacological AKT inhibition or genetic stabilization of RyR2 rescued catecholamine-sensitive ventricular tachycardia in cIRS2-KO mice. CONCLUSIONS: Cardiac IRS2 inhibits sympathetic stress-induced AKT/NOS3/CaMKII/RyR2 overactivation and calcium-dependent arrhythmogenesis. This novel IRS2 signaling axis, essential for maintaining cardiac calcium homeostasis under stress, presents a promising target for developing new antiarrhythmic therapies.

2.
Circ Res ; 135(5): 554-574, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39011635

RESUMEN

BACKGROUND: Cardiac hypertrophy compensates for increased biomechanical stress of the heart induced by prevalent cardiovascular pathologies but can result in heart failure if left untreated. Here, we hypothesized that the membrane fusion and repair protein dysferlin is critical for the integrity of the transverse-axial tubule (TAT) network inside cardiomyocytes and contributes to the proliferation of TAT endomembranes during pressure overload-induced cardiac hypertrophy. METHODS: Stimulated emission depletion and electron microscopy were used to localize dysferlin in mouse and human cardiomyocytes. Data-independent acquisition mass spectrometry revealed the cardiac dysferlin interactome and proteomic changes of the heart in dysferlin-knockout mice. After transverse aortic constriction, we compared the hypertrophic response of wild-type versus dysferlin-knockout hearts and studied TAT network remodeling mechanisms inside cardiomyocytes by live-cell membrane imaging. RESULTS: We localized dysferlin in a vesicular compartment in nanometric proximity to contact sites of the TAT network with the sarcoplasmic reticulum, a.k.a. junctional complexes for Ca2+-induced Ca2+ release. Interactome analyses demonstrated a novel protein interaction of dysferlin with the membrane-tethering sarcoplasmic reticulum protein juncophilin-2, a putative interactor of L-type Ca2+ channels and ryanodine receptor Ca2+ release channels in junctional complexes. Although the dysferlin-knockout caused a mild progressive phenotype of dilated cardiomyopathy, global proteome analysis revealed changes preceding systolic failure. Following transverse aortic constriction, dysferlin protein expression was significantly increased in hypertrophied wild-type myocardium, while dysferlin-knockout animals presented markedly reduced left-ventricular hypertrophy. Live-cell membrane imaging showed a profound reorganization of the TAT network in wild-type left-ventricular myocytes after transverse aortic constriction with robust proliferation of axial tubules, which critically depended on the increased expression of dysferlin within newly emerging tubule components. CONCLUSIONS: Dysferlin represents a new molecular target in cardiac disease that protects the integrity of tubule-sarcoplasmic reticulum junctional complexes for regulated excitation-contraction coupling and controls TAT network reorganization and tubular membrane proliferation in cardiomyocyte hypertrophy induced by pressure overload.


Asunto(s)
Cardiomegalia , Disferlina , Ratones Noqueados , Miocitos Cardíacos , Retículo Sarcoplasmático , Animales , Disferlina/metabolismo , Disferlina/genética , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Cardiomegalia/metabolismo , Cardiomegalia/patología , Cardiomegalia/genética , Cardiomegalia/fisiopatología , Humanos , Ratones , Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/patología , Ratones Endogámicos C57BL , Masculino , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Proliferación Celular , Células Cultivadas , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Quinasa de Cadena Ligera de Miosina
3.
Rev. neurol. (Ed. impr.) ; 78(7): 179-183, Ene-Jun, 2024. mapas, tab
Artículo en Español | IBECS | ID: ibc-232185

RESUMEN

Introducción: Las miopatías relacionadas con el receptor de rianodina de tipo 1 (RYR1-RM) constituyen la categoría más frecuente de miopatías congénitas. La introducción de técnicas genéticas ha cambiado el paradigma diagnóstico y sugiere la prioridad de estudios moleculares sobre biopsias. Este estudio busca explorar las características clinicoepidemiológicas de pacientes con variantes del gen RYR1 en un hospital pediátrico de tercer nivel con el objetivo de ampliar la comprensión de la correlación genotipo-fenotipo en las RYR1-RM. Pacientes y métodos: Estudio observacional, descriptivo y transversal, de pacientes menores de 14 años con síntomas miopáticos y variantes potencialmente patógenas del gen RYR1 entre enero de 2013 y diciembre de 2023, considerando variables como sexo, edad, desarrollo motor, variantes genéticas, patrón de herencia y otras manifestaciones. Todas las variables fueron tabuladas frente a la variante genética. Resultados: De los nueve pacientes incluidos, la incidencia estimada fue de aproximadamente 1/10.000 nacidos vivos. La mediana en el momento del diagnóstico fue de 6 años, con una variabilidad fenotípica significativa. Se observaron síntomas comunes, como debilidad y retraso del desarrollo motor. Las variantes genéticas afectaron al gen RYR1 de manera diversa, y hubo cinco variantes previamente no descritas. La biopsia muscular se realizó en cinco pacientes, en dos de ellos de tipo miopatía central core; en uno, multiminicore; en uno, desproporción congénita de fibras; y en otro, de patrón inespecífico. Conclusiones: Las RYR1-MR de nuestra serie ofrecieron variabilidad fenotípica y de afectación, con una incidencia en nuestra área de en torno a 1/10.000 recién nacidos. La mayoría de los casos fueron varones, de variantes missense dominantes. Aportamos cinco variantes genéticas no descritas con anterioridad.(AU)


Introduction: Ryanodine receptor type 1-related myopathies (RYR1-RM) represent the most prevalent category of congenital myopathies. The introduction of genetic techniques has shifted the diagnostic paradigm, suggesting the prioritization of molecular studies over biopsies. This study aims to explore the clinical and epidemiological characteristics of patients with RYR1 gene variants in a tertiary pediatric hospital, intending to enhance the understanding of the genotype-phenotype correlation in RYR1-RM. Patients and methods: An observational, descriptive, and cross-sectional study was conducted on patients under 14 years old with myopathic symptoms and potentially pathogenic RYR1 gene variants from January 2013 to December 2023. Variables such as gender, age, motor development, genetic variants, inheritance pattern, and other manifestations were considered. All variables were tabulated against the genetic variant. Results: Of the nine included patients, the estimated incidence was approximately 1 in 10,000 live births. The median age at diagnosis was six years, with significant phenotypic variability. Common symptoms such as weakness and delayed motor development were observed. Genetic variants affected the RYR1 gene diversely, including five previously undescribed variants. Muscle biopsy was performed in five patients, revealing central core myopathy in two, multiminicore in one, congenital fiber-type disproportion in one, and a nonspecific pattern in another.(AU)


Asunto(s)
Humanos , Masculino , Femenino , Niño , Enfermedades Musculares/clasificación , Canal Liberador de Calcio Receptor de Rianodina , Incidencia , Patrón de Herencia , Epidemiología Descriptiva , Estudios Transversales , Estudios de Asociación Genética
4.
Cell Biochem Biophys ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816653

RESUMEN

OBJECTIVE: To explore the molecular mechanisms of tumor-associated calcium signal transduction factor 2 (TROP2) affecting the occurrence and development of triple-negative breast cancer (TNBC). METHODS: The TCGA database, immunohistochemical staining, and qRT-PCR were used to analyze the expression of TROP2 in TNBC tissues and cells. The protein expressions of TROP2 and inositol 1,4,5-trisphosphate receptor (IP3R) after TROP2 knockdown were detected by western blot (WB). Cell proliferation was detected by CCK8 and colony formation assay, Annexin V-APC/PI flow cytometry was used to detect apoptosis, and intracellular calcium ion (Ca2+) was detected by flow cytometry with Fura 2-AM fluorescent probe. Finally, the morphological changes of the endoplasmic reticulum (ER) were observed by transmission electron microscopy, and the expression of ER stress (ERS)-related proteins was detected by WB and immunofluorescence staining. RESULTS: TROP2 was up-regulated in TNBC tumor tissues and cells. Silencing TROP2 decreased the proliferation rate and clone formation number, and increased the apoptosis rate and the Ca2+ level in TNBC cells. These phenomena were reversed after the addition of 2-APB. In addition, after TROP2 knockdown, the expressions of IP3R and ERS-related proteins were up-regulated, the ER was cystic dilated, and ERS was activated. And the addition of 2-APB significantly inhibited the activation of ERS induced by TROP2 knockdown. CONCLUSION: TROP2 regulated the proliferation and apoptosis of TNBC cells through a Ca2+-dependent ERS signaling pathway.

6.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1028544

RESUMEN

Objective:To evaluate the role of ryanodine receptor 2 (RyR2) in postoperative cognitive dysfunction (POCD) in aged rats.Methods:Sixty SPF healthy male Sprague-Dawley rats, aged 20 months, weighing 600-650 g, were divided into 3 groups ( n=20 each) using a random number table method: control group (group C), POCD group (group P) and dantrolene group (group D). A rat POCD model was prepared by closed reduction and internal fixation of left tibial fractures with sevoflurane anesthesia in P and D groups. RyR inhibitor dantrolene 2 mg/kg was injected via a tail vein at 30 min before surgery in group D. Morris water maze tests were conducted on day 1 before surgery and day 7 after surgery to evaluate the cognitive function. An open field test was conducted to detect the spontaneous motor function starting from day 7 after surgery. The rats were sacrificed after the end of Morris water maze tests and hippocampal tissues were taken for determination of the expression of RyR2 and cleaved caspase-3 (by Western blot), apoptosis rate and cytoplasmic calcium ion concentrations (by flow cytometry) and for microscopic examination of the pathological changes in hippocampal CA1 area (using HE staining). Results:There was no significant difference in the speed, distance and duration of stay in the center in the open field test among the three groups ( P>0.05). Compared with group C, the escape latency was significantly prolonged after surgery, the number of crossing the original platform was reduced, the expression of RyR2 and cleaved caspase-3 was up-regulated, and the neuronal apoptosis rate and cytoplasmic calcium ion concentration were increased ( P<0.05), and the pathological changes were found in the hippocampal CA1 area in group P. Compared with group P, the escape latency was significantly shortened after surgery, the number of crossing the original platform was increased, the expression of RyR2 and cleaved caspase-3 was down-regulated, and the neuronal apoptosis rate and cytoplasmic calcium ion concentration were decreased ( P<0.05), and the pathological changes were significantly reduced in the hippocampal CA1 area in group D. Conclusions:RyR2 activation is involved in the process of POCD in aged rats, which may be associated with increased calcium overload-induced hippocampal neuronal apoptosis.

7.
Circulation ; 148(21): 1691-1704, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37850394

RESUMEN

BACKGROUND: Hypercontractility and arrhythmia are key pathophysiologic features of hypertrophic cardiomyopathy (HCM), the most common inherited heart disease. ß-Adrenergic receptor antagonists (ß-blockers) are the first-line therapy for HCM. However, ß-blockers commonly selected for this disease are often poorly tolerated in patients, where heart-rate reduction and noncardiac effects can lead to reduced cardiac output and fatigue. Mavacamten, myosin ATPase inhibitor recently approved by the US Food and Drug Administration, has demonstrated the ability to ameliorate hypercontractility without lowering heart rate, but its benefits are so far limited to patients with left ventricular (LV) outflow tract obstruction, and its effect on arrhythmia is unknown. METHODS: We screened 21 ß-blockers for their impact on myocyte contractility and evaluated the antiarrhythmic properties of the most promising drug in a ventricular myocyte arrhythmia model. We then examined its in vivo effect on LV function by hemodynamic pressure-volume loop analysis. The efficacy of the drug was tested in vitro and in vivo compared with current therapeutic options (metoprolol, verapamil, and mavacamten) for HCM in an established mouse model of HCM (Myh6R403Q/+ and induced pluripotent stem cell (iPSC)-derived cardiomyocytes from patients with HCM (MYH7R403Q/+). RESULTS: We identified that carvedilol, a ß-blocker not commonly used in HCM, suppresses contractile function and arrhythmia by inhibiting RyR2 (ryanodine receptor type 2). Unlike metoprolol (a ß1-blocker), carvedilol markedly reduced LV contractility through RyR2 inhibition, while maintaining stroke volume through α1-adrenergic receptor inhibition in vivo. Clinically available carvedilol is a racemic mixture, and the R-enantiomer, devoid of ß-blocking effect, retains the ability to inhibit both α1-receptor and RyR2, thereby suppressing contractile function and arrhythmias without lowering heart rate and cardiac output. In Myh6R403Q/+ mice, R-carvedilol normalized hyperdynamic contraction, suppressed arrhythmia, and increased cardiac output better than metoprolol, verapamil, and mavacamten. The ability of R-carvedilol to suppress contractile function was well retained in MYH7R403Q/+ iPSC-derived cardiomyocytes. CONCLUSIONS: R-enantiomer carvedilol attenuates hyperdynamic contraction, suppresses arrhythmia, and at the same time, improves cardiac output without lowering heart rate by dual blockade of α1-adrenergic receptor and RyR2 in mouse and human models of HCM. This combination of therapeutic effects is unique among current therapeutic options for HCM and may particularly benefit patients without LV outflow tract obstruction.


Asunto(s)
Cardiomiopatía Hipertrófica , Metoprolol , Humanos , Ratones , Animales , Carvedilol/farmacología , Carvedilol/uso terapéutico , Metoprolol/uso terapéutico , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Cardiomiopatía Hipertrófica/complicaciones , Cardiomiopatía Hipertrófica/tratamiento farmacológico , Arritmias Cardíacas/tratamiento farmacológico , Arritmias Cardíacas/metabolismo , Antagonistas Adrenérgicos beta/farmacología , Antagonistas Adrenérgicos beta/uso terapéutico , Miocitos Cardíacos/metabolismo , Verapamilo/uso terapéutico , Receptores Adrenérgicos/metabolismo
8.
Anesth Pain Med (Seoul) ; 18(3): 220-232, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37691593

RESUMEN

Dantrolene sodium (DS) was first introduced as an oral antispasmodic drug. However, in 1975, DS was demonstrated to be effective for managing malignant hyperthermia (MH) and was adopted as the primary therapeutic drug after intravenous administration. However, it is difficult to administer DS intravenously to manage MH. MH is life-threatening, pharmacogenomically related, and induced by depolarizing neuromuscular blocking agents or inhalational anesthetics. All anesthesiologists should know the pharmacology of DS. DS suppresses Ca2+ release from ryanodine receptors (RyRs). RyRs are expressed in various tissues, although their distribution differs among subtypes. The anatomical and physiological functions of RyRs have also been demonstrated as effective therapeutic drugs for cardiac arrhythmias, Alzheimer's disease, and other RyR-related diseases. Recently, a new formulation was introduced that enhanced the hydrophilicity of the lipophilic DS. The authors summarize the pharmacological properties of DS and comment on its indications, contraindications, adverse effects, and interactions with other drugs by reviewing reference articles.

9.
Int J Mol Sci ; 24(16)2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37628726

RESUMEN

Ca2+ leak from cardiomyocyte sarcoplasmic reticulum (SR) via hyperactive resting cardiac ryanodine receptor channels (RyR2) is pro-arrhythmic. An exogenous peptide (DPc10) binding promotes leaky RyR2 in cardiomyocytes and reports on that endogenous state. Conversely, calmodulin (CaM) binding inhibits RyR2 leak and low CaM affinity is diagnostic of leaky RyR2. These observations have led to designing a FRET biosensor for drug discovery targeting RyR2. We used FRET to clarify the molecular mechanism driving the DPc10-CaM interdependence when binding RyR2 in SR vesicles. We used donor-FKBP12.6 (D-FKBP) to resolve RyR2 binding of acceptor-CaM (A-CaM). In low nanomolar Ca2+, DPc10 decreased both FRETmax (under saturating [A-CaM]) and the CaM/RyR2 binding affinity. In micromolar Ca2+, DPc10 decreased FRETmax without affecting CaM/RyR2 binding affinity. This correlates with the analysis of fluorescence-lifetime-detected FRET, indicating that DPc10 lowers occupancy of the RyR2 CaM-binding sites in nanomolar (not micromolar) Ca2+ and lengthens D-FKBP/A-CaM distances independent of [Ca2+]. To observe DPc10/RyR2 binding, we used acceptor-DPc10 (A-DPc10). CaM weakens A-DPc10/RyR2 binding, with this effect being larger in micromolar versus nanomolar Ca2+. Moreover, A-DPc10/RyR2 binding is cooperative in a CaM- and FKBP-dependent manner, suggesting that both endogenous modulators promote concerted structural changes between RyR2 protomers for channel regulation. Aided by the analysis of cryo-EM structures, these insights inform further development of the DPc10-CaM paradigm for therapeutic discovery targeting RyR2.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Canal Liberador de Calcio Receptor de Rianodina , Sitios de Unión , Sistemas de Liberación de Medicamentos
10.
Europace ; 25(7)2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37466361

RESUMEN

AIMS: The ryanodine receptor 2 (RyR2) is essential for cardiac muscle excitation-contraction coupling; dysfunctional RyR2 participates in the development of inherited arrhythmogenic cardiac disease. In this study, a novel RyR2 mutation A690E is identified from a patient with family inheritance of sudden cardiac death, and we aimed to investigate the pathogenic basis of the mutation. METHODS AND RESULTS: We generated a mouse model that carried the A690E mutation. Mice were characterized by adrenergic-induced ventricular arrhythmias similar to clinical manifestation of the patient. Optical mapping studies revealed that isolated A690E hearts were prone to arrhythmogenesis and displayed frequency-dependence calcium transient alternans. Upon ß-adrenoceptor challenge, the concordant alternans was shifted towards discordant alternans that favour triggering ectopic beats and Ca2+ re-entry; similar phenomenon was also found in the A690E cardiomyocytes. In addition, we found that A690E cardiomyocytes manifested abnormal Ca2+ release and electrophysiological disorders, including an increased sensitivity to cytosolic Ca2+, an elevated diastolic RyR2-mediated Ca2+ leak, and an imbalance between Ca2+ leak and reuptake. Structural analyses reveal that the mutation directly impacts RyR2-FK506 binding protein interaction. CONCLUSION: In this study, we have identified a novel mutation in RyR2 that is associated with sudden cardiac death. By characterizing the function defects of mutant RyR2 in animal, whole heat, and cardiomyocytes, we demonstrated the pathogenic basis of the disease-causing mutation and provided a deeper mechanistic understanding of a life-threatening cardiac arrhythmia.


Asunto(s)
Canal Liberador de Calcio Receptor de Rianodina , Taquicardia Ventricular , Ratones , Animales , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Calcio/metabolismo , Arritmias Cardíacas , Muerte Súbita Cardíaca/etiología , Miocitos Cardíacos/metabolismo , Mutación
11.
Res Sq ; 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37214948

RESUMEN

Background: Repurposing dantrolene as a potential disease-modifying treatment for Alzheimer's disease has been shown to be effective in amyloid transgenic mouse models but has not been examined in a model of tauopathy. Objective: The effects of a nanoparticle intranasal formulation, the Eagle Research Formulation of Ryanodex (ERFR), in young adult and aged wild type and PS19 tau transgenic mice was investigated. Methods: The bioavailability of intranasal ERFR was measured in 2 months and 9-12 month old C57BL/6J male mice. Mice received a single intranasal dose of ERFR and, after 20 min, blood and brain samples were collected. Dantrolene concentrations in the plasma and brain were analyzed by High Performance Liquid Chromatography. Animal behavior was examined in PS19 tau transgenic mice, with/without acrolein treatment to exacerbate cognitive deficits. Behavioral tests included cognition (cued and contextual fear conditioning, y-maze), motor function (rotarod), and olfaction (buried food test). Results: Dantrolene concentration in the blood and brain decreased with age, though the decrease was greater in the blood resulting in a higher brain to blood concentration ratio. The behavioral assays showed no significant changes in cognition, olfaction or motor function in the PS19 mice compared to controls after chronic ERFR treatment even with acrolein treatment. Conclusion: Our studies suggest that while we did not find PS19 mice to be a reliable Alzheimer animal model to test the therapeutic efficacy of dantrolene, the results suggest a potential for ERFR to be an effective chronic therapy for Alzheimer's disease and that further studies are indicated.

12.
Circ Arrhythm Electrophysiol ; 16(3): e011387, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36866681

RESUMEN

BACKGROUND: CaM (calmodulin) is a ubiquitously expressed, multifunctional Ca2+ sensor protein that regulates numerous proteins. Recently, CaM missense variants have been identified in patients with malignant inherited arrhythmias, such as long QT syndrome and catecholaminergic polymorphic ventricular tachycardia (CPVT). However, the exact mechanism of CaM-related CPVT in human cardiomyocytes remains unclear. In this study, we sought to investigate the arrhythmogenic mechanism of CPVT caused by a novel variant using human induced pluripotent stem cell (iPSC) models and biochemical assays. METHODS: We generated iPSCs from a patient with CPVT bearing CALM2 p.E46K. As comparisons, we used 2 control lines including an isogenic line, and another iPSC line from a patient with long QT syndrome bearing CALM2 p.N98S (also reported in CPVT). Electrophysiological properties were investigated using iPSC-cardiomyocytes. We further examined the RyR2 (ryanodine receptor 2) and Ca2+ affinities of CaM using recombinant proteins. RESULTS: We identified a novel de novo heterozygous variant, CALM2 p.E46K, in 2 unrelated patients with CPVT accompanied by neurodevelopmental disorders. The E46K-cardiomyocytes exhibited more frequent abnormal electrical excitations and Ca2+ waves than the other lines in association with increased Ca2+ leakage from the sarcoplasmic reticulum via RyR2. Furthermore, the [3H]ryanodine binding assay revealed that E46K-CaM facilitated RyR2 function especially by activating at low [Ca2+] levels. The real-time CaM-RyR2 binding analysis demonstrated that E46K-CaM had a 10-fold increased RyR2 binding affinity compared with wild-type CaM which may account for the dominant effect of the mutant CaM. Additionally, the E46K-CaM did not affect CaM-Ca2+ binding or L-type calcium channel function. Finally, antiarrhythmic agents, nadolol and flecainide, suppressed abnormal Ca2+ waves in E46K-cardiomyocytes. CONCLUSIONS: We, for the first time, established a CaM-related CPVT iPSC-CM model which recapitulated severe arrhythmogenic features resulting from E46K-CaM dominantly binding and facilitating RyR2. In addition, the findings in iPSC-based drug testing will contribute to precision medicine.


Asunto(s)
Células Madre Pluripotentes Inducidas , Síndrome de QT Prolongado , Taquicardia Ventricular , Humanos , Calmodulina/genética , Calmodulina/metabolismo , Miocitos Cardíacos/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Taquicardia Ventricular/metabolismo , Arritmias Cardíacas , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/metabolismo , Calcio/metabolismo , Mutación
13.
Eur J Med Genet ; 66(3): 104706, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36669590

RESUMEN

Disease causing variants in the Ryanodine receptor 1 (RYR1) gene are a common cause for congenital myopathy and for malignant hyperthermia susceptibility. We report a 17 year old boy with congenital muscle weakness progressing to a myasthenia like myopathy with muscle weakness, fatigability, ptosis, and ophthalmoplegia. Muscle biopsy showed predominance and atrophy of type 1 fibers. Whole-exome trio sequencing revealed three variants in the RYR1-gene in the patient: c.6721C > T,p.(Arg2241*) and c.2122G > A,p.(Asp708Asn) in cis position, and the c.325C > T,p.(Arg109Trp) variant in trans. Treatment with pyridostigmine improved symptoms. This case supports that a myasthenia like phenotype is part of the phenotypic spectrum of RYR1 related disorders, and that treatment with pyridostigmine can be beneficial for patients with this phenotype.


Asunto(s)
Enfermedades Musculares , Bromuro de Piridostigmina , Adolescente , Humanos , Masculino , Debilidad Muscular/genética , Músculo Esquelético/patología , Enfermedades Musculares/genética , Mutación , Fenotipo , Bromuro de Piridostigmina/uso terapéutico , Canal Liberador de Calcio Receptor de Rianodina/genética
14.
Circ Res ; 132(2): e59-e77, 2023 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-36583384

RESUMEN

BACKGROUND: PKA (protein kinase A)-mediated phosphorylation of cardiac RyR2 (ryanodine receptor 2) has been extensively studied for decades, but the physiological significance of PKA phosphorylation of RyR2 remains poorly understood. Recent determination of high-resolution 3-dimensional structure of RyR2 in complex with CaM (calmodulin) reveals that the major PKA phosphorylation site in RyR2, serine-2030 (S2030), is located within a structural pathway of CaM-dependent inactivation of RyR2. This novel structural insight points to a possible role of PKA phosphorylation of RyR2 in CaM-dependent inactivation of RyR2, which underlies the termination of Ca2+ release and induction of cardiac Ca2+ alternans. METHODS: We performed single-cell endoplasmic reticulum Ca2+ imaging to assess the impact of S2030 mutations on Ca2+ release termination in human embryonic kidney 293 cells. Here we determined the role of the PKA site RyR2-S2030 in a physiological setting, we generated a novel mouse model harboring the S2030L mutation and carried out confocal Ca2+ imaging. RESULTS: We found that mutations, S2030D, S2030G, S2030L, S2030V, and S2030W reduced the endoplasmic reticulum luminal Ca2+ level at which Ca2+ release terminates (the termination threshold), whereas S2030P and S2030R increased the termination threshold. S2030A and S2030T had no significant impact on release termination. Furthermore, CaM-wild-type increased, whereas Ca2+ binding deficient CaM mutant (CaM-M [a loss-of-function CaM mutation with all 4 EF-hand motifs mutated]), PKA, and Ca2+/CaMKII (CaM-dependent protein kinase II) reduced the termination threshold. The S2030L mutation abolished the actions of CaM-wild-type, CaM-M, and PKA, but not CaMKII, in Ca2+ release termination. Moreover, we showed that isoproterenol and CaM-M suppressed pacing-induced Ca2+ alternans and accelerated Ca2+ transient recovery in intact working hearts, whereas CaM-wild-type exerted an opposite effect. The impact of isoproterenol was partially and fully reversed by the PKA inhibitor N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinoline-sulfonamide and the CaMKII inhibitor N-[2-[N-(4-chlorocinnamyl)-N-methylaminomethyl]phenyl]-N-(2-hydroxyethyl)-4-methoxybenzenesulfonamide individually and together, respectively. S2030L abolished the impact of CaM-wild-type, CaM-M, and N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinoline-sulfonamide-sensitive component, but not the N-[2-[N-(4-chlorocinnamyl)-N-methylaminomethyl]phenyl]-N-(2-hydroxyethyl)-4-methoxybenzenesulfonamide-sensitive component, of isoproterenol.


Asunto(s)
Canal Liberador de Calcio Receptor de Rianodina , Serina , Ratones , Animales , Humanos , Isoproterenol/farmacología , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Serina/metabolismo , Serina/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Calmodulina/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Isoquinolinas/farmacología , Sulfonamidas/farmacología , Calcio/metabolismo , Miocitos Cardíacos/metabolismo , Retículo Sarcoplasmático/metabolismo
15.
J Mol Cell Cardiol ; 173: 1-15, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36084744

RESUMEN

The incidence of aortic valve stenosis (AS), the most common reason for aortic valve replacement (AVR), increases with population ageing. While untreated AS is associated with high mortality, different hemodynamic subtypes range from normal left-ventricular function to severe heart failure. However, the molecular nature underlying four different AS subclasses, suggesting vastly different myocardial fates, is unknown. Here, we used direct proteomic analysis of small left-ventricular biopsies to identify unique protein expression profiles and subtype-specific AS mechanisms. Left-ventricular endomyocardial biopsies were harvested from patients during transcatheter AVR, and inclusion criteria were based on echocardiographic diagnosis of severe AS and guideline-defined AS-subtype classification: 1) normal ejection fraction (EF)/high-gradient; 2) low EF/high-gradient; 3) low EF/low-gradient; and 4) paradoxical low-flow/low-gradient AS. Samples from non-failing donor hearts served as control. We analyzed 25 individual left-ventricular biopsies by data-independent acquisition mass spectrometry (DIA-MS), and 26 biopsies by histomorphology and cardiomyocytes by STimulated Emission Depletion (STED) superresolution microscopy. Notably, DIA-MS reliably detected 2273 proteins throughout each individual left-ventricular biopsy, of which 160 proteins showed significant abundance changes between AS-subtype and non-failing samples including the cardiac ryanodine receptor (RyR2). Hierarchical clustering segregated unique proteotypes that identified three hemodynamic AS-subtypes. Additionally, distinct proteotypes were linked with AS-subtype specific differences in cardiomyocyte hypertrophy. Furthermore, superresolution microscopy of immunolabeled biopsy sections showed subcellular RyR2-cluster fragmentation and disruption of the functionally important association with transverse tubules, which occurred specifically in patients with systolic dysfunction and may hence contribute to depressed left-ventricular function in AS.


Asunto(s)
Estenosis de la Válvula Aórtica , Trasplante de Corazón , Implantación de Prótesis de Válvulas Cardíacas , Humanos , Implantación de Prótesis de Válvulas Cardíacas/métodos , Volumen Sistólico , Microscopía , Proteómica , Canal Liberador de Calcio Receptor de Rianodina , Donantes de Tejidos , Válvula Aórtica , Función Ventricular Izquierda/fisiología , Biopsia , Resultado del Tratamiento
16.
Anaesth Intensive Care ; 50(4): 312-319, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35549722

RESUMEN

Dantrolene is currently the only drug known to specifically treat malignant hyperthermia (MH) crises. Although dantrolene attenuates Ca2+ disorders by acting mainly on the ryanodine receptor type 1 (RYR1), some patients who manifest MH without RYR1 variants have also been successfully treated with dantrolene. Thus, dantrolene appears to have an inhibitory effect on patients with and without RYR1 variants. This study aimed to investigate whether the effects of dantrolene differed depending on the presence or absence of RYR1 variants using muscle cells from MH-predisposed individuals. The study participants were individuals diagnosed with MH predisposition by the Ca2+-induced Ca2+ release rate test. They were genetically tested and divided into two groups: with and without RYR1 variants. We investigated whether these two groups showed differences in the changes in the half-maximal effective concentration (EC50) for caffeine and the resting intracellular Ca2+ concentration ([Ca2+]i) before and after dantrolene administration. Dantrolene administration significantly increased the EC50 (P < 0.0001) and decreased the resting [Ca2+]i (P < 0.0001). The inhibitory effects of dantrolene and the presence of RYR1 variants showed no statistically significant interactions related to the EC50 (P = 0.59) and resting [Ca2+]i (P = 0.21). In conclusion, the presence or absence of RYR1 variants does not appear to influence the effect of dantrolene.


Asunto(s)
Hipertermia Maligna , Cafeína/farmacología , Calcio/metabolismo , Dantroleno/farmacología , Humanos , Hipertermia Maligna/tratamiento farmacológico , Hipertermia Maligna/genética , Mutación , Canal Liberador de Calcio Receptor de Rianodina/genética
18.
Structure ; 30(1): 172-180.e3, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34469755

RESUMEN

The type 1 ryanodine receptor (RyR)/calcium release channel on the sarcoplasmic reticulum (SR) is required for skeletal muscle excitation-contraction coupling and is the largest known ion channel, composed of four 565-kDa protomers. Cryogenic electron microscopy (cryo-EM) studies of the RyR have primarily used detergent to solubilize the channel; in the present study, we have used cryo-EM to solve high-resolution structures of the channel in liposomes using a gel-filtration approach with on-column detergent removal to form liposomes and incorporate the channel simultaneously. This allowed us to resolve the structure of the channel in the primed and open states at 3.4 and 4.0 Å, respectively, with a single dataset. This method offers validation for detergent-based structures of the RyR and offers a starting point for utilizing a chemical gradient mimicking the SR, where Ca2+ concentrations are millimolar in the lumen and nanomolar in the cytosol.


Asunto(s)
Músculo Esquelético/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/química , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Animales , Calcio/metabolismo , Cromatografía en Gel , Microscopía por Crioelectrón , Citosol/metabolismo , Detergentes , Liposomas/química , Liposomas/metabolismo , Modelos Moleculares , Músculo Esquelético/química , Conformación Proteica , Dominios Proteicos , Conejos , Canal Liberador de Calcio Receptor de Rianodina/genética , Retículo Sarcoplasmático/química
19.
Br J Pharmacol ; 179(11): 2558-2563, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34698387

RESUMEN

Flecainide is used to treat catecholaminergic polymorphic ventricular tachycardia (CPVT), an arrhythmia caused by disrupted cellular Ca2+ handling following ß-adrenergic stimulation. The clinical efficacy of flecainide in this context involves complex effects on multiple ion channels that may be influenced by the disease state. A compelling narrative has been constructed around flecainide's nonselective block of sarcoplasmic reticulum (SR) lumen-to-cytoplasm Ca2+ release through intracellular calcium release channels (RyR2). However, ion fluxes across the SR membrane during heart contraction are bidirectional, and here, we review experimental evidence that flecainide's principal action on RyR2 involves the partial block of ion flow in the cytoplasm-to-lumen direction (i.e., flecainide inhibits RyR2-mediated SR 'countercurrent'). Experimental approaches that could advance new knowledge on the mechanism of RyR2 block by flecainide are proposed. Some impediments to progress in this area, that must be overcome to enable the development of superior drugs to treat CPVT, are also considered.


Asunto(s)
Flecainida , Taquicardia Ventricular , Antiarrítmicos/farmacología , Antiarrítmicos/uso terapéutico , Calcio/metabolismo , Flecainida/farmacología , Flecainida/uso terapéutico , Humanos , Mutación , Miocitos Cardíacos , Canal Liberador de Calcio Receptor de Rianodina , Retículo Sarcoplasmático , Taquicardia Ventricular/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA