Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 13(17)2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39273991

RESUMEN

Primary nectar-robbers feed through holes they make in flowers, often bypassing the plant's reproductive organs in the process. In many robbed plants, multiple holes are made in a single flower. Why a flower should be robbed repeatedly is difficult to understand: a hole signals that a nectar forager has already fed, which would seem likely to predict low rewards. We tested three explanations for this pattern in Corydalis caseana (Fumariaceae), a bumble bee pollinated and robbed plant: (1) multiple holes appear only after all flowers have been robbed once; (2) individual foragers make multiple holes during single visits; and (3) it is more profitable for bees to rob older flowers, even if they have already been robbed. We tested these hypotheses from 2014 to 2016 in a Colorado, USA population using data on robbing rates over time, floral longevity, nectar accumulation in visited and unvisited flowers, and the accumulation of robbing holes across the life of flowers. Multiple holes were already appearing when two-thirds of flowers still lacked a single hole, allowing us to reject the first hypothesis. The second hypothesis cannot offer a full explanation for multiple robbing holes because 35% of additional holes appeared in flowers one or more days after the first hole was made. Repeated sampling of bagged and exposed inflorescences revealed that flowers filled at a constant rate and refilled completely after being drained. Consequently, young flowers are of consistently low value to foragers compared to older flowers even if they had previously been robbed, consistent with the third hypothesis. While further studies are needed, these results offer a simple explanation for the paradoxical clustering of nectar-robbing damage in this and possibly other plant species.

2.
Syst Appl Microbiol ; 47(2-3): 126505, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38564984

RESUMEN

The increase in studies on bee microbiomes is prompted by concerns over global pollinator declines. Bumble bees host core and non-core microbiota which may contribute to increased lifetime fitness. The presence of Fructobacillus in the gut microbiomes of bumble bee workers, or the replacement of core symbionts with Fructobacillus bacteria, has been considered a marker of dysbiosis. A phylogenomic analysis and functional genomic characterization of the genomes of 21 Fructobacillus isolates from bumble bees demonstrated that they represented four species, i.e. Fructobacillus cardui, Fructobacillus fructosus, Fructobacillus tropaeoli, and the novel species Fructobacillus evanidus sp. nov. Our results confirmed and substantiated the presence of two phylogenetically and functionally distinct Fructobacillus species clades that differ in genome size, percentage G + C content, the number of coding DNA sequences and metabolic characteristics. Clade 1 and clade 2 species differed in amino acid and, to a lesser extent, in carbohydrate metabolism, with F. evanidus and F. tropaeoli genomes featuring a higher number of complete metabolic pathways. While Fructobacillus genomes encoded genes that allow adhesion, biofilm formation, antibacterial activity and detoxification, other bacteria isolated from the bumble bee gut appeared better equipped to co-exist with the bumble bee host. The isolation and identification of multiple Fructobacillus species from several bumble bee gut samples in the present study also argued against a specific partnership between Fructobacillus species and their bumble bee hosts.


Asunto(s)
Composición de Base , ADN Bacteriano , Genoma Bacteriano , Filogenia , Abejas/microbiología , Animales , Genoma Bacteriano/genética , ADN Bacteriano/genética , Microbioma Gastrointestinal , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Genómica , Simbiosis , Tamaño del Genoma
3.
Toxicon ; 239: 107616, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38218384

RESUMEN

The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae), is a key vector of the phloem-limited bacteria Candidatus Liberibacter asiaticus (CLas) associated with huanglongbing (HLB), the most serious and currently incurable disease of citrus worldwide. Here we report the first investigation into the potential use of a spider venom-derived recombinant neurotoxin, ω/κ-HxTx-Hv1h (hereafter HxTx-Hv1h) when delivered alone or when fused to snowdrop lectin (Galanthus nivalis agglutinin; GNA) to control D. citri. Proteins, including GNA alone, were purified from fermented transformed yeast Pichia pastoris cultures. Recombinant HxTx-Hv1h, HxTx-Hv1h/GNA and GNA were all orally toxic to D. citri, with Day 5 median lethal concentrations (LC50) derived from dose-response artificial diet assays of 27, 20 and 52 µM, respectively. Western analysis of whole insect protein extracts confirmed that psyllid mortality was attributable to protein ingestion and that the fusion protein was stable to cleavage by D. citri proteases. When applied topically (either via droplet or spray) HxTx-Hv1h/GNA was the most effective of the proteins causing >70 % mortality 5 days post treatment, some 2 to 3-fold higher levels of mortality as compared to the toxin alone. By contrast, no significant mortality or phenotypic effects were observed for bumble bees (Bombus terrestris L.) fed on the recombinant proteins in acute toxicity assays. This suggests that HxTx-Hv1h/GNA has potential as a novel bioinsecticide for the management of D. citri offering both enhanced target specificity as compared to chemical pesticides and compatibility with integrated pest management (IPM) strategies.


Asunto(s)
Citrus , Hemípteros , Liberibacter , Animales , Hemípteros/fisiología , Neurotoxinas , Citrus/microbiología , Enfermedades de las Plantas/microbiología
4.
Appl Environ Microbiol ; 90(2): e0173923, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38240563

RESUMEN

Social bees are frequently exposed to pesticides when foraging on nectar and pollen. Recent research has shown that pesticide exposure not only impacts social bee host health but can also alter the community structure of social bee gut microbiotas. However, most research on pesticide-bee gut microbiota interactions has been conducted in honey bees; bumble bees, native North American pollinators, have received less attention and, due to differences in their ecology, may be exposed to certain pesticides for shorter durations than honey bees. Here, we examine how exposure to the fungicide chlorothalonil for a short, field-realistic duration alters bumble bee fecal microbiotas (used as a proxy for gut microbiotas) and host performance. We expose small groups of Bombus impatiens workers (microcolonies) to field-realistic chlorothalonil concentrations for 5 days, track changes in fecal microbiotas during the exposure period and a recovery period, and compare microcolony offspring production between treatments at the end of the experiment. We also assess the use of fecal microbiotas as a gut microbiota proxy by comparing community structures of fecal and gut microbiotas. We find that chlorothalonil exposure for a short duration does not alter bumble bee fecal microbiota structure or affect microcolony production at any concentration but that fecal and gut microbiotas differ significantly in community structure. Our results show that, at least when exposure durations are brief and unaccompanied by other stressors, bumble bee microbiotas are resilient to fungicide exposure. Additionally, our work highlights the importance of sampling gut microbiotas directly, when possible.IMPORTANCEWith global pesticide use expected to increase in the coming decades, studies on how pesticides affect the health and performance of animals, including and perhaps especially pollinators, will be crucial to minimize negative environmental impacts of pesticides in agriculture. Here, we find no effect of exposure to chlorothalonil for a short, field-realistic period on bumble bee fecal microbiota community structure or microcolony production regardless of pesticide concentration. Our results can help inform pesticide use practices to minimize negative environmental impacts on the health and fitness of bumble bees, which are key native, commercial pollinators in North America. We also find that concurrently sampled bumble bee fecal and gut microbiotas contain similar microbes but differ from one another in community structure and consequently suggest that using fecal microbiotas as a proxy for gut microbiotas be done cautiously; this result contributes to our understanding of proxy use in gut microbiota research.


Asunto(s)
Fungicidas Industriales , Microbiota , Plaguicidas , Abejas , Animales , Fungicidas Industriales/toxicidad , Plaguicidas/toxicidad , Nitrilos
5.
Proc Biol Sci ; 291(2015): 20232463, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38264776

RESUMEN

Evidence for a trade-off between reproduction and immunity has manifested in many animal species, including social insects. However, investigations in social insect queens present a conundrum: new gynes of many social hymenopterans, such as bumble bees and ants, must first mate, then transition from being solitary to social as they establish their nests, thus experiencing confounding shifts in environmental conditions. Worker bumble bees offer an opportunity to investigate patterns of immune protein expression associated with ovary activation while minimizing extraneous environmental factors and genetic differences. Here, we use proteomics to interrogate the patterns of immune protein expression of female bumble bees (Bombus impatiens) by (i) sampling queens at different stages of their life cycle, then (ii) by sampling workers with different degrees of ovary activation. Patterns of immune protein expression in the haemolymph of queens are consistent with a reproduction-immunity trade-off, but equivalent samples from workers are not. This brings into question whether queen bumble bees really experience a reproduction-immunity trade-off, or if patterns of immune protein expression may actually be due to the selective pressure of the different environmental conditions they are exposed to during their life cycle.


Asunto(s)
Hormigas , Ovario , Femenino , Abejas , Animales , Reproducción , Hemolinfa , Pelvis
6.
Environ Sci Technol ; 58(1): 54-62, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38127782

RESUMEN

The ongoing global decline of bees threatens biodiversity and food safety as both wild plants and crops rely on bee pollination to produce viable progeny or high-quality products in high yields. Pesticide exposure is a major driving force for the decline, yet pesticide use remains unreconciled with bee conservation since studies demonstrate that bees continue to be heavily exposed to and threatened by pesticides in crops and natural habitats. Pharmaceutical methods, including the administration of phytochemicals, probiotics (beneficial bacteria), and recombinant proteins (enzymes) with detoxification functions, show promise as potential solutions to mitigate pesticide poisonings. We discuss how these new methods can be appropriately developed and applied in agriculture from bee biology and ecotoxicology perspectives. As countless phytochemicals, probiotics, and recombinant proteins exist, this Perspective will provide suggestive guidance to accelerate the development of new techniques by directing research and resources toward promising candidates. Furthermore, we discuss practical limitations of the new methods mentioned above in realistic field applications and propose recommendations to overcome these limitations. This Perspective builds a framework to allow researchers to use new detoxification techniques more efficiently in order to mitigate the harmful impacts of pesticides on bees.


Asunto(s)
Plaguicidas , Probióticos , Abejas , Animales , Agricultura/métodos , Polinización , Fitoquímicos , Proteínas Recombinantes
7.
Sci Total Environ ; 912: 169388, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38104805

RESUMEN

Bumble bees are an important group of insects that provide essential pollination services as a consequence of their foraging behaviors. These pollination services are driven, in part, by energetic exchanges between flowering plants and individual bees. Thus, it is important to examine bumble bee energy metabolism and explore how it might be influenced by external stressors contributing to declines in global pollinator populations. Two stressors that are commonly encountered by bees are insecticides, such as the neonicotinoids, and nutritional stress, resulting from deficits in pollen and nectar availability. Our study uses a metabolomic approach to examine the effects of neonicotinoid insecticide exposure on bumble bee metabolism, both alone and in combination with nutritional stress. We hypothesized that exposure to imidacloprid disrupts bumble bee energy metabolism, leading to changes in key metabolites involved in central carbon metabolism. We tested this by exposing Bombus impatiens workers to imidacloprid according to one of three exposure paradigms designed to explore how chronic versus more acute (early or late) imidacloprid exposure influences energy metabolite levels, then also subjecting them to artificial nectar starvation. The strongest effects of imidacloprid were observed when bees also experienced nectar starvation, suggesting a combinatorial effect of neonicotinoids and nutritional stress on bumble bee energy metabolism. Overall, this study provides important insights into the mechanisms underlying the impact of neonicotinoid insecticides on pollinators, and underscores the need for further investigation into the complex interactions between environmental stressors and energy metabolism.


Asunto(s)
Insecticidas , Nitrocompuestos , Abejas , Animales , Insecticidas/toxicidad , Néctar de las Plantas , Neonicotinoides/toxicidad , Polinización , Metabolismo Energético
8.
Mol Biol Evol ; 40(12)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38039153

RESUMEN

Müllerian mimicry provides natural replicates ideal for exploring mechanisms underlying adaptive phenotypic divergence and convergence, yet the genetic mechanisms underlying mimetic variation remain largely unknown. The current study investigates the genetic basis of mimetic color pattern variation in a highly polymorphic bumble bee, Bombus breviceps (Hymenoptera, Apidae). In South Asia, this species and multiple comimetic species converge onto local Müllerian mimicry patterns by shifting the abdominal setal color from orange to black. Genetic crossing between the orange and black phenotypes suggested the color dimorphism being controlled by a single Mendelian locus, with the orange allele being dominant over black. Genome-wide association suggests that a locus at the intergenic region between 2 abdominal fate-determining Hox genes, abd-A and Abd-B, is associated with the color change. This locus is therefore in the same intergenic region but not the same exact locus as found to drive red black midabdominal variation in a distantly related bumble bee species, Bombus melanopygus. Gene expression analysis and RNA interferences suggest that differential expression of an intergenic long noncoding RNA between abd-A and Abd-B at the onset setal color differentiation may drive the orange black color variation by causing a homeotic shift late in development. Analysis of this same color locus in comimetic species reveals no sequence association with the same color shift, suggesting that mimetic convergence is achieved through distinct genetic routes. Our study establishes Hox regions as genomic hotspots for color pattern evolution in bumble bees and demonstrates how pleiotropic developmental loci can drive adaptive radiations in nature.


Asunto(s)
Mimetismo Biológico , Estudio de Asociación del Genoma Completo , Abejas/genética , Animales , Fenotipo , Mimetismo Biológico/genética , Edición Génica , ADN Intergénico/genética
9.
Insects ; 14(8)2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37623417

RESUMEN

Circadian clocks regulate ecologically important complex behaviors in honey bees, but it is not clear whether similar capacities exist in other species of bees. One key behavior influenced by circadian clocks is time-memory, which enables foraging bees to precisely time flower visitation to periods of maximal pollen or nectar availability and reduces the costs of visiting a non-rewarding flower patch. Bumble bees live in smaller societies and typically forage over shorter distances than honey bees, and it is therefore not clear whether they can similarly associate reward with time of day. We trained individually marked bumble bee (Bombus terrestris) workers to forage for sugar syrup in a flight cage with yellow or blue feeders rewarding either during the morning or evening. After training for over two weeks, we recorded all visitations to colored feeders filled with only water. We performed two experiments, each with a different colony. We found that bees tended to show higher foraging activity during the morning and evening training sessions compared to other times during the day. During the test day, the trained bees were more likely to visit the rewarding rather than the non-rewarding colored feeders at the same time of day during the test sessions, indicating that they associated time of day and color with the sugar syrup reward. These observations lend credence to the hypothesis that bumble bees have efficient time-memory, indicating that this complex behavior is not limited to honey bees that evolved sophisticated social foraging behaviors over large distances.

10.
J Insect Physiol ; 149: 104552, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37549842

RESUMEN

Pollen serves as a crucial source of protein and lipids for numerous insects. Despite the importance of pollen lipids for nutrient regulation in bees, the digestibility and absorption of different fatty acids (FAs) by bees remain poorly understood. We used 13C labeled fatty acids (FAs) to investigate the absorption and allocation of three common dietary FAs in pollen by bumble bees. Palmitic acid, the most common saturated FA in pollen, was poorly absorbed, even when supplied as tripalmitate, emulsified, or mixed in vegetable oil. In contrast, the essential linoleic acid was absorbed and allocated at the highest rate among the three FAs tested. Oleic acid, a non-essential monounsaturated FA, was absorbed and oxidized at lower rates than linoleic acid. Notably, a feeding rate experiment revealed that different fatty acids did not affect the consumption rate of pollen. This results suggests that the specific FA's absorption efficiency and allocation differ in bumble bees, impacting their utilization. These findings demonstrate the importance of considering the digestibility and absorption of different FAs. Furthermore, the study highlights the influence of pollen lipid composition on the nutritional content for pollinators and raises questions about the utilization of polyunsaturated FAs in insect metabolism.


Asunto(s)
Ácidos Grasos , Polen , Abejas , Animales , Ácidos Grasos/metabolismo , Ácidos Linoleicos
11.
J Insect Physiol ; 150: 104557, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37625783

RESUMEN

Juvenile hormone (JH) regulates developmental and physiological processes in insects. In bumble bees, the hormone acts as a gonadotropin that mediates ovary development, but the exact physiological pathways involved in ovary activation and subsequent egg laying are poorly understood. In this study, we examine how queen hibernation state, caste, and species impact the gonadotropic effect of JH in bumble bee queens through methoprene (JH analogue) application. We extend previous research by assessing queen egg laying and colony initiation, alongside ovary development. Furthermore, we compared sensitivity of workers of both species to the juvenile hormone's gonadotropic effect. In both bumble bee species, the ovaries of hibernated queens were developed five to six days after breaking diapause, regardless of methoprene treatment. By contrast, methoprene did have a stimulatory effect on ovary development in non-hibernated queens. The dose needed to obtain this effect was higher in B. impatiens. Methoprene did not have gonadotropic effects in callow workers of both species. These results indicate that the physiological effect of exogenous methoprene application varies according to species, caste and hibernation status. Interestingly, despite gonadotropic effects in non-hibernated queens, oviposition was not accelerated by JH. This suggests that JH alone is insufficient to induce egg laying and that an additional stimulus, which is naturally present in hibernated queens, is required. Consequently, our findings indicate that other physiological processes, beyond a rise in JH alone, are required for oviposition and colony initiation.

12.
Plant Divers ; 45(3): 315-325, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37397606

RESUMEN

Floral trait variation may help pollinators and nectar robbers identify their target plants and, thus, lead to differential selection pressure for defense capability against floral antagonists. However, the effect of floral trait variation among individuals within a population on multi-dimensional plant-animal interactions has been little explored. We investigated floral trait variation, pollination, and nectar robbing among individual plants in a population of the bumble bee-pollinated plant, Caryopteris divaricata, from which flowers are also robbed by bumble bees with varying intensity across individuals. We measured the variation in corolla tube length, nectar volume and sugar concentration among individual plants, and evaluated whether the variation were recognized by pollinators and robbers. We investigated the influence of nectar robbing on legitimate visitation and seed production per fruit. We found that the primary nectar robber (Bombus nobilis) preferred to forage on plants with long-tubed flowers, which produced less nectar and had lower sugar concentration compared to those with shorter corolla tubes. Individuals with shorter corolla tubes had comparatively lower nectar robbing intensity but higher visitation by legitimate visitors (mainly B. picipes) and higher seed production. Nectar robbing significantly reduced seed production because it decreased pollinator visits. However, neither pollination nor seed production differed between plants with long and short corolla tubes when nectar robbers were excluded. This finding suggests that floral trait variation might not be driven by pollinators. Such variation among individual plants thus allows legitimate visitors and nectar robbers to segregate niches and enhances population defense against nectar robbing in unpredictable conditions.

13.
Ecol Evol ; 13(2): e9778, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36744081

RESUMEN

Understanding historical range shifts and population size variation provides an important context for interpreting contemporary genetic diversity. Methods to predict changes in species distributions and model changes in effective population size (N e) using whole genomes make it feasible to examine how temporal dynamics influence diversity across populations. We investigate N e variation and climate-associated range shifts to examine the origins of a previously observed latitudinal heterozygosity gradient in the bumble bee Bombus vancouverensis Cresson (Hymenoptera: Apidae: Bombus Latreille) in western North America. We analyze whole genomes from a latitude-elevation cline using sequentially Markovian coalescent models of N e through time to test whether relatively low diversity in southern high-elevation populations is a result of long-term differences in N e. We use Maxent models of the species range over the last 130,000 years to evaluate range shifts and stability. N e fluctuates with climate across populations, but more genetically diverse northern populations have maintained greater N e over the late Pleistocene and experienced larger expansions with climatically favorable time periods. Northern populations also experienced larger bottlenecks during the last glacial period, which matched the loss of range area near these sites; however, bottlenecks were not sufficient to erode diversity maintained during periods of large N e. A genome sampled from an island population indicated a severe postglacial bottleneck, indicating that large recent postglacial declines are detectable if they have occurred. Genetic diversity was not related to niche stability or glacial-period bottleneck size. Instead, spatial expansions and increased connectivity during favorable climates likely maintain diversity in the north while restriction to high elevations maintains relatively low diversity despite greater stability in southern regions. Results suggest genetic diversity gradients reflect long-term differences in N e dynamics and also emphasize the unique effects of isolation on insular habitats for bumble bees. Patterns are discussed in the context of conservation under climate change.

14.
Insect Sci ; 30(6): 1734-1748, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36734172

RESUMEN

Recent developments allowed establishing virtual-reality (VR) setups to study multiple aspects of visual learning in honey bees under controlled experimental conditions. Here, we adopted a VR environment to investigate the visual learning in the buff-tailed bumble bee Bombus terrestris. Based on responses to appetitive and aversive reinforcements used for conditioning, we show that bumble bees had the proper appetitive motivation to engage in the VR experiments and that they learned efficiently elemental color discriminations. In doing so, they reduced the latency to make a choice, increased the proportion of direct paths toward the virtual stimuli and walked faster toward them. Performance in a short-term retention test showed that bumble bees chose and fixated longer on the correct stimulus in the absence of reinforcement. Body size and weight, although variable across individuals, did not affect cognitive performances and had a mild impact on motor performances. Overall, we show that bumble bees are suitable experimental subjects for experiments on visual learning under VR conditions, which opens important perspectives for invasive studies on the neural and molecular bases of such learning given the robustness of these insects and the accessibility of their brain.


Asunto(s)
Encéfalo , Realidad Virtual , Abejas , Animales , Cabeza
15.
Proc Natl Acad Sci U S A ; 120(5): e2211223120, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36689649

RESUMEN

The acute decline in global biodiversity includes not only the loss of rare species, but also the rapid collapse of common species across many different taxa. The loss of pollinating insects is of particular concern because of the ecological and economic values these species provide. The western bumble bee (Bombus occidentalis) was once common in western North America, but this species has become increasingly rare through much of its range. To understand potential mechanisms driving these declines, we used Bayesian occupancy models to investigate the effects of climate and land cover from 1998 to 2020, pesticide use from 2008 to 2014, and projected expected occupancy under three future scenarios. Using 14,457 surveys across 2.8 million km2 in the western United States, we found strong negative relationships between increasing temperature and drought on occupancy and identified neonicotinoids as the pesticides of greatest negative influence across our study region. The mean predicted occupancy declined by 57% from 1998 to 2020, ranging from 15 to 83% declines across 16 ecoregions. Even under the most optimistic scenario, we found continued declines in nearly half of the ecoregions by the 2050s and mean declines of 93% under the most severe scenario across all ecoregions. This assessment underscores the tenuous future of B. occidentalis and demonstrates the scale of stressors likely contributing to rapid loss of related pollinator species throughout the globe. Scaled-up, international species-monitoring schemes and improved integration of data from formal surveys and community science will substantively improve the understanding of stressors and bumble bee population trends.


Asunto(s)
Plaguicidas , Abejas , Animales , Teorema de Bayes , Biodiversidad , Insectos , Clima
16.
J Hazard Mater ; 443(Pt B): 130304, 2023 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-36368063

RESUMEN

The response of bee species to various stressors is assumed to depend on the availability of sufficient nutrients in their environment. We compare the response of three bee species (Apis mellifera, Bombus terrestris, Osmia bicornis) under laboratory conditions. Survival, physiology, and sensitivity, after exposure to the fungicide prochloraz, the insecticide chlorantraniliprole, and their mixture with different nutritional resources (sugar only, sugar with amino acids or pollen) were observed. Prochloraz reduced the bee survival of A. mellifera and O. bicornis fed with pollen, but not with other diets. Chlorantraniliprole impaired the survival of A. mellifera fed with sugar or pollen diet, but not with amino acid diet. The mixture impaired survival of A. mellifera and O. bicornis in association with every diet. B. terrestris was only affected by chlorantraniliprole and its mixture with prochloraz fed with sugar diet. The activity of P450 reductase was higher in A. mellifera fed with amino acids in all treatments, whereas no effect emerged in O. bicornis and B. terrestris. Our results indicate that the sensitivity of bee species after exposure to agrochemicals is affected by diet. Thus, balanced and species-dependent nutrition ameliorated the effects. Further field studies are necessary to evaluate the potential effects of such mixtures on bee populations.


Asunto(s)
Plaguicidas , Abejas , Animales , ortoaminobenzoatos/toxicidad , Azúcares , Aminoácidos
17.
Glob Chang Biol ; 28(21): 6165-6179, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36184909

RESUMEN

Pollinators at high elevations face multiple threats from climate change including heat stress, failure to phenological match advancing flower resources and competitive pressure from range-expanding species of lower elevations. We conducted long-term multi-site surveys of alpine bumble bees to determine how phenology of range-stable and range-expanding species is responding to climate change. We ask whether bumble bee responses generate mismatches with floral resources, and whether these mismatches in turn promote community disruption and potential species replacement. In alpine environments of the central Rocky Mountains, range-stable and range-expanding bumble bees exhibit phenological mismatches with flowering host plants due to earlier flowering of preferred resources under warmer spring temperatures. However, workers of range-stable species are more canalised in their foraging schedules, exploiting a relatively narrow portion of the flowering season. Specifically, range-stable species show less variance in phenology in response to temporally and spatially changing conditions than range-expanding ones. Because flowering duration drives the seasonal abundance of floral resources at the landscape scale, we hypothesize that canalisation of phenology in alpine bumble bees could reduce their access to earlier or later season flowers. Warmer conditions are decreasing abundances of range-stable alpine bumble bees above the timberline, increasing abundance of range-expanding species, and facilitating a novel and more species-diverse bumble bee community. However, this trend is not explained by greater phenological mismatch of range-stable bees. Results suggest that conversion of historic habitats for cold-adapted alpine bumble bee species into refugia for more heat-tolerant congeners is disrupting bumble bee communities at high elevations, though the precise mechanisms accounting for these changes are not yet known. If warming continues, we predict that the transient increase in diversity due to colonization by historically low-elevation species will likely give way to declines of alpine bumble bees in the central Rocky Mountains.


Asunto(s)
Flores , Magnoliopsida , Animales , Abejas , Cambio Climático , Ecosistema , Plantas , Estaciones del Año
18.
Microorganisms ; 10(9)2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36144402

RESUMEN

The use of fungal-based biopesticides to reduce pest damage and protect crop quality is often considered a low-risk control strategy. Nevertheless, risk assessment of mycopesticides is still needed since pests and beneficial insects, such as pollinators, co-exist in the same agroecosystem where mass use of this strategy occurs. In this context, we evaluated the effect of five concentrations of three commercial entomopathogenic fungi, Beauveria bassiana, Metarhizium anisopliae, and Cordyceps fumosorosea, by direct contact and ingestion, on the tropical stingless bees Scaptotrigona depilis and Tetragonisca angustula, temperate bee species, the honey bee Apis mellifera, and the bumble bee Bombus terrestris, at the individual level. Furthermore, we studied the potential of two infection routes, either by direct contact or ingestion. In general, all three fungi caused considerable mortalities in the four bee species, which differed in their response to the different fungal species. Scaptotrigona depilis and B. terrestris were more susceptible to B. bassiana than the other fungi when exposed topically, and B. terrestris and A. mellifera were more susceptible to M. anisopliae when exposed orally. Interestingly, increased positive concentration responses were not observed for all fungal species and application methods. For example, B. terrestris mortalities were similar at the lowest and highest fungal concentrations for both exposure methods. This study demonstrates that under laboratory conditions, the three fungal species can potentially reduce the survival of social bees at the individual level. However, further colony and field studies are needed to elucidate the susceptibility of these fungi towards social bees to fully assess the ecological risks.

19.
Insect Biochem Mol Biol ; 149: 103831, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36058439

RESUMEN

Carbon dioxide (CO2) has pleiotropic effects on insect physiology and behavior. Although diverse, many impacts are related to changes in metabolism and reallocation of macronutrients. Here we examined the metabolic shift induced by CO2 and its regulation using Bombus impatiens. CO2 applied to bumble bee gynes induces bypass of diapause and transition into reproduction. We analyzed ovary activation and macronutrient amounts in four tissues/body parts (fat body, thorax, ovaries, and crop) at three timepoints following CO2 administration. To tease apart the effects of CO2 on reproduction and metabolism, we monitored the metabolic changes in gynes following ovary removal and CO2 narcosis. We also explored the role of juvenile hormone in mediating CO2 impact by feeding queens with a JH antagonist (Precocene). Gynes ovary activation was increased following CO2 treatment. Additionally, CO2-treated gynes showed lower lipid amount in the fat body and higher glycogen and protein amount in the ovary ten days after the treatment. CO2 treatment following ovary removal also resulted in decreased fat body lipids, suggesting that CO2 operates by inducing a metabolic shift independent of reproduction. Lastly, gynes fed with precocence did not show a metabolic shift following CO2, suggesting CO2 impact is mediated via juvenile hormone. Overall, these data suggest that CO2 induces transfer of macronutrients and utilization of stored reserved by accelerating metabolism. The proposed mechanism of CO2 may explain many of the pleiotropic effects of CO2 across species and can aid in understanding how this common anastatic influences insect physiology.


Asunto(s)
Hormonas Juveniles , Estupor , Animales , Abejas , Dióxido de Carbono , Femenino , Glucógeno/farmacología , Hormonas Juveniles/metabolismo , Lípidos/farmacología , Reproducción/fisiología
20.
Insects ; 13(9)2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36135517

RESUMEN

During recent decades, bumble bees (Bombus terrestris) have continuously expanded their range in the Mediterranean climate regions of Israel. To assess their potential effects on local bee communities, we monitored their diurnal and seasonal activity patterns, as well as those of native bee species in the Judean Hills. We found that all bee species tend to visit pollen-providing flowers at earlier times compared to nectar-providing flowers. Bumble bees and honey bees start foraging at earlier times and colder temperatures compared to other species of bees. This means that the two species of commercially managed social bees are potentially depleting much of the pollen, which is typically non-replenished, before most local species arrive to gather it. Taking into consideration the long activity season of bumble bees in the Judean hills, their ability to forage at the low temperatures of the early morning, and their capacity to collect pollen at early hours in the dry Mediterranean climate, feral and range-expanding bumble bees potentially pose a significant competitive pressure on native bee fauna. Their effects on local bees can further modify pollination networks, and lead to changes in the local flora.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA