Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros











Intervalo de año de publicación
1.
Front Microbiol ; 15: 1465672, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39411427

RESUMEN

Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, affects millions globally, with increasing urban cases outside of Latin America. Treatment is based on two compounds, namely, benznidazole (BZ) and nifurtimox, but chronic cases pose several challenges. Targeting lysine acetylation, particularly bromodomain-containing proteins, shows promise as a novel antiparasitic target. Our research focuses on TcBDF3, a cytoplasmic protein, which is crucial for parasite differentiation that recognizes acetylated alpha-tubulin. In our previous study, A1B4 was identified as a high-affinity binder of TcBDF3, showing significant trypanocidal activity with low host toxicity in vitro. In this report, the binding of TcBDF3 to A1B4 was validated using differential scanning fluorescence, fluorescence polarization, and molecular modeling, confirming its specific interaction. Additionally, two new 1,3,4-oxadiazoles derived from A1B4 were identified, which exhibited improved trypanocide activity and cytotoxicity profiles. Furthermore, TcBDF3 was classified for the first time as an atypical divergent member of the bromodomain extraterminal family found in protists and plants. These results make TcBDF3 a unique target due to its localization and known functions not shared with higher eukaryotes, which holds promise for Chagas disease treatment.

2.
Antimicrob Agents Chemother ; 68(8): e0024324, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39028190

RESUMEN

Bromodomains are structural folds present in all eukaryotic cells that bind to other proteins recognizing acetylated lysines. Most proteins with bromodomains are part of nuclear complexes that interact with acetylated histone residues and regulate DNA replication, transcription, and repair through chromatin structure remodeling. Bromodomain inhibitors are small molecules that bind to the hydrophobic pocket of bromodomains, interfering with the interaction with acetylated histones. Using a fluorescent probe, we have developed an assay to select inhibitors of the bromodomain factor 2 of Trypanosoma cruzi (TcBDF2) using fluorescence polarization. Initially, a library of 28,251 compounds was screened in an endpoint assay. The top 350-ranked compounds were further analyzed in a dose-response assay. From this analysis, seven compounds were obtained that had not been previously characterized as bromodomain inhibitors. Although these compounds did not exhibit significant trypanocidal activity, all showed bona fide interaction with TcBDF2 with dissociation constants between 1 and 3 µM validating these assays to search for bromodomain inhibitors.


Asunto(s)
Polarización de Fluorescencia , Ensayos Analíticos de Alto Rendimiento , Proteínas Protozoarias , Tripanocidas , Trypanosoma cruzi , Trypanosoma cruzi/efectos de los fármacos , Trypanosoma cruzi/metabolismo , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/metabolismo , Tripanocidas/farmacología , Tripanocidas/química , Ensayos Analíticos de Alto Rendimiento/métodos , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismo
3.
Int J Mol Sci ; 24(15)2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37569677

RESUMEN

Fibrosis is a condition characterized by the excessive accumulation of extracellular matrix proteins in tissues, leading to organ dysfunction and failure. Recent studies have identified EP300, a histone acetyltransferase, as a crucial regulator of the epigenetic changes that contribute to fibrosis. In fact, EP300-mediated acetylation of histones alters global chromatin structure and gene expression, promoting the development and progression of fibrosis. Here, we review the role of EP300-mediated epigenetic regulation in multi-organ fibrosis and its potential as a therapeutic target. We discuss the preclinical evidence that suggests that EP300 inhibition can attenuate fibrosis-related molecular processes, including extracellular matrix deposition, inflammation, and epithelial-to-mesenchymal transition. We also highlight the contributions of small molecule inhibitors and gene therapy approaches targeting EP300 as novel therapies against fibrosis.


Asunto(s)
Epigénesis Genética , Histonas , Humanos , Fibrosis , Histonas/metabolismo , Matriz Extracelular/metabolismo , Histona Acetiltransferasas/metabolismo , Proteína p300 Asociada a E1A/genética , Proteína p300 Asociada a E1A/metabolismo
4.
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1550813

RESUMEN

Leishmaniasis continues to be a neglected tropical disease, affecting people and animals and causing significant economic losses. Therefore, there is interest in the study and evaluation of new drug targets. In fact, it has been shown that by interfering with lysine-reading proteins such as bromodomain (BMD) there is a decrease in parasite survival. In this study, we researched the dynamics and energetics of the Leishmania donovani BMD in complex with bromosporin, which is considered to be a pan-inhibitor of BMDs, with the aim of understanding the molecular recognition mechanism. Molecular dynamics (MD) and non-equilibrium free energy calculation guided by steered molecular dynamics (SMD) simulations showed that the BMD has three flexible amino acid regions and bromosporin exhibiting various recognition states during the interaction. These results corroborate the promiscuity of bromosporin for energetically favourable sites, with the possibility of expanding its inhibition to other bromodomains. Furthermore, these results suggest that Van der Waals interactions have more relevance for complex recognition and residues ASN-87 and TRP-93 are key in forming hydrophobic and H-bond interactions, respectively. This research provides new insights for understanding the recognition mechanism, dynamics and energetics of the complex for the development of new therapeutic strategies.


La leishmaniasis sigue siendo una enfermedad tropical desatendida, que afecta a personas y animales y causa importantes pérdidas económicas. De ahí el interés por estudiar y evaluar nuevas dianas farmacológicas. De hecho, se ha demostrado que al interferir con proteínas lectoras de lisina como el bromodominio ("bromodomain", BMD) se produce una disminución de la supervivencia del parásito. En este artículo estudiamos la dinámica y la energética del BMD de Leishmania donovani en complejo con bromosporina, que se considera un pan-inhibidor de BMD, con el objetivo de comprender el mecanismo de reconocimiento molecular. Las simulaciones de dinámica molecular (DM) y el cálculo de energía libre de no-equilibrio guiado por dinámica molecular de estiramiento (DMS) mostraron que BMD tiene tres regiones de aminoácidos flexibles y la bromosporina presenta varios estados de reconocimiento durante la interacción. Estos resultados corroboran la promiscuidad de la bromosporina por sitios energéticamente favorables, siendo posible expandir su inhibición a otros bromodominios. Además, los resultados sugieren que las interacciones de Van der Waals tienen más relevancia para el reconocimiento del complejo y los residuos ASN-87 y TRP-93 son clave en la formación de interacciones hidrofóbicas y de puentes de hidrógeno, respectivamente. Esta investigación proporciona nuevos conocimientos para comprender el mecanismo de reconocimiento molecular, la dinámica y la energética del complejo para el desarrollo de nuevas estrategias terapéuticas.


A leishmaniose continua a ser uma doença tropical negligenciada, que afeta os seres humanos e os animais e causa perdas econômicas significativas. Daí o interesse em estudar e avaliar novos alvos de medicamentos. De fato, a interferência com proteínas leitoras de lisina, como o bromo domínio ("bromodomain", BMD), tem demonstrado diminuir a sobrevivência do parasita. Neste trabalho, estudamos a dinâmica e a energética do BMD de Leish-mania donovani em complexo com a bro-mosporina, considerada um pan-inibidor da BMDs, com o objetivo de compreender o mecanismo de reconhecimento molecular. As simulações de dinâmica molecular (MD) e cálculo de energia livre de não-equilíbrio guiada por dinâmica molecular esticamento (MDS) mostraram que o BMD tem três regiões de aminoácidos flexíveis e que a bromosporina apresenta vários estados de reconhecimento durante a interação. Esses resultados corroboram a promiscuidade da bromosporina para locais energeticamente favoráveis, possibilitando a expansão de sua inibição para outros bromodomínios. Além disso, os resultados sugerem que as interações de Van der Waals são mais relevantes no momento do reconhecimento do complexo e os resíduos ASN-87 e TRP-93 são fundamentais na formação de interações hidrofóbicas e de ligações de hidrogênio, respectivamente. Essa pesquisa fornece novos insights para compreender o mecanismo de reconhecimento, a dinâmica e a energética do complexo para o desenvolvimento de novas estratégias terapêuticas.

5.
Acta cir. bras ; Acta cir. bras;38: e383123, 2023. graf
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1519885

RESUMEN

Purpose: It has been explored that sevoflurane (Sevo) is cardioprotective in myocardial ischemia/reperfusion injury (MI/RI) and mediates microRNA (miRNA) expression that control various physiological systems. Enlightened by that, the work was programmed to decode the mechanism of Sevo and miR-99a with the participation of bromodomain-containing protein 4 (BRD4). Methods: MI/RImodel was established on mice. MI/RI modeled mice were exposed to Sevo or injected with miR-99a or BRD4-related vectors to identify their functions in cardiac function, pathological injury, cardiomyocyte apoptosis, inflammation, and oxidative stress in MI/RI mice. MiR-99a and BRD4 expression in myocardial tissues were tested, and their relation was further validated. Results: MiR-99a was down-regulated, and BRD4 was up-regulated in MI/RI mice. Sevo up-regulated miR-99a to inhibit BRD4 expression in myocardial tissues of MI/RI mice. Sevo improved cardiac function, relieved myocardial injury, repressed cardiomyocyte apoptosis, and alleviated inflammation and oxidative stress in mice with MI/RI. MiR-99a restoration further enhanced the positive effects of Sevo on mice with MI/RI. Overexpression of BRD4 reversed up-regulation of miR-99a-induced attenuation of MI/RI in mice. Conclusions: The work delineated that Sevo up-regulates miR-99a to attenuate MI/RI by inhibiting BRD4.


Asunto(s)
Animales , Ratones , Daño por Reperfusión , Isquemia Miocárdica , Sevoflurano/administración & dosificación
6.
ACS Infect Dis ; 8(5): 1062-1074, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35482332

RESUMEN

Trypanosoma cruzi is a unicellular parasite that causes Chagas disease, which is endemic in the American continent but also worldwide, distributed by migratory movements. A striking feature of trypanosomatids is the polycistronic transcription associated with post-transcriptional mechanisms that regulate the levels of translatable mRNA. In this context, epigenetic regulatory mechanisms have been revealed to be of great importance, since they are the only ones that would control the access of RNA polymerases to chromatin. Bromodomains are epigenetic protein readers that recognize and specifically bind to acetylated lysine residues, mostly at histone proteins. There are seven coding sequences for BD-containing proteins in trypanosomatids, named TcBDF1 to TcBDF7, and a putative new protein containing a bromodomain was recently described. Using the Tet-regulated overexpression plasmid pTcINDEX-GW and CRISPR/Cas9 genome editing, we were able to demonstrate the essentiality of TcBDF2 in T. cruzi. This bromodomain is located in the nucleus, through a bipartite nuclear localization signal. TcBDF2 was shown to be important for host cell invasion, amastigote replication, and differentiation from amastigotes to trypomastigotes. Overexpression of TcBDF2 diminished epimastigote replication. Also, some processes involved in pathogenesis were altered in these parasites, such as infection of mammalian cells, replication of amastigotes, and the number of trypomastigotes released from host cells. In in vitro studies, TcBDF2 was also able to bind inhibitors showing a specificity profile different from that of the previously characterized TcBDF3. These results point to TcBDF2 as a druggable target against T. cruzi.


Asunto(s)
Enfermedad de Chagas , Trypanosoma cruzi , Animales , Enfermedad de Chagas/parasitología , Histonas/metabolismo , Mamíferos/metabolismo , Dominios Proteicos , Proteínas Protozoarias/metabolismo , Trypanosoma cruzi/genética
7.
Pharmaceuticals (Basel) ; 14(12)2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34959707

RESUMEN

Epigenetic modifiers acting through polypharmacology mechanisms are promising compounds with which to treat several infectious diseases. Histone deacetylase (HDAC) enzymes, mainly class I, and extra-terminal bromodomains (BET) are involved in viral replication and the host response. In the present study, 10 compounds were designed, assisted by molecular docking, to act against HDAC class I and bromodomain-4 (BRD4). All the compounds were synthesized and characterized by analytical methods. Enzymatic assays were performed using HDAC-1, -4, and -11 and BRD4. Compounds (2-10) inhibited both HDAC class I, mainly HDAC-1 and -2, and reduced BRD4 activity. For HDAC-1, the inhibitory effect ranged from 8 to 95%, and for HDAC-2, these values ranged from 10 to 91%. Compounds (2-10) decreased the BRD4 activity by up to 25%. The multi-target effects of these compounds show desirable properties that could help to combat viral infections by acting through epigenetic mechanisms.

8.
Trends Parasitol ; 37(9): 815-830, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33994102

RESUMEN

Protein lysine acetylation has emerged as a major regulatory post-translational modification in different organisms, present not only on histone proteins affecting chromatin structure and gene expression but also on nonhistone proteins involved in several cellular processes. The same scenario was observed in protozoan parasites after the description of their acetylomes, indicating that acetylation might regulate crucial biological processes in these parasites. The demonstration that glycolytic enzymes are regulated by acetylation in protozoans shows that this modification might regulate several other processes implicated in parasite survival and adaptation during the life cycle, opening the chance to explore the regulatory acetylation machinery of these parasites as drug targets for new treatment development.


Asunto(s)
Eucariontes , Proteínas Protozoarias , Acetilación , Eucariontes/enzimología , Eucariontes/genética , Procesamiento Proteico-Postraduccional , Proteínas Protozoarias/metabolismo
9.
Front Oncol ; 9: 16, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30761268

RESUMEN

Myelodysplastic syndromes (MDS) are clonal hematopoietic stem cell-based disorders characterized by ineffective hematopoiesis, increased genomic instability and a tendency to progress toward acute myeloid leukemia (AML). MDS and AML cells present genetic and epigenetic abnormalities and, due to the heterogeneity of these molecular alterations, the current treatment options remain unsatisfactory. Hypomethylating agents (HMA), especially azacitidine, are the mainstay of treatment for high-risk MDS patients and HMA are used in treating elderly AML. The aim of this study was to investigate the potential role of the epigenetic reader bromodomain-containing protein-4 (BRD4) in MDS and AML patients. We identified the upregulation of the short variant BRD4 in MDS and AML patients, which was associated with a worse outcome of MDS. Furthermore, the inhibition of BRD4 in vitro with JQ1 or shRNA induced leukemia cell apoptosis, especially when combined to azacitidine, and triggered the activation of the DNA damage response pathway. JQ1 and AZD6738 (a specific ATR inhibitor) also synergized to induce apoptosis in leukemia cells. Our results indicate that the BRD4-dependent transcriptional program is a defective pathway in MDS and AML pathogenesis and its inhibition induces apoptosis of leukemia cells, which is enhanced in combination with HMA or an ATR inhibitor.

10.
Curr Med Chem ; 26(36): 6544-6563, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30378479

RESUMEN

Bromodomains recognize and bind acetyl-lysine residues present in histone and non-histone proteins in a specific manner. In the last decade they have raised as attractive targets for drug discovery because the miss-regulation of human bromodomains was discovered to be involved in the development of a large spectrum of diseases. However, targeting eukaryotic pathogens bromodomains continues to be almost unexplored. We and others have reported the essentiality of diverse bromodomain- containing proteins in protozoa, offering a new opportunity for the development of antiparasitic drugs, especially for Trypansoma cruzi, the causative agent of Chagas' disease. Mammalian bromodomains were classified in eight groups based on sequence similarity but parasitic bromodomains are very divergent proteins and are hard to assign them to any of these groups, suggesting that selective inhibitors can be obtained. In this review, we describe the importance of lysine acetylation and bromodomains in T. cruzi as well as the current knowledge on mammalian bromodomains. Also, we summarize the myriad of small-molecules under study to treat different pathologies and which of them have been tested in trypanosomatids and other protozoa. All the information available led us to propose that T. cruzi bromodomains should be considered as important potential targets and the search for smallmolecules to inhibit them should be empowered.


Asunto(s)
Enfermedad de Chagas/tratamiento farmacológico , Proteínas Protozoarias/antagonistas & inhibidores , Tripanocidas/farmacología , Acetilación , Animales , Línea Celular Tumoral , Compuestos Heterocíclicos/farmacología , Compuestos Heterocíclicos/uso terapéutico , Humanos , Lisina/química , Dominios Proteicos/efectos de los fármacos , Procesamiento Proteico-Postraduccional , Proteínas Protozoarias/química , Tripanocidas/uso terapéutico , Trypanosoma cruzi/efectos de los fármacos
11.
Cancer Cell ; 34(6): 982-995.e7, 2018 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-30503705

RESUMEN

Enhancer profiling is a powerful approach for discovering cis-regulatory elements that define the core transcriptional regulatory circuits of normal and malignant cells. Gene control through enhancer activity is often dominated by a subset of lineage-specific transcription factors. By integrating measures of chromatin accessibility and enrichment for H3K27 acetylation, we have generated regulatory landscapes of chronic lymphocytic leukemia (CLL) samples and representative cell lines. With super enhancer-based modeling of regulatory circuits and assessments of transcription factor dependencies, we discover that the essential super enhancer factor PAX5 dominates CLL regulatory nodes and is essential for CLL cell survival. Targeting enhancer signaling via BET bromodomain inhibition disrupts super enhancer-dependent gene expression with selective effects on CLL core regulatory circuitry, conferring potent anti-tumor activity.


Asunto(s)
Cromatina/genética , Elementos de Facilitación Genéticos/genética , Regulación Leucémica de la Expresión Génica/genética , Leucemia Linfocítica Crónica de Células B/genética , Acetilación , Animales , Azepinas/farmacología , Línea Celular Tumoral , Cromatina/efectos de los fármacos , Cromatina/metabolismo , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Histonas/metabolismo , Humanos , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/metabolismo , Ratones Noqueados , Factor de Transcripción PAX5/genética , Factor de Transcripción PAX5/metabolismo , Unión Proteica , Proteínas/antagonistas & inhibidores , Proteínas/genética , Proteínas/metabolismo , Triazoles/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
12.
ACS Comb Sci ; 20(4): 220-228, 2018 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-29481050

RESUMEN

A set of chemically engineered extracts enriched in compounds including N-N and N-O fragments in their structures was prepared. Bromodomain binding screening and bioguided fractionation led to the identification of one oxime hit that interacts with TcBDF3 with affinity in the submicromolar range and that shows interesting antiparasitic properties against the different life cycle stages of T. cruzi.


Asunto(s)
Antiparasitarios/química , Enfermedad de Chagas/tratamiento farmacológico , Aceites Volátiles/química , Extractos Vegetales/química , Aceites de Plantas/química , Trypanosoma cruzi/efectos de los fármacos , Animales , Antiparasitarios/aislamiento & purificación , Antiparasitarios/farmacología , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Escherichia coli/genética , Oximas/química , Oximas/farmacología , Extractos Vegetales/aislamiento & purificación , Aceites de Plantas/aislamiento & purificación , Unión Proteica , Conformación Proteica , Células Vero
13.
Oncotarget ; 7(28): 43997-44012, 2016 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-27259267

RESUMEN

Gastric cancer is one of the most common malignancies and a leading cause of cancer death worldwide. The prognosis of stomach cancer is generally poor as this cancer is not very sensitive to commonly used chemotherapies. Epigenetic modifications play a key role in gastric cancer and contribute to the development and progression of this malignancy. In order to explore new treatment options in this target area we have screened a library of epigenetic inhibitors against gastric cancer cell lines and identified inhibitors for the BET family of bromodomains as potent inhibitors of gastric cancer cell proliferations. Here we show that both the pan-BET inhibitor (+)-JQ1 as well as a newly developed specific isoxazole inhibitor, PNZ5, showed potent inhibition of gastric cancer cell growth. Intriguingly, we found differences in the antiproliferative response between gastric cancer cells tested derived from Brazilian patients as compared to those from Asian patients, the latter being largely resistant to BET inhibition. As BET inhibitors are entering clinical trials these findings provide the first starting point for future therapies targeting gastric cancer.


Asunto(s)
Azepinas/farmacología , Proliferación Celular/efectos de los fármacos , Isoxazoles/farmacología , Proteínas Nucleares/antagonistas & inhibidores , Factores de Transcripción/antagonistas & inhibidores , Triazoles/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/genética , Pueblo Asiatico , Azepinas/química , Brasil , Proteínas de Ciclo Celular , Línea Celular Tumoral , Proliferación Celular/genética , Perfilación de la Expresión Génica , Células HEK293 , Humanos , Isoxazoles/química , Estructura Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/metabolismo , Neoplasias Gástricas/etnología , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Triazoles/química
14.
FEBS J ; 283(11): 2051-66, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27007774

RESUMEN

The bromodomain is the only protein domain known to bind acetylated lysine. In the last few years many bromodomain inhibitors have been developed in order to treat diseases such as cancer caused by aberrant acetylation of lysine residues. We have previously characterized Trypanosoma cruzi bromodomain factor 3 (TcBDF3), a bromodomain with an atypical localization that binds acetylated α-tubulin. In the present work we show that parasites overexpressing TcBDF3 exhibit altered differentiation patterns and are less susceptible to treatment with bromodomain inhibitors. We also demonstrate that recombinant TcBDF3 is able to bind to these inhibitors in vitro in a concentration-dependant manner. In parallel, the overexpression of a mutated version of TcBDF3 negatively affects growth of epimastigotes. Recent results, including the ones presented here, suggest that bromodomain inhibitors can be conceived as a new type of anti-parasitic drug against trypanosomiasis.


Asunto(s)
Proteínas Protozoarias/biosíntesis , Trypanosoma cruzi/genética , Tripanosomiasis/genética , Tubulina (Proteína)/metabolismo , Acetilación/efectos de los fármacos , Antiprotozoarios/química , Antiprotozoarios/uso terapéutico , Regulación de la Expresión Génica/efectos de los fármacos , Histonas/genética , Humanos , Estadios del Ciclo de Vida/genética , Mutación , Unión Proteica , Dominios Proteicos/genética , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/genética , Trypanosoma cruzi/crecimiento & desarrollo , Tripanosomiasis/tratamiento farmacológico , Tripanosomiasis/parasitología , Tubulina (Proteína)/genética
15.
Biochem J ; 473(1): 73-85, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26500280

RESUMEN

Acetylation is a ubiquitous protein modification present in prokaryotic and eukaryotic cells that participates in the regulation of many cellular processes. The bromodomain is the only domain known to bind acetylated lysine residues. In the last few years, many bromodomain inhibitors have been developed in order to treat diseases caused by aberrant acetylation of lysine residues and have been tested as anti-parasitic drugs. In the present paper, we report the first characterization of Trypanosoma cruzi bromodomain factor 1 (TcBDF1). TcBDF1 is expressed in all life cycle stages, but it is developmentally regulated. It localizes in the glycosomes directed by a PTS2 (peroxisome-targeting signal 2) sequence. The overexpression of wild-type TcBDF1 is detrimental for epimastigotes, but it enhances the infectivity rate of trypomastigotes and the replication of amastigotes. On the other hand, the overexpression of a mutated version of TcBDF1 has no effect on epimastigotes, but it does negatively affect trypomastigotes' infection and amastigotes' replication.


Asunto(s)
Líquido Intracelular/metabolismo , Proteínas de la Membrana/biosíntesis , Microcuerpos/metabolismo , Neuraminidasa/biosíntesis , Proteínas Protozoarias/biosíntesis , Trypanosoma cruzi/metabolismo , Animales , Chlorocebus aethiops , Líquido Intracelular/parasitología , Microcuerpos/parasitología , Células Vero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA