Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros











Intervalo de año de publicación
1.
Front Plant Sci ; 15: 1424689, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39258300

RESUMEN

Introduction: Owing to advances in high-throughput genome sequencing, QTL-Seq mapping of salt tolerance traits is a major platform for identifying soil-salinity tolerance QTLs to accelerate marker-assisted selection for salt-tolerant rice varieties. We performed QTL-BSA-Seq in the seedling stage of rice from a genetic cross of the extreme salt-sensitive variety, IR29, and "Jao Khao" (JK), a Thai salt-tolerant variety. Methods: A total of 462 F2 progeny grown in soil and treated with 160 mM NaCl were used as the QTL mapping population. Two high- and low-bulk sets, based on cell membrane stability (CMS) and tiller number at the recovery stage (TN), were equally sampled. The genomes of each pool were sequenced, and statistical significance of QTL was calculated using QTLseq and G prime (G') analysis, which is based on calculating the allele frequency differences or Δ(SNP index). Results: Both methods detected the overlapping interval region, wherein CMS-bulk was mapped at two loci in the 38.41-38.85 Mb region with 336 SNPs on chromosome 1 (qCMS1) and the 26.13-26.80 Mb region with 1,011 SNPs on chromosome 3 (qCMS3); the Δ(SNP index) peaks were -0.2709 and 0.3127, respectively. TN-bulk was mapped at only one locus in the overlapping 38.26-38.95 Mb region on chromosome 1 with 575 SNPs (qTN1) and a Δ(SNP index) peak of -0.3544. These identified QTLs in two different genetic backgrounds of segregating populations derived from JK were validated. The results confirmed the colocalization of the qCMS1 and qTN1 traits on chromosome 1. Based on the CMS trait, qCMS1/qTN1 stably expressed 6%-18% of the phenotypic variance in the two validation populations, while qCMS1/qTN1 accounted for 16%-20% of the phenotypic variance in one validation population based on the TN trait. Conclusion: The findings confirm that the CMS and TN traits are tightly linked to the long arm of chromosome 1 rather than to chromosome 3. The validated qCMS-TN1 QTL can be used for gene/QTL pyramiding in marker-assisted selection to expedite breeding for salt resistance in rice at the seedling stage.

2.
Funct Integr Genomics ; 24(5): 141, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39160350

RESUMEN

Rice root system plays a crucial role in plant adaptation under adverse conditions, particularly drought stress. However, the regulatory gene networks that govern rice root development during stress exposure remain largely unexplored. In this study, we applied a QTL sequencing method to identify QTL/gene controlling the crown root development under Jasmonic acid simulation using the Bulk-segregant analysis. Two rice cultivars with contrasting phenotypes from the Vietnamese traditional rice collection were used as parent pairs for crossing. The single-seed descent method was employed to generate an F2 population of progenies. This F2/3 population was further segregated based on root count under JA stress. Pooled DNA from the two extreme groups in this population was sequenced, and SNP indexes across all loci in these pools were calculated. We detected a significant genomic region on chromosome 10, spanned from 20.39-20.50 Mb, where two rice RLKs were located, OsPUB54 and OsPUB58. Receptor-like kinases (RLKs) are pivotal in regulating various aspects of root development in plants, and the U-box E3 ubiquitination ligase class was generally known for its degradation of some protein complexes. Notably, OsPUB54 was strongly induced by JA treatment, suggesting its involvement in the degradation of the Aux/IAA protein complex, thereby influencing crown root initiation. Besides, the Eukaryotic translation initiation of factor 3 subunit L (eIF3l) and the Mitogen-activated protein kinase kinase kinase 37 (MAPKKK 37) proteins identified from SNPs with high score index which suggests their significant roles in the translation initiation process and cellular signaling pathways, respectively. This information suggests several clues of how these candidates are involved in modifying the rice root system under stress conditions.


Asunto(s)
Ciclopentanos , Oryza , Oxilipinas , Raíces de Plantas , Sitios de Carácter Cuantitativo , Oryza/genética , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Ciclopentanos/metabolismo , Ciclopentanos/farmacología , Oxilipinas/metabolismo , Oxilipinas/farmacología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Polimorfismo de Nucleótido Simple , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
3.
BMC Genom Data ; 25(1): 69, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39009972

RESUMEN

Wheat is an essential food commodity cultivated throughout the world. However, this crop faces continuous threats from fungal pathogens, leaf rust (LR) and stripe rust (YR). To continue feeding the growing population, these major destructors of wheat must be effectively countered by enhancing the genetic diversity of cultivated germplasm. In this study, an introgression line with hexaploid background (ILsp3603) carrying resistance against Pt pathotypes 77-5 (121R63-1), 77-9 (121R60-1) and Pst pathotypes 46S119 (46E159), 110S119 (110E159), 238S119 (238E159) was developed from donor wheat wild progenitor, Aegilops speltoides acc pau 3603. To understand the genetic basis of resistance and map these genes (named Lrsp3603 and Yrsp3603), inheritance studies were carried out in F6 and F7 mapping population, developed by crossing ILsp3603 with LR and YR susceptible cultivar WL711, which revealed a monogenic (single gene) inheritance pattern for each of these traits. Bulk segregant analysis combined with 35 K Axiom SNP array genotyping mapped both genes as separate entities on the short arm of chromosome 6B. A genetic linkage map, comprising five markers, 1 SNP, 1 PLUG and three gene based SSRs, covered a genetic distance of 12.65 cM. Lrsp3603 was flanked by markers Tag-SSR14 (located proximally at 2.42 cM) and SNP AX-94542331 (at 3.28 cM) while Yrsp3603 was mapped at one end closest to AX-94542331 at 6.62 cM distance. Functional annotation of Lrsp3603 target region (∼ 1 Mbp) revealed 10 gene IDs associated with disease resistance mechanisms including three encoding typical R gene domains.


Asunto(s)
Aegilops , Basidiomycota , Mapeo Cromosómico , Resistencia a la Enfermedad , Enfermedades de las Plantas , Polimorfismo de Nucleótido Simple , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética , Polimorfismo de Nucleótido Simple/genética , Aegilops/genética , Aegilops/microbiología , Basidiomycota/patogenicidad , Genes de Plantas/genética , Triticum/genética , Triticum/microbiología , Puccinia/patogenicidad
4.
Bioessays ; 46(8): e2300206, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38769697

RESUMEN

Gene discovery reveals new biology, expands the utility of marker-assisted selection, and enables targeted mutagenesis. Still, such discoveries can take over a decade. We present a general strategy, "Agile Genetics," that uses nested, structured populations to overcome common limits on gene resolution. Extensive simulation work on realistic genetic architectures shows that, at population sizes of >5000 samples, single gene-resolution can be achieved using bulk segregant pools. At this scale, read depth and technical replication become major drivers of resolution. Emerging enrichment methods to address coverage are on the horizon; we describe one possibility - iterative depth sequencing (ID-seq). In addition, graph-based pangenomics in experimental populations will continue to maximize accuracy and improve interpretation. Based on this merger of agronomic scale with molecular and bioinformatic innovation, we predict a new age of rapid gene discovery.


Asunto(s)
Biología Computacional , Biología Computacional/métodos , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos
5.
Front Plant Sci ; 15: 1377682, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38736450

RESUMEN

High fiber strength (FS) premium cotton has significant market demand. Consequently, enhancing FS is a major objective in breeding quality cotton. However, there is a notable lack of known functionally applicable genes that can be targeted for breeding. To address this issue, our study used specific length-amplified fragment sequencing combined with bulk segregant analysis to study FS trait in an F2 population. Subsequently, we integrated these results with previous quantitative trait locus mapping results regarding fiber quality, which used simple sequence repeat markers in F2, F2:3, and recombinant inbred line populations. We identified a stable quantitative trait locus qFSA06 associated with FS located on chromosome A06 (90.74-90.83 Mb). Within this interval, we cloned a gene, GhALDH7B4_A06, which harbored a critical mutation site in coding sequences that is distinct in the two parents of the tested cotton line. In the paternal parent Ji228, the gene is normal and referred to as GhALDH7B4_A06O; however, there is a nonsense mutation in the maternal parent Ji567 that results in premature termination of protein translation, and this gene is designated as truncated GhALDH7B4_A06S. Validation using recombinant inbred lines and gene expression analysis revealed that this mutation site is correlated with cotton FS. Virus-induced gene silencing of GhALDH7B4 in cotton caused significant decreases in FS and fiber micronaire. Conversely, GhALDH7B4_A06O overexpression in Arabidopsis boosted cell wall component contents in the stem. The findings of our study provide a candidate gene for improving cotton fiber quality through molecular breeding.

6.
Int J Mol Sci ; 25(8)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38673826

RESUMEN

Seeds are the most important reproductive organs of higher plants, the beginning and end of a plant's lifecycle. They are very important to plant growth and development, and also an important factor affecting yield. In this study, genetic analysis and BSA-seq of the F2 population crossed with the large-seeded material 'J16' and small-seeded material 'FJ5' were carried out, and the seed size locus was initially located within the 1.31 Mb region on chr10. In addition, 2281 F2 plants were used to further reduce the candidate interval to 48.8 Kb. This region contains only one gene encoding the N-acetyltransferase (NAT) protein (Bch10G006400). Transcriptome and expression analysis revealed that the gene was significantly more highly expressed in 'J16' than in 'FJ5'. Variation analysis of Bch10G006400 among parents and 50 chieh-qua germplasms revealed that as well as a nonsynonymous mutation (SNP_314) between parents, two mutations (SNP_400 and InDel_551) were detected in other materials. Combining these three mutations completely distinguished the seed size of the chieh-qua. GO and KEGG enrichment analyses revealed that DGEs played the most important roles in carbohydrate metabolism and plant hormone signal transduction, respectively. The results of this study provide important information for molecular marker-assisted breeding and help to reveal the molecular mechanism of seed size.


Asunto(s)
Alelos , Regulación de la Expresión Génica de las Plantas , Semillas , Semillas/genética , Semillas/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilación de la Expresión Génica , Transcriptoma/genética , Variación Genética , Fenotipo
7.
Pestic Biochem Physiol ; 199: 105771, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38458679

RESUMEN

Among the six-membered heterocycles, the pyrazine ring is poorly explored in crop protection and does not feature in any product listed in the current IRAC MoA classification. In an effort to identify new leads for internal research, we synthesized a series of N-(5-phenylpyrazin-2-yl)-benzamide derivatives and evaluated them for their insecticidal activity. N-(5-phenylpyrazin-2-yl)-benzamide derivatives 3 were prepared using an automated two-step synthesis protocol. These compounds were tested for their initial biological activity against a wide range of sucking and chewing insect pests and found to be active against lepidopterans only. More detailed experiments, including symptomology studies on the diamondback moth, Plutella xylostella (L.) and the Egyptian cotton leafworm, Spodoptera littoralis (Boisduval) showed that analog 3q causes severe abnormalities in the lepidopteran cuticle leading to larval mortality. Compound 3q shows strong potency against both P. xylostella and S. littoralis, whereas analog 3i shows better potency against S. littoralis causing also impaired cuticular structure and death of the larvae. Additionally, P. xylostella genetic studies showed that compound 3q resistance is linked to Chitin Synthase 1. Our studies show that N-(5-phenylpyrazin-2-yl)-benzamide derivatives 3, and in particular analogs 3i and 3q, act as insect growth modulator insecticides. Conformational similarities with lufenuron are discussed.


Asunto(s)
Insecticidas , Mariposas Nocturnas , Animales , Insecticidas/farmacología , Mariposas Nocturnas/genética , Larva , Insectos , Spodoptera , Quitina
8.
Biomolecules ; 14(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38254679

RESUMEN

Rice false smut (RFS) caused by the fungus Ustilaginoidea virens (Cook) leads to serious yield losses in rice. Identification of the gene or quantitative trait loci (QTLs) is crucial to resistance breeding and mitigation of RFS damage. In this study, we crossed a resistant variety, IR77298-14-1-2::IRGC117374-1, with a susceptible indica cultivar, 9311, and evaluated recombinant inbred lines in a greenhouse. The genetic analysis showed that the RFS resistance of IR77298-14-1-2::IRGC117374-1 was controlled by multiple recessive loci. We identified a novel QTL, qRFS12.01, for RFS resistance in IR77298-14-1-2::IRGC117374-1 by combining bulked segregant analysis with whole genome resequencing (BSA-seq) and simple sequence repeat (SSR) marker mapping approaches. The phenotypic effect of qRFS12.01 on RFS resistance reached 28.74%, suggesting that SSR markers linked to qRFS12.01 are valuable for marker-assisted breeding of RFS resistance in rice. The prediction of putative candidate genes within qRFS12.01 revealed five disease resistance proteins containing NB-ARC domains. In conclusion, our findings provide a new rice chromosome region carrying genes/QTLs for resistance to RFS.


Asunto(s)
Oryza , Oryza/genética , Fitomejoramiento , Sitios de Carácter Cuantitativo , Resistencia a la Enfermedad/genética , Repeticiones de Microsatélite/genética
9.
Plant Cell Environ ; 47(4): 1009-1022, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37961842

RESUMEN

Knowledge of plant recognition of insects is largely limited to a few resistance (R) genes against sap-sucking insects. Hypersensitive response (HR) characterizes monogenic plant traits relying on R genes in several pathosystems. HR-like cell death can be triggered by eggs of cabbage white butterflies (Pieris spp.), pests of cabbage crops (Brassica spp.), reducing egg survival and representing an effective plant resistance trait before feeding damage occurs. Here, we performed genetic mapping of HR-like cell death induced by Pieris brassicae eggs in the black mustard Brassica nigra (B. nigra). We show that HR-like cell death segregates as a Mendelian trait and identified a single dominant locus on chromosome B3, named PEK (Pieris  egg- killing). Eleven genes are located in an approximately 50 kb region, including a cluster of genes encoding intracellular TIR-NBS-LRR (TNL) receptor proteins. The PEK locus is highly polymorphic between the parental accessions of our mapping populations and among B. nigra reference genomes. Our study is the first one to identify a single locus potentially involved in HR-like cell death induced by insect eggs in B. nigra. Further fine-mapping, comparative genomics and validation of the PEK locus will shed light on the role of these TNL receptors in egg-killing HR.


Asunto(s)
Mariposas Diurnas , Planta de la Mostaza , Animales , Planta de la Mostaza/genética , Mariposas Diurnas/genética , Plantas , Mapeo Cromosómico
10.
Genetics ; 226(2)2024 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-38147531

RESUMEN

Numerous genetic loci and several functionally characterized genes have been linked to determination of lint percentage (lint%), one of the most important cotton yield components, but we still know little about the major genetic components underlying lint%. Here, we first linked the genetic loci containing MYB25-like_At and HD1_At to the fiberless seed trait of 'SL1-7-1' and found that MYB25-like_At and HD1_At were very lowly expressed in 'SL1-7-1' ovules during fiber initiation. We then dissected the genetic components involved in determination of lint% using segregating populations derived from crosses of fuzzless mutants and intermediate segregants with different lint%, which not only confirmed the HD1_At locus but identified the HD1_Dt locus as being the major genetic components contributing to fiber initiation and lint%. The segregating populations also allowed us to evaluate the relative contributions of MYB25-like_At, MYB25-like_Dt, HD1_At, and HD1_Dt to lint%. Haplotype analysis of an Upland cotton (Gossypium hirsutum) population with 723 accessions (including 81 fuzzless seed accessions) showed that lint% of the accessions with the LP allele (higher lint%) at MYB25-like_At, MYB25-like_Dt, or HD1_At was significantly higher than that with the lp allele (lower lint%). The lint% of the Upland cotton accessions with 3 or 4 LP alleles at MYB25-like and HD1 was significantly higher than that with 2 LP alleles. The results prompted us to propose a strategy for breeding high-yielding cotton varieties, i.e. pyramiding the LP alleles of MYB25-like and HD1 with new lint% LP alleles without negative impact on seed size and fiber quality.


Asunto(s)
Gossypium , Fitomejoramiento , Gossypium/genética , Fenotipo , Sitios Genéticos , Alelos
11.
Virusdisease ; 34(4): 498-503, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38046067

RESUMEN

Okra is an important traditional vegetable crop grown for its tender fruits in various tropical and sub tropical parts of the world. Yellow Vein Mosaic Disease (YVMD) is the major biotic factor causing severe threat to the okra fruit yield and qualities. The present study was conducted to find out the inheritance of resistance against YVMD and to identify the disease linked molecular markers through bulk segregant analysis. For this, the F1, BC1F1 and BC1F2 generations were derived from a cross between Abelmoschus manihot (PAUAcc-1) as resistant male parent and A. esculentus cv. Punjab Padmini as susceptible female parent. The whole set of populations (F1, BC1F1 and BC1F2) along with parents were subjected to artificial as well as filed screening against YVMD. Chi-square test for goodness to fit revealed that resistance against YVMD is controlled by two recessive genes. The allele of at least one gene in homozygous state mask the effect of other gene and produce a resistant phenotype. The very low polymorphism (31.5%) was detected between the parents by using SSR primers. Out of 200 SSR primers, the four primers i.e. Okra 032, Okra 049, Okra 129 and Okra 270 were found to be linked to YVMD through bulk segregant analysis. The identified SSR primers to YVMD could be further used in okra improvement for YVMD resistance. Supplementary Information: The online version contains supplementary material available at 10.1007/s13337-023-00844-9.

12.
Front Plant Sci ; 14: 1304822, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38152141

RESUMEN

Introduction: A fundamental developmental switch for plants is transition from vegetative to floral growth, which integrates external and internal signals. INDETERMINATE1 (Id1) family proteins are zinc finger transcription factors that activate flowering in grasses regardless of photoperiod. Mutations in maize Id1 and rice Id1 (RID1) cause very late flowering. RID1 promotes expression of the flowering activator genes Early Heading Date1 (Ehd1) and Heading date 1 (Hd1), a rice homolog of CONSTANS (CO). Methods and results: Mapping of two recessive late flowering mutants from a pedigreed sorghum EMS mutant library identified two distinct mutations in the Sorghum bicolor Id1 (SbId1) homolog, mutant alleles named sbid1-1 and sbid1-2. The weaker sbid1-1 allele caused a 35 day delay in reaching boot stage in the field, but its effect was limited to 6 days under greenhouse conditions. The strong sbid1-2 allele delayed boot stage by more than 60 days in the field and under greenhouse conditions. When sbid1-1 and sbid1-2 were combined, the delayed flowering phenotype remained and resembled that of sbid1-2, confirming late flowering was due to loss of SbId1 function. Evaluation of major flowering time regulatory gene expression in sbid1-2 showed that SbId1 is needed for expression of floral activators, like SbCO and SbCN8, and repressors, like SbPRR37 and SbGhd7. Discussion: These results demonstrate a conserved role for SbId1 in promotion of flowering in sorghum, where it appears to be critical to allow expression of most major flowering regulatory genes.

13.
Front Plant Sci ; 14: 1233285, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37583595

RESUMEN

White mold (WM) is a major disease in common bean (Phaseolus vulgaris L.), and its complex quantitative genetic control limits the development of WM resistant cultivars. WM2.2, one of the nine meta-QTL with a major effect on WM tolerance, explains up to 35% of the phenotypic variation and was previously mapped to a large genomic interval on Pv02. Our objective was to narrow the interval of this QTL using combined approach of classic QTL mapping and QTL-based bulk segregant analysis (BSA), and confirming those results with Khufu de novo QTL-seq. The phenotypic and genotypic data from two RIL populations, 'Raven'/I9365-31 (R31) and 'AN-37'/PS02-029C-20 (Z0726-9), were used to select resistant and susceptible lines to generate subpopulations for bulk DNA sequencing. The QTL physical interval was determined by considering overlapping interval of the identified QTL or peak region in both populations by three independent QTL mapping analyses. Our findings revealed that meta-QTL WM2.2 consists of three regions, WM2.2a (4.27-5.76 Mb; euchromatic), WM 2.2b (12.19 to 17.61 Mb; heterochromatic), and WM2.2c (23.01-25.74 Mb; heterochromatic) found in both populations. Gene models encoding for gibberellin 2-oxidase 8, pentatricopeptide repeat, and heat-shock proteins are the likely candidate genes associated with WM2.2a resistance. A TIR-NBS-LRR class of disease resistance protein (Phvul.002G09200) and LRR domain containing family proteins are potential candidate genes associated with WM2.2b resistance. Nine gene models encoding disease resistance protein [pathogenesis-related thaumatin superfamily protein and disease resistance-responsive (dirigent-like protein) family protein etc] found within the WM2.2c QTL interval are putative candidate genes. WM2.2a region is most likely associated with avoidance mechanisms while WM2.2b and WM2.2c regions trigger physiological resistance based on putative candidate genes.

14.
Mol Breed ; 43(2): 7, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37313127

RESUMEN

Necrosis caused by soybean mosaic virus (SMV) has not been specifically distinguished from susceptible symptoms. The molecular mechanism for the occurrence of necrosis is largely overlooked in soybean genetic research. Field evaluation reveals that SMV disease seriously influences soybean production as indicated by decreasing 22.4% ~ 77.0% and 8.8% ~ 17.0% of yield and quality production, respectively. To expand molecular mechanism behind necrotic reactions, transcriptomic data obtained from the asymptomatic, mosaic, and necrotic pools were assessed. Compared between asymptomatic and mosaic plants, 1689 and 1752 up- and down-regulated differentially expressed genes (DEGs) were specifically found in necrotic plants. Interestingly, the top five enriched pathways with up-regulated DEGs were highly related to the process of the stress response, whereas the top three enriched pathways with down-regulated DEGs were highly related to the process of photosynthesis, demonstrating that defense systems are extensively activated, while the photosynthesis systems were severely destroyed. Further, results of the phylogenetic tree based on gene expression pattern and an amino acid sequence and validation experiments discovered three PR1 genes, Glyma.15G062400, Glyma.15G062500, and Glyma.15G062700, which were especially expressed in necrotic leaves. Meanwhile, exogenous salicylic acid (SA) but not methyl jasmonate (MeJA) could induce the three PR1 gene expressions on healthy leaves. Contrastingly, exogenous SA obviously decreased the expression level of Glyma.15G062400, Glyma.15G062500, and concentration of SMV, but increased Glyma.15G062700 expression in necrotic leaves. These results showed that GmPR1 is associated with the development of SMV-induced necrotic symptoms in soybean. Glyma.15G062400, Glyma.15G062500, and Glyma.15G062700 is up-regulated in necrotic leaves at the transcriptional levels, which will greatly facilitate a better understanding of the mechanism behind necrosis caused by SMV disease. Supplementary information: The online version contains supplementary material available at 10.1007/s11032-022-01351-3.

15.
Planta ; 258(1): 19, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37314587

RESUMEN

MAIN CONCLUSION: BraANS.A3 was the key gene controlling purple leaf color in pak choi, and two short fragments of promoter region in green pak choi might be interfering its normal expression. Pak choi (B. rapa L. ssp. chinensis) is an influential and important vegetable with green, yellow, or purple leaves that is cultivated worldwide. The purple leaves are rich in anthocyanins, but the underlying genetics and evolution have yet to be extensively studied. Free-hand sections of the purple leaves indicated that anthocyanins mainly accumulate throughout the adaxial and abaxial epidermal leaf cells. Segregation analyses of an F2 population of a B. rapa ssp. chinensis L. purple leaf mutant ZBC indicated that the purple trait is controlled by an incompletely dominant nuclear gene. Bulked segregant analysis (BSA) showed that the key genes controlling the trait were between 24.25 and 38.10 Mb on chromosome A03 of B. rapa. From the annotated genes, only BraA03g050560.3C, homologous to Arabidopsis AtANS, was related to the anthocyanin synthesis pathway. Genome annotation results and transcriptional sequencing analyses revealed that the BraANS.A3 gene was involved in the purple leaf trait. qRT-PCR analyses showed that BraANS.A3 was highly upregulated in ZBC but hardly expressed in the leaves of an inbred homozygous line of B. campestris ssp. chinensis L. green leaf mutant WTC, indicating that BraANS.A3 played a key role catalyzing anthocyanin synthesis in ZBC. Full-length sequence alignment of BraANS.A3 in WTC and ZBC showed that it was highly conserved in the gene region, with significant variation in the promoter region. In particular, the insertion of two short fragments of the promoter region in WTC may interfere with its normal expression. The promoter regions of ANS in six Brassica species all had multiple cis-elements involved in responses to abscisic acid, light, and stress, suggesting that ANS may be involved in multiple metabolic pathways or biological processes. Protein-protein interactions predicted that BraANS.A3 interacts with virtually all catalytic proteins in the anthocyanin synthesis pathway and has a strong relationship with Transparent Testa 8 (TT8). These results suggest that BraANS.A3 promotes anthocyanin accumulation in purple pak choi and provide new insights into the functional analysis of anthocyanin-related genes in Chinese cabbage and transcriptional regulatory networks.


Asunto(s)
Arabidopsis , Brassica rapa , Brassica , Brassica rapa/genética , Antocianinas , Ácido Abscísico , Arabidopsis/genética
16.
Front Plant Sci ; 14: 1152644, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37152178

RESUMEN

Leaf color mutants are common in higher plants that can be used as markers in crop breeding and are important tools in understanding regulatory mechanisms of chlorophyll biosynthesis and chloroplast development. Genetic analysis was performed by evaluating F1, F2 and BC1 populations derived from two parental lines (Charleston gray with green leaf color and Houlv with delayed green leaf color), suggesting that a single recessive gene controls the delayed green leaf color. In this study, the delayed green mutant showed a conditional pale green leaf color at the early leaf development but turned to green as the leaf development progressed. Delayed green leaf plants showed reduced pigment content, photosynthetic, chlorophyll fluorescence parameters, and impaired chloroplast development compared with green leaf plants. The delayed green (dg) locus was mapped to 7.48 Mb on chromosome 3 through bulk segregant analysis approach, and the gene controlling delayed green leaf color was narrowed to 53.54 kb between SNP130 and SNP135 markers containing three candidate genes. Sequence alignment of the three genes indicated that there was a single SNP mutation (G/A) in the coding region of ClCG03G010030 in the Houlv parent, which causes an amino acid change from Arginine to Lysine. The ClCG03G010030 gene encoded FtsH extracellular protease protein family is involved in early delayed green leaf development. The expression level of ClCG03G010030 was significantly reduced in delayed green leaf plants than in green leaf plants. These results indicated that the ClCG03G010030 might control watermelon green leaf color and the single SNP variation in ClCG03G010030 may result in early delayed green leaf color development during evolutionary process.

17.
Pathogens ; 12(2)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36839561

RESUMEN

Vascular wilt caused by the ascomycete fungal pathogen Fusarium oxysporum f. sp. cubense (Foc) is a major constraint of banana production around the world. The virulent race, namely Tropical Race 4, can infect all Cavendish-type banana plants and is now widespread across the globe, causing devastating losses to global banana production. In this study, we characterized Foc Subtropical Race 4 (STR4) resistance in a wild banana relative which, through estimated genome size and ancestry analysis, was confirmed to be Musa acuminata ssp. malaccensis. Using a self-derived F2 population segregating for STR4 resistance, quantitative trait loci sequencing (QTL-seq) was performed on bulks consisting of resistant and susceptible individuals. Changes in SNP index between the bulks revealed a major QTL located on the distal end of the long arm of chromosome 3. Multiple resistance genes are present in this region. Identification of chromosome regions conferring resistance to Foc can facilitate marker assisted selection in breeding programs and paves the way towards identifying genes underpinning resistance.

18.
Front Plant Sci ; 14: 1255506, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38596713

RESUMEN

Pseudomonas syringae pv. actinidiae (Psa) is a bacterial pathogen of kiwifruit. This pathogen causes leaf-spotting, cane dieback, wilting, cankers (lesions), and in severe cases, plant death. Families of diploid A. chinensis seedlings grown in the field show a range of susceptibilities to the disease with up to 100% of seedlings in some families succumbing to Psa. But the effect of selection for field resistance to Psa on the alleles that remain in surviving seedlings has not been assessed. The objective of this work was to analyse, the effect of plant removal from Psa on the allele frequency of an incomplete-factorial-cross population. This population was founded using a range of genotypically distinct diploid A. chinensis var. chinensis parents to make 28 F1 families. However, because of the diversity of these families, low numbers of surviving individuals, and a lack of samples from dead individuals, standard QTL mapping approaches were unlikely to yield good results. Instead, a modified bulk segregant analysis (BSA) overcame these drawbacks while reducing the costs of sampling and sample processing, and the complexity of data analysis. Because the method was modified, part one of this work was used to determine the signal strength required for a QTL to be detected with BSA. Once QTL detection accuracy was known, part two of this work analysed the 28 families from the incomplete-factorial-cross population that had multiple individuals removed due to Psa infection. Each family was assigned to one of eight bulks based on a single parent that contributed to the families. DNA was extracted in bulk by grinding sampled leaf discs together before DNA extraction. Each sample bulk was compared against a bulk made up of WGS data from the parents contributing to the sample bulk. The deviation in allele frequency from the expected allele frequency within surviving populations using the modified BSA method was able to identify 11 QTLs for Psa that were present in at least two analyses. The identification of these Psa resistance QTL will enable marker development to selectively breed for resistance to Psa in future kiwifruit breeding programs.

19.
Front Genet ; 13: 1038948, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36506330

RESUMEN

Maize (Zea mays L.) is the most important food security crop worldwide. Northern corn leaf blight (NCLB), caused by Exserohilum turcicum, severely reduces production causing millions of dollars in losses worldwide. Therefore, this study aimed to identify significant QTLs associated with NCLB by utilizing next-generation sequencing-based bulked-segregant analysis (BSA). Parental lines GML71 (resistant) and Gui A10341 (susceptible) were used to develop segregating population F2. Two bulks with 30 plants each were further selected from the segregating population for sequencing along with the parental lines. High throughput sequencing data was used for BSA. We identified 10 QTLs on Chr 1, Chr 2, Chr 3, and Chr 5 with 265 non-synonymous SNPs. Moreover, based on annotation information, we identified 27 candidate genes in the QTL regions. The candidate genes associated with disease resistance include AATP1, At4g24790, STICHEL-like 2, BI O 3-BIO1, ZAR1, SECA2, ABCG25, LECRK54, MKK7, MKK9, RLK902, and DEAD-box ATP-dependent RNA helicase. The annotation information suggested their involvement in disease resistance-related pathways, including protein phosphorylation, cytoplasmic vesicle, protein serine/threonine kinase activity, and ATP binding pathways. Our study provides a substantial addition to the available information regarding QTLs associated with NCLB, and further functional verification of identified candidate genes can broaden the scope of understanding the NCLB resistance mechanism in maize.

20.
AoB Plants ; 14(6): plac047, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36567764

RESUMEN

Elite upland rice cultivars have the advantages of less water requirement along with high yield but are usually susceptible to various diseases. Rice blast caused by Magnaporthe oryzae is the most devastating disease in rice. Identification of new sources of resistance and the introgression of major resistance genes into elite cultivars are required for sustainable rice production. In this study, an upland rice genotype UR0803 was considered an emerging source of blast resistance. An F2 mapping population was developed from a cross between UR0803 and a local susceptible cultivar Lijiang Xintuan Heigu. The individuals from the F2 population were evaluated for leaf blast resistance in three trials 7 days after inoculation. Bulked segregant analysis (BSA) by high-throughput sequencing and SNP-index algorithm was performed to map the candidate region related to disease resistance trait. A major quantitative trait locus (QTL) for leaf blast resistance was identified on chromosome 11 in an interval of 1.61-Mb genomic region. The candidate region was further shortened to a 108.9-kb genomic region by genotyping the 955 individuals with 14 SNP markers. Transcriptome analysis was further performed between the resistant and susceptible parents, yielding a total of 5044 differentially expressed genes (DEGs). There were four DEGs in the candidate QTL region, of which, two (Os11g0700900 and Os11g0704000) were upregulated and the remaining (Os11g0702400 and Os11g0703600) were downregulated in the susceptible parent after inoculation. These novel candidate genes were functionally annotated to catalytic response against disease stimulus in cellular membranes. The results were further validated by a quantitative real-time PCR analysis. The fine-mapping of a novel QTL for blast resistance by integrative BSA mapping and transcriptome sequencing enhanced the genetic understanding of the mechanism of blast resistance in upland rice. The most suitable genotypes with resistance alleles would be useful genetic resources in rice blast resistance breeding.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA