Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biomedicines ; 12(6)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38927454

RESUMEN

The complex regulation of traction forces (TF) produced during cellular migration remains poorly understood. We have previously found that calpain 4 (Capn4), the small non-catalytic subunit of the calpain 1 and 2 proteases, regulates the production of TF independent of the proteolytic activity of the larger subunits. Capn4 was later found to facilitate tyrosine phosphorylation and secretion of the lectin-binding protein galectin-3 (Gal3). In this study, recombinant Gal3 (rGal3) was added to the media-enhanced TF generated by capn4-/- mouse embryonic fibroblasts (MEFs). Extracellular Gal3 also rescued defects in the distribution, morphology, and adhesive strength of focal adhesions present in capn4-/- MEF cells. Surprisingly, extracellular Gal3 does not influence mechanosensing. c-Abl kinase was found to affect Gal3 secretion and the production of TF through phosphorylation of Y107 on Gal3. Our study also suggests that Gal3-mediated regulation of TF occurs through signaling pathways triggered by ß1 integrin but not by focal adhesion kinase (FAK) Y397 autophosphorylation. Our findings provide insights into the signaling mechanism by which Capn4 and secreted Gal3 regulate cell migration through the modulation of TF distinctly independent from a mechanosensing mechanism.

2.
J Biomol Struct Dyn ; : 1-21, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38517058

RESUMEN

Chronic myeloid leukemia (CML) is a hematological malignancy characterized by the neoplastic transformation of hematopoietic stem cells, driven by the Philadelphia (Ph) chromosome resulting from a translocation between chromosomes 9 and 22. This Ph chromosome harbors the breakpoint cluster region (BCR) and the Abelson (ABL) oncogene (BCR-ABL1) which have a constitutive tyrosine kinase activity. However, the tyrosine kinase activity of BCR-ABL1 have been identified as a key player in CML initiation and maintenance through c-Abl kinase. Despite advancements in tyrosine kinase inhibitors, challenges such as efficacy, safety concerns, and recurring drug resistance persist. This study aims to discover potential c-Abl kinase inhibitors from plant compounds with anti-leukemic properties, employing drug-likeness assessment, molecular docking, in silico pharmacokinetics (ADMET) screening, density function theory (DFT), and molecular dynamics simulations (MDS). Out of 58 screened compounds for drug-likeness, 44 were docked against c-Abl kinase. The top hit compound (isovitexin) and nilotinib (control drug) were subjected to rigorous analyses, including ADMET profiling, DFT evaluation, and MDS for 100 ns. Isovitexin demonstrated a notable binding affinity (-15.492 kcal/mol), closely comparable to nilotinib (-16.826 kcal/mol), showcasing a similar binding pose and superior structural stability and reactivity. While these findings suggest isovitexin as a potential c-Abl kinase inhibitor, further validation through urgent in vitro and in vivo experiments is imperative. This research holds promise for providing an alternative avenue to address existing CML treatment and management challenges.Communicated by Ramaswamy H. Sarma.

3.
Cell Rep ; 42(12): 113489, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-38039132

RESUMEN

Double-strand breaks (DSBs) are the most severe type of DNA damage. Previously, we demonstrated that RNA polymerase II (RNAPII) phosphorylated at the tyrosine 1 (Y1P) residue of its C-terminal domain (CTD) generates RNAs at DSBs. However, the regulation of transcription at DSBs remains enigmatic. Here, we show that the damage-activated tyrosine kinase c-Abl phosphorylates hSSB1, enabling its interaction with Y1P RNAPII at DSBs. Furthermore, the trimeric SOSS1 complex, consisting of hSSB1, INTS3, and c9orf80, binds to Y1P RNAPII in response to DNA damage in an R-loop-dependent manner. Specifically, hSSB1, as a part of the trimeric SOSS1 complex, exhibits a strong affinity for R-loops, even in the presence of replication protein A (RPA). Our in vitro and in vivo data reveal that the SOSS1 complex and RNAPII form dynamic liquid-like repair compartments at DSBs. Depletion of the SOSS1 complex impairs DNA repair, underscoring its biological role in the R-loop-dependent DNA damage response.


Asunto(s)
Proteínas de Unión al ADN , ARN Polimerasa II , ARN Polimerasa II/metabolismo , Proteínas de Unión al ADN/metabolismo , Separación de Fases , Reparación del ADN , Daño del ADN
4.
Front Cell Dev Biol ; 10: 844297, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35399514

RESUMEN

Niemann-Pick type A (NPA) disease is a fatal lysosomal neurodegenerative disorder caused by the deficiency in acid sphingomyelinase (ASM) activity. NPA patients present severe and progressive neurodegeneration starting at an early age. Currently, there is no effective treatment for this disease and NPA patients die between 2 and 3 years of age. NPA is characterized by an accumulation of sphingomyelin in lysosomes and dysfunction in the autophagy-lysosomal pathway. Recent studies show that c-Abl tyrosine kinase activity downregulates autophagy and the lysosomal pathway. Interestingly, this kinase is also activated in other lysosomal neurodegenerative disorders. Here, we describe that c-Abl activation contributes to the mechanisms of neuronal damage and death in NPA disease. Our data demonstrate that: 1) c-Abl is activated in-vitro as well as in-vivo NPA models; 2) imatinib, a clinical c-Abl inhibitor, reduces autophagy-lysosomal pathway alterations, restores autophagy flux, and lowers sphingomyelin accumulation in NPA patient fibroblasts and NPA neuronal models and 3) chronic treatment with nilotinib and neurotinib, two c-Abl inhibitors with differences in blood-brain barrier penetrance and target binding mode, show further benefits. While nilotinib treatment reduces neuronal death in the cerebellum and improves locomotor functions, neurotinib decreases glial activation, neuronal disorganization, and loss in hippocampus and cortex, as well as the cognitive decline of NPA mice. Our results support the participation of c-Abl signaling in NPA neurodegeneration and autophagy-lysosomal alterations, supporting the potential use of c-Abl inhibitors for the clinical treatment of NPA patients.

5.
Respir Res ; 19(1): 4, 2018 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-29304860

RESUMEN

BACKGROUND: Airway smooth muscle contraction is critical for maintenance of appropriate airway tone, and has been implicated in asthma pathogenesis. Smooth muscle contraction requires an "engine" (myosin activation) and a "transmission system" (actin cytoskeletal remodeling). However, the mechanisms that control actin remodeling in smooth muscle are not fully elucidated. The adapter protein Crk-associated substrate (CAS) regulates actin dynamics and the contraction in smooth muscle. In addition, profilin-1 (Pfn-1) and Abelson tyrosine kinase (c-Abl) are also involved in smooth muscle contraction. The interplays among CAS, Pfn-1 and c-Abl in smooth muscle have not been previously investigated. METHODS: The association of CAS with Pfn-1 in mouse tracheal rings was evaluated by co-immunoprecipitation. Tracheal rings from c-Abl conditional knockout mice were used to assess the roles of c-Abl in the protein-protein interaction and smooth muscle contraction. Decoy peptides were utilized to evaluate the importance of CAS/Pfn-1 coupling in smooth muscle contraction. RESULTS: Stimulation with acetylcholine (ACh) increased the interaction of CAS with Pfn-1 in smooth muscle, which was regulated by CAS tyrosine phosphorylation and c-Abl. The CAS/Pfn-1 coupling was also modified by the phosphorylation of cortactin (a protein implicated in Pfn-1 activation). In addition, ACh activation promoted the spatial redistribution of CAS and Pfn-1 in smooth muscle cells, which was reduced by c-Abl knockdown. Inhibition of CAS/Pfn-1 interaction by a decoy peptide attenuated the ACh-induced actin polymerization and contraction without affecting myosin light chain phosphorylation. Furthermore, treatment with the Src inhibitor PP2 and the actin polymerization inhibitor latrunculin A attenuated the ACh-induced c-Abl tyrosine phosphorylation (an indication of c-Abl activation). CONCLUSIONS: Our results suggest a novel activation loop in airway smooth muscle: c-Abl promotes the CAS/Pfn-1 coupling and actin polymerization, which conversely facilitates c-Abl activation. The positive feedback may render c-Abl in active state after contractile stimulation.


Asunto(s)
Proteína Sustrato Asociada a CrK/metabolismo , Contracción Muscular/fisiología , Miocitos del Músculo Liso/fisiología , Profilinas/metabolismo , Proteínas Proto-Oncogénicas c-abl/metabolismo , Secuencia de Aminoácidos , Animales , Células Cultivadas , Femenino , Técnicas de Inactivación de Genes , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Tráquea/citología , Tráquea/fisiología
6.
J Cell Biochem ; 119(3): 2806-2817, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29058761

RESUMEN

The excessive recruitment and improper activation of polymorphonuclear neutrophils (PMNs) often induces serious injury of host tissues, leading to inflammatory disorders. Therefore, to understand the molecular mechanism on neutrophil recruitment possesses essential pathological and physiological importance. In this study, we found that physiological shear stress induces c-Abl kinase activation in neutrophils, and c-Abl kinase inhibitor impaired neutrophil crawling behavior on ICAM-1. We further identified Vav1 was a downstream effector phosphorylated at Y174 and Y267. Once activated, c-Abl kinase regulated the activity of Vav1, which further affected Rac1/PAK1/LIMK1/cofilin signaling pathway. Here, we demonstrate a novel signaling function and critical role of c-Abl kinase during neutrophil crawling under physiological shear by regulating Vav1. These findings provide a promising treatment strategy for inflammation-related disease by inactivation of c-Abl kinase to restrict neutrophil recruitment.


Asunto(s)
Factores Despolimerizantes de la Actina/metabolismo , Movimiento Celular , Quinasas Lim/metabolismo , Neutrófilos/metabolismo , Proteínas Proto-Oncogénicas c-abl/metabolismo , Resistencia al Corte , Transducción de Señal , Quinasas p21 Activadas/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Femenino , Células HEK293 , Humanos , Masculino , Neutrófilos/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA