Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 952
Filtrar
1.
Nano Lett ; 24(37): 11438-11445, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39240764

RESUMEN

Polymeric membranes with high permselective performance are desirable for energy-saving bioalcohol separations. However, it remains challenging to design membrane microstructures with low-resistance channels and a thin thickness for fast alcohol transport. Herein, we demonstrate highly crystalline covalent organic framework (COF) membranes with ordered nanochannels as tunable transport layers for efficient butanol/water separation. The thickness was well-regulated by altering the concentration and molar ratio of two aldehyde monomers with different reactivity. The surface-integrated poly(dimethylsiloxane) produced defect-free and hydrophobic COF membranes. The membrane with continuous transport channels exhibited an exceptional flux of up to 18.8 kg m-2 h-1 and a pervaporation separation index of 217.7 kg m-2 h-1 for separating 5 wt % n-butanol/water. The separation efficiency exceeded that of analogous membranes. The calculated mass-transfer coefficient of butanol followed an inverse relationship with the COF membrane thickness. Consequently, this work reveals the great potential of crystalline polymeric membranes with high-density nanopores for biofuel recovery.

2.
ACS Chem Neurosci ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39268711

RESUMEN

Cerebral blood flow and blood-brain barrier permeability assessment are crucial hemodynamic parameters to measure under neurological conditions. In conjunction with positron emission tomography (PET), oxygen-15-labeled water has emerged as a gold standard for measuring cerebral perfusion; however, at higher flow rates, [15O]water extraction becomes nonlinear. In such a scenario, freely diffusible [11C]butanol can provide a truer estimate. Radiosyntheses of [11C]butanol reported to date are protracted, are not automated, or require ethanol in the final formulation. By using a flow-based, captive solvent approach on a commercially available radiosynthesizer, we automated and reduced the synthesis time to 28 min. Forgoing cartridge-based purification for an aqueous high-performance liquid chromatography method, we obtained high purity [11C]butanol in ethanol-free phosphate buffered saline in sufficient yields for clinical PET studies. We here report our expedited, automated, and ethanol-free radiosynthesis of [11C]butanol along with preliminary imaging of a porcine subject.

3.
Front Bioeng Biotechnol ; 12: 1423935, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39219620

RESUMEN

Since their first industrial application in the acetone-butanol-ethanol (ABE) fermentation in the early 1900s, Clostridia have found large application in biomass biorefining. Overall, their fermentation products include organic acids (e.g., acetate, butyrate, lactate), short chain alcohols (e.g., ethanol, n-butanol, isobutanol), diols (e.g., 1,2-propanediol, 1,3-propanediol) and H2 which have several applications such as fuels, building block chemicals, solvents, food and cosmetic additives. Advantageously, several clostridial strains are able to use cheap feedstocks such as lignocellulosic biomass, food waste, glycerol or C1-gases (CO2, CO) which confer them additional potential as key players for the development of processes less dependent from fossil fuels and with reduced greenhouse gas emissions. The present review aims to provide a survey of research progress aimed at developing Clostridium-mediated biomass fermentation processes, especially as regards strain improvement by metabolic engineering.

4.
Food Chem X ; 23: 101720, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39229611

RESUMEN

In this study, tea polyphenol oxidase (PPO) was purified via three-phase partitioning (TPP) using a deep eutectic solvent (DES) instead of t-butanol. First, the properties of 13 types of synthesized DESs were characterized, and DES-7 (thymol/dodecanoic acid) was selected as the best alternative solvent. The process parameters were optimized using response surface methodology. The experimental results revealed that when the (NH4)2SO4 concentration, DES to crude extract ratio, extraction time, and pH were 41%, 0.5:1, 75 min, and 5.6, respectively, the recovery and purification fold of tea PPO were 78.44% and 8.26, respectively. SDS-PAGE and native-PAGE were used to analyze the PPO before and after purification of the TTP system, and the molecular weight and purification effect of PPO were detected. Moreover, the DES could be recovered and recycled. The results indicate an environmentally friendly and stable DES, and provide a reference for the large-scale application of TPP to extract PPO.

5.
IUCrdata ; 9(Pt 8): x240845, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39247082

RESUMEN

The title structure, {[Cu(C4H11NO)3][Cu4(CN)6]·[Cu(C4H10NO)2(H2O)]·H2O} n , is made up of diperiodic honeycomb CuICN networks built from [Cu4(CN)6]2- units, together with two independent CuII complexes: six-coord-inate [Cu(CH3CH2CH(NH2)CH2OH)3]2+ cations, and five-coordinate [Cu(CH3CH2CH(NH2)CH2O)2·H2O] neutral species. The two CuII complexes are not covalently bonded to the CuICN networks. Strong O-H⋯O hydrogen bonds link the CuII complexes into pairs and the pairs are hydrogen bonded into chains along the crystallographic b axis via the hydrate water mol-ecule. In addition, O-H⋯(CN) and N-H⋯(CN) hydrogen bonds link the cations to the CuCN network. In the honeycomb polymeric moiety, all bridging cyanido ligands are disordered over two orientations, head-to-tail and tail-to-head, with occupancies for C and N atoms varying for each CN group.

6.
Appl Environ Microbiol ; : e0101224, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39258917

RESUMEN

Bioconversion of abundant lactose-replete whey permeate to value-added chemicals holds promise for valorization of this expanding food processing waste. Efficient conversion of whey permeate-borne lactose requires adroit microbial engineering to direct carbon to the desired chemical. An engineered strain of Clostridium beijerinckii NCIMB 8052 (C. beijerinckii_mgsA+mgR) that produces 87% more butanol on lactose than the control strain was assessed for global transcriptomic changes. The results revealed broadly contrasting gene expression patterns in C. beijerinckii_mgsA+mgR relative to the control strain. These were characterized by widespread decreases in the abundance of mRNAs of Fe-S proteins in C. beijerinckii_mgsA+mgR, coupled with increased differential expression of lactose uptake and catabolic genes, iron uptake genes, two-component signal transduction and motility genes, and genes involved in the biosynthesis of vitamins B5 and B12, aromatic amino acids (particularly tryptophan), arginine, and pyrimidines. Conversely, the mRNA patterns suggest that the L-aspartate-dependent de novo biosynthesis of NAD as well as biosynthesis of lysine and asparagine and metabolism of glycine and threonine were likely down-regulated. Furthermore, genes involved in cysteine and methionine biosynthesis and metabolism, including cysteine desulfurase-a central player in Fe-S cluster biosynthesis-equally showed reductions in mRNA abundance. Genes involved in biosynthesis of capsular polysaccharides and stress response also showed reduced mRNA abundance in C. beijerinckii_mgsA+mgR. The results suggest that remodeling of cellular and metabolic networks in C. beijerinckii_mgsA+mgR to counter anticipated effects of methylglyoxal production from heterologous expression of methylglyoxal synthase led to enhanced growth and butanol production in C. beijerinckii_mgsA+mgR. IMPORTANCE: Biological production of commodity chemicals from abundant waste streams such as whey permeate represents an opportunity for decarbonizing chemical production. Whey permeate remains a vastly underutilized feedstock for bioproduction purposes. Thus, enhanced understanding of the cellular and metabolic repertoires of lactose-mediated production of chemicals such as butanol promises to identify new targets that can be fine tuned in recombinant and native microbial strains to engender stronger coupling of whey permeate-borne lactose to value-added chemicals. Our results highlight new genetic targets for future engineering of C. beijerinckii for improved butanol production on lactose and ultimately in whey permeate.

7.
Methods Mol Biol ; 2851: 39-60, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39210170

RESUMEN

Gram-positive bacteria, including lactic acid bacteria (LAB), possess lipoteichoic acid (LTA) on the cell surface. LTA is an amphiphilic molecule typically composed of hydrophilic glycerolphosphate polymer and hydrophobic anchor glycolipid moieties. It is involved in physiological properties of the cell surface and also plays roles in interactions with the host. Appropriate preparation procedures, such as extraction and purification, are required to clarify the structure-activity relationship. Structural diversity of LTA has been reported at the bacterial species and strain levels, and structural differences might affect interactions with the host. This chapter introduces techniques for preparation and structural analysis of LTA derived from LAB. It consists of four sections, covering butanol extraction, hydrophobic interaction chromatography, immunoblotting, and structural analysis. Technical notes containing supplemental information about the individual steps are also provided.


Asunto(s)
Membrana Celular , Lactobacillales , Lipopolisacáridos , Ácidos Teicoicos , Ácidos Teicoicos/química , Lipopolisacáridos/química , Lactobacillales/metabolismo , Membrana Celular/metabolismo , Membrana Celular/química , Interacciones Hidrofóbicas e Hidrofílicas
8.
Pharmaceuticals (Basel) ; 17(8)2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39204182

RESUMEN

Ulcerative colitis (UC) is a chronic inflammatory disease, the incidence of which is increasing worldwide. However, the etiology and pathogenesis of UC remains unclear. The n-butanol extract of Pulsatilla decoction (BEPD), a traditional Chinese medicine, has been shown to be effective in treating UC. This study aimed to explore the molecular mechanism underlying the effects of BEPD on UC, in particular its effects on neutrophil extracellular trap (NET) formation by neutrophils. High-performance liquid chromatography was used to determine the principal compounds of BEPD. UC was induced in mice using dextran sodium sulfate, and mice were treated with 20, 40, or 80 mg/kg BEPD daily for seven days. Colonic inflammation was determined by assessing the disease activity index, histopathology, colonic mucosal damage index, colonic mucosal permeability, and pro- and anti-inflammatory cytokine levels. The infiltration and activation status of neutrophils in the colon were determined by analyzing the levels of chemokine (C-X-C motif) ligand (CXCL) 1 and CXCL2, reactive oxygen species, Ly6G, and numerous NET proteins. The findings suggest that BEPD improved the disease activity index, histopathology, and colonic mucosal damage index scores of mice with UC, and restored colonic mucosal permeability compared with untreated mice. The expression levels of the pro-inflammatory cytokines interleukin-1ß, interleukin-6, and tumor necrosis factor-α in colon tissues were significantly decreased, while the expression levels of anti-inflammatory cytokines in colon tissues were significantly increased, exceeding those of control mice. In addition, BEPD reduced the expression of the neutrophil chemokines CXCL1 and CXCL2 in the colon tissue of mice with UC, reduced neutrophil infiltration, reduced reactive oxygen species levels, and significantly reduced the expression of NET proteins. BEPD also significantly reduced NET formation. The results of this study suggest that BEPD exerts therapeutic effects in a murine model of UC by inhibiting neutrophil infiltration and activation in the colon, as well as by inhibiting the expression of key proteins involved in NET formation and reducing NET formation, thereby alleviating local tissue damage and disease manifestations.

9.
Environ Sci Pollut Res Int ; 31(39): 52105-52117, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39138727

RESUMEN

Nanocrystalline Fe2O3-NiO composite catalysts were prepared using a sonication-assisted green preparation method. The prepared catalysts were characterized using different techniques, including thermal analyses (TGA/DTA), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, surface area measurements (SBET), and scanning electron microscopy (SEM). The surface basicity of the prepared catalysts was measured using the temperature-programmed desorption of CO2 (CO2-TPD) as a highly acidic probe molecule. The catalytic activity of all the prepared catalysts was tested at a temperature range of 250-325 °C towards the dehydrogenation of 2-butanol to methyl-ethyl ketone (MEK), which is considered a promising fossil fuel alternative and has several industrial applications. The composite catalysts showed better catalytic activity compared to the pure oxides (i.e., Fe2O3 and NiO) due to the strong synergetic effect between the two oxides. Fe2O3 prevented the coke formation over the surface of NiO by the oxygen-scavenging effect of Fe, which promotes the oxidation of the carbonaceous species and increases the catalyst's resistance to deactivation. The effect of weight hourly space velocity (WHSV) on the catalytic activity was tested over a selected catalyst. In addition, the stability and durability of the catalyst were tested across four successive reaction cycles, demonstrating remarkable performance throughout all the reaction cycles.


Asunto(s)
Compuestos Férricos , Catálisis , Compuestos Férricos/química , Difracción de Rayos X , Níquel/química , Espectroscopía Infrarroja por Transformada de Fourier , Nanopartículas/química , Butanoles
10.
mLife ; 3(2): 317-325, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38948144

RESUMEN

Hyperthermus butylicus is a hyperthermophilic crenarchaeon that produces 1-butanol as an end product. A thermostable alcohol dehydrogenase (ADH) must be present in H. butylicus to act as the key enzyme responsible for this production; however, the gene that encodes the ADH has not yet been identified. A novel ADH, HbADH2, was purified from a cell-free extract of H. butylicus, and its characteristics were determined. The gene that encodes HbADH2 was demonstrated to be HBUT_RS04850 and annotated as a hypothetical protein in H. butylicus. HbADH2 was found to be a primary-secondary ADH capable of using a wide range of substrates, including butyraldehyde and butanol. Butyraldehyde had the highest specificity constant, calculated as k c at/K m, with k cat and apparent K m values of 8.00 ± 0.22 s-1 and 0.59 ± 0.07 mM, respectively. The apparent K m values for other substrates, including ethanol, 1-propanol, 2-propanol, butanol, acetaldehyde, propanal, and acetone, were 4.36 ± 0.42, 4.69 ± 0.41, 3.74 ± 0.46, 2.44 ± 0.30, 1.27 ± 0.18, 1.55 ± 0.20, and 0.68 ± 0.04 mM, respectively. The optimal pH values for catalyzing aldehyde reduction and alcohol oxidation were 6.0 and 9.0, respectively, while the optimal temperature was higher than 90°C due to the increase in enzymatic activity from 60°C to 90°C. Based on its substrate specificity, enzyme kinetics, and thermostability, HbADH2 may be the ADH that catalyzes the production of 1-butanol in H. butylicus. The putative conserved motif sites for NAD(P)+ and iron binding were identified by aligning HbADH2 with previously characterized Fe-containing ADHs.

11.
Environ Sci Pollut Res Int ; 31(34): 46858-46876, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38981967

RESUMEN

Renewable and sustainable biofuel production, such as biobutanol, is becoming increasingly popular as a substitute for non-renewable and depleted petrol fuel. Many researchers have studied how to produce butanol cheaply by considering appropriate feedstock materials and bioprocess technologies. The production of biobutanol through acetone-butanol-ethanol (ABE) is highly sought after around the world because of its sustainable supply and lack of competition with food. The purpose of this study is to present the current biobutanol production research and to analyse the biobutanol research conducted during 2006 to 2023. The keyword used in this study is "Biobutanol," and the relevant data was extracted from the Web of Science database (WoS). According to the results, institutions and scholars from the People's Republic of China, the USA, and India have the highest number of cited papers across a broad spectrum of topics including acetone-butanol-ethanol (ABE) fermentation, biobutanol, various pretreatment techniques, and pervaporation. The success of biobutanol fermentation from biomass depends on the ability of the fermentation operation to match the microbial behaviour along with the appropriate bioprocessing strategies to improve the entire process to be suitable for industrial scale. Based on the review data, we will look at the biobutanol technologies and appropriate strategies that have been developed to improve biobutanol production from renewable biomass.


Asunto(s)
Biocombustibles , Butanoles , Fermentación , Butanoles/metabolismo , Etanol/metabolismo , Acetona , Biomasa
12.
Plant Mol Biol ; 114(4): 86, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39023668

RESUMEN

Abiotic stress is a major factor affecting crop productivity. Chemical priming is a promising strategy to enhance tolerance to abiotic stress. In this study, we evaluated the use of 1-butanol as an effectual strategy to enhance drought stress tolerance in Arabidopsis thaliana. We first demonstrated that, among isopropanol, methanol, 1-butanol, and 2-butanol, pretreatment with 1-butanol was the most effective for enhancing drought tolerance. We tested the plants with a range of 1-butanol concentrations (0, 10, 20, 30, 40, and 50 mM) and further determined that 20 mM was the optimal concentration of 1-butanol that enhanced drought tolerance without compromising plant growth. Physiological tests showed that the enhancement of drought tolerance by 1-butanol pretreatment was associated with its stimulation of stomatal closure and improvement of leaf water retention. RNA-sequencing analysis revealed the differentially expressed genes (DEGs) between water- and 1-butanol-pretreated plants. The DEGs included genes involved in oxidative stress response processes. The DEGs identified here partially overlapped with those of ethanol-treated plants. Taken together, the results show that 1-butanol is a novel chemical priming agent that effectively enhances drought stress tolerance in Arabidopsis plants, and provide insights into the molecular mechanisms of alcohol-mediated abiotic stress tolerance.


Asunto(s)
1-Butanol , Arabidopsis , Sequías , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico , Arabidopsis/genética , Arabidopsis/efectos de los fármacos , Arabidopsis/fisiología , 1-Butanol/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Agua
13.
Zhongguo Zhong Yao Za Zhi ; 49(11): 3021-3030, 2024 Jun.
Artículo en Chino | MEDLINE | ID: mdl-39041162

RESUMEN

This study aimed to investigate the protective effect and its underlying mechanism of n-butanol extract of Pulsatilla Decoction(BEPD) containing medicinal serum on vaginal epithelial cells under Candida glabrata stimulation via the epidermal growth factor receptor/mitogen activated protein kinase( EGFR/MAPK) pathway based on transcriptomics. A vulvovaginal candidiasis(VVC) mouse model was established first and transcriptome sequencing was performed for the vaginal mucosa tissues to analyze the gene expression differences among the control, VVC model, and BEPD intervention groups. Simultaneously, BEPD-containing serum and fluconazole-containing serum were prepared. A431 cells were divided into the control, model, blank serum, fluconazole-containing serum, BEPD-containing serum, EGFR agonist and EGFR inhibitor groups. Additionally, in vitro experiments were conducted using BEPD-containing serum, fluconazole-containing serum, and an EGFR agonist and inhibitor to investigate the intervention mechanisms of BEPD on C. glabrata-induced vaginal epithelial cell damage. Cell counting kit-8(CCK-8) assay was utilized to determine the safe concentrations of C. glabrata, drug-containing serum, and compounds on A431 cells. Enzyme-linked immunosorbent assay(ELISA)was employed to measure the expression levels of interleukin(IL)-1ß, IL-6, granulocyte-macrophage colony-stimulating factor(GMCSF), granulocyte CSF(G-CSF), chemokine(C-X-C motif) ligand 20(CCL20), and lactate dehydrogenase(LDH). Gram staining was used to evaluate the adhesion of C. glabrata to vaginal epithelial cells. Flow cytometry was utilized to assess the effect of C.glabrata on A431 cell apoptosis. Based on the transcriptomics results, immunofluorescence was performed to measure the expressions of p-EGFR and p-ERK1/2 proteins, while Western blot validated the expressions of p-EGFR, p-ERK1/2, p-C-Fos, p-P38, Bax and Bcl-2 proteins. Sequencing results showed that compared with the VVC model, BEPD treatment up-regulated 1 075 genes and downregulated 927 genes, mainly enriched in immune-inflammatory pathways, including MAPK. Mechanistically, BEPD significantly reduced the expression of p-EGFR, p-ERK1/2, p-C-Fos and p-P38, as well as the secretion of IL-1ß, IL-6, GM-CSF, G-CSF and CCL20, LDH release induced by C. glabrata, and the adhesion of C. glabrata to A431 cells, suggesting that BEPD exerts a protective effect on vaginal epithelial cells damaged by C. glabrata infection by modulating the EGFR/MAPK axis. In addition, BEPD downregulated the pro-apoptotic protein Bax expression and up-regulated the anti-apoptotic protein Bcl-2 expression, leading to a reduction in C. glabrata-induced cell apoptosis. In conclusion, this study reveals that the intervention of BEPD in C. glabrata-induced VVC may be attributed to its regulation of the EGFR/MAPK pathway, which protects vaginal epithelial cells.


Asunto(s)
Candida albicans , Células Epiteliales , Receptores ErbB , Pulsatilla , Vagina , Femenino , Receptores ErbB/genética , Receptores ErbB/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Vagina/microbiología , Vagina/efectos de los fármacos , Candida albicans/efectos de los fármacos , Ratones , Humanos , Animales , Pulsatilla/química , Transcriptoma/efectos de los fármacos , 1-Butanol/química , Medicamentos Herbarios Chinos/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Candidiasis Vulvovaginal/tratamiento farmacológico , Candidiasis Vulvovaginal/microbiología , Sustancias Protectoras/farmacología , Sustancias Protectoras/química , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Candida glabrata/efectos de los fármacos , Candida glabrata/genética
14.
Nanomaterials (Basel) ; 14(14)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39057865

RESUMEN

The efficient detection of n-butanol, which is in demand for highly sensitive materials, is essential for multiple applications. A nonaqueous method was applied to prepare NiFe2O4 nanoparticles (NPs) using benzyl alcohol as a solvent, which shows a size of 7.9 ± 1.6 nm and a large surface area of 82.23 m2/g. To further improve the sensing performance for n-butanol, Pd/PdO functionalization was sensitized with NiFe2O4 NPs. Gas sensing results demonstrate that the Pd/PdO-NiFe2O4 exhibits an enhanced response of 36.9 to 300 ppm n-butanol and a fast response and recovery time (18.2/17.6 s) at 260 °C. Furthermore, the Pd/PdO-NiFe2O4-based sensor possesses a good linear relationship between responses and the n-butanol concentration from 1 to 1000 ppm, and great selectivity against other volatile organic compounds (VOCs). The excellent sensing enhancement is attributed to the catalytic effects of Pd/PdO, the increase of oxygen vacancies, and the formation of heterojunction between PdO and NiFe2O4. Thus, this study offers an effective route for the synthesis of Pd/PdO-functionalized NiFe2O4 NPs to achieve n-butanol detection with excellent sensing performance.

15.
Proteins ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39023292

RESUMEN

Butanol dehydrogenase (BDH) plays a crucial role in butanol biosynthesis by catalyzing the conversion of butanal to butanol using the coenzyme NAD(P)H. In this study, we observed that BDH from Thermotoga maritima (TmBDH) exhibits dual coenzyme specificity and catalytic activity with NADPH as the coenzyme under highly alkaline conditions. Additionally, a thermal stability analysis on TmBDH demonstrated its excellent activity retention even at elevated temperatures of 80°C. These findings demonstrate the superior thermal stability of TmBDH and suggest that it is a promising candidate for large-scale industrial butanol production. Furthermore, we discovered that TmBDH effectively catalyzes the conversion of aldehydes to alcohols and exhibits a wide range of substrate specificities toward aldehydes, while excluding alcohols. The dimeric state of TmBDH was observed using rapid online buffer exchange native mass spectrometry. Additionally, we analyzed the coenzyme-binding sites and inferred the possible locations of the substrate-binding sites. These results provide insights that improve our understanding of BDHs.

16.
Molecules ; 29(14)2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39064973

RESUMEN

Few studies have reported on the continuous evolution of dual-linker zeolitic imidazolate frameworks' (ZIFs) structure and morphology during the crystal growth process. Herein, we report the synthesis of a novel ZIF material with CHA topology (ZIF-301-eIm) via the combination of a small-sized 2-ethylimidazole (eIm) with the large-sized 5-chlorobenzimidazole ligand. A series of derivative materials with distinct structures and morphologies were obtained via two pathways: (1) insufficient amount of eIm with prolonged crystallization time (pathway A) and (2) sufficient amount of eIm with prolonged crystallization time (pathway B). Various characterization techniques revealed the continuous evolution of structure and morphology during the crystal growth process. Insufficient amount of eIm and crystallization time (crystallization pathway A) led to ZIF-301-eIm derivatives with defective and open structures alongside an aggregated morphology of nanoparticles. Prolonging the crystallization time allowed small-sized eIm ligands to gradually fill into the framework, resulting in the formation of ZIF-301-eIm-A5 characterized by complete but dense structures with a perfect polyhedral morphology. Remarkably, a sufficient amount of eIm during synthesis (crystallization pathway B) formed ZIF-301-eIm-B1 with a similar structure and morphology to ZIF-301-eIm-A5 in just 1 day. ZIF-301-eIm-B3, with intact, dense structures, exhibits superior acetone/butanol separation performance compared to ZIF-301-eIm-A3 due to small pore windows and large cages facilitating selective adsorption of acetone through exclusion separation.

17.
Molecules ; 29(14)2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39064975

RESUMEN

The objective of this study was to evaluate the effect of pretreatment and different technological conditions on the course of ABE fermentation of rye straw (RS) and the composition of volatile compounds in the distillates obtained. The highest concentration of ABE and butanol was obtained from the fermentation of pretreated rye straw by alkaline hydrolysis followed by detoxification and enzymatic hydrolysis. After 72 h of fermentation, the maximum butanol concentration, productivity, and yield from RS were 16.11 g/L, 0.224 g/L/h, and 0.402 g/g, respectively. Three different methods to produce butanol were tested: the two-step process (SHF), the simultaneous process (SSF), and simultaneous saccharification with ABE fermentation (consolidation SHF/SSF). The SHF/SSF process observed that ABE concentration (21.28 g/L) was higher than in the SSF (20.03 g/L) and lower compared with the SHF (22.21 g/L). The effect of the detoxification process and various ABE fermentation technologies on the composition of volatile compounds formed during fermentation and distillation were analyzed.


Asunto(s)
Butanoles , Fermentación , Secale , Compuestos Orgánicos Volátiles , Secale/química , Secale/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Compuestos Orgánicos Volátiles/análisis , Butanoles/metabolismo , Hidrólisis , Destilación
18.
Eur J Pharm Sci ; 200: 106855, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39029716

RESUMEN

Resveratrol (RES) has demonstrated advantages as anti-cancer, anti-inflammatory, blood sugar-lowering agent and as cardioprotective agent, among others. Despite RES therapeutic advantages its use in pharmaceutical applications is limited by its low oral bioavailability, mainly due to its poor water solubility. Formulation of poorly water-soluble compound as solid dispersion (SD) converts a crystalline into a more soluble in water amorphous drug. Lyophilization or freeze-drying is a process in which water, an organic solvent, or a co-solvent system is frozen, followed by its removal from the sample, initially by sublimation (primary drying) and then by desorption (secondary drying). This study aimed the development and optimization of a bulk freeze-drying cycle by critical process parameters assessment in each phase to prepare a RES third-generation SD, containing Eudragit E PO as hydrophilic polymer at 1:2 ratio, and Gelucire 44/14 as surfactant at 16 % (w/w) to RES, using a tert-butanol (TBA)/Acetate buffer pH 4.5 (75:25) co-solvent system. A RES third-generation SD with good appearance, not cracked, collapsed, or melted was prepared by an optimized and robust bulk lyophilization process. A physicochemical characterization confirmed the conversion of RES to the amorphous state in the SD and formulation stability after 1 month at 40 °C/75 % RH. Increased solubility and higher dissolution rate compared with pure RES were also obtained.


Asunto(s)
Liofilización , Resveratrol , Solubilidad , Liofilización/métodos , Resveratrol/química , Resveratrol/administración & dosificación , Estabilidad de Medicamentos , Estilbenos/química , Química Farmacéutica/métodos
19.
Materials (Basel) ; 17(13)2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38998155

RESUMEN

This paper describes studies on the preparation of an o-cresol-furfural-formaldehyde resin in the presence of an alkaline catalyst and its modification with n-butanol or 2-ethylhexanol. The novelty of this research is to obtain a furfural-based resin of the resole type and its etherification. Such resins are not described in the literature and also are not available on the market. The obtained resin based on furfural, which can be obtained from agricultural waste, had a low minimum content of free o-cresol < 1 wt.%, furfural < 0.1 wt.%, and formaldehyde < 0.1 wt.%. The resin structure was characterized by mass spectrometry (ESI-MS), FT-IR, and NMR spectroscopy, which showed the presence of hydroxymethylene groups in the resin before modification and alkyl groups derived from n-butanol and 2-ethylhexanol after modification. The etherified resins had a lower viscosity and were more flexible (DSC) than the resin before modification and they can be used as an environmentally friendly, safe, and sustainable alternative to traditional phenol-formaldehyde resins in the paint industry. They demonstrate the ability to create a protective coating with good adherence to metal substrates and an excellent balance of flexibility and hardness.

20.
Biotechnol Biofuels Bioprod ; 17(1): 87, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38915101

RESUMEN

BACKGROUND: Inhibitors that are released from lignocellulose biomass during its treatment represent one of the major bottlenecks hindering its massive utilization in the biotechnological production of chemicals. This study demonstrates that negative effect of inhibitors can be mitigated by proper feeding strategy. Both, crude undetoxified lignocellulose hydrolysate and complex medium supplemented with corresponding inhibitors were tested in acetone-butanol-ethanol (ABE) fermentation using Clostridium beijerinckii NRRL B-598 as the producer strain. RESULTS: First, it was found that the sensitivity of C. beijerinckii to inhibitors varied with different growth stages, being the most significant during the early acidogenic phase and less pronounced during late acidogenesis and early solventogenesis. Thus, a fed-batch regime with three feeding schemes was tested for toxic hydrolysate (no growth in batch mode was observed). The best results were obtained when the feeding of an otherwise toxic hydrolysate was initiated close to the metabolic switch, resulting in stable and high ABE production. Complete utilization of glucose, and up to 88% of xylose, were obtained. The most abundant inhibitors present in the alkaline wheat straw hydrolysate were ferulic and coumaric acids; both phenolic acids were efficiently detoxified by the intrinsic metabolic activity of clostridia during the early stages of cultivation as well as during the feeding period, thus preventing their accumulation. Finally, the best feeding strategy was verified using a TYA culture medium supplemented with both inhibitors, resulting in 500% increase in butanol titer over control batch cultivation in which inhibitors were added prior to inoculation. CONCLUSION: Properly timed sequential feeding effectively prevented acid-crash and enabled utilization of otherwise toxic substrate. This study unequivocally demonstrates that an appropriate biotechnological process control strategy can fully eliminate the negative effects of lignocellulose-derived inhibitors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA