Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(14)2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37512215

RESUMEN

The brittle failure of ceramic coatings limits their application in many fields. To address this issue, a novel armoured ceramic coating was developed to suppress brittle failure. First, an interconnected frame microstructure was micromachined onto the surface of a mild steel substrate using a nanosecond laser. Subsequently, a polymer-derived ceramic slurry was sprayed and sintered to obtain an armoured ceramic coating. The laser-micromachined burr-like microstructure of the substrate facilitated adhesion between the coating and the substrate. The results of the mechanical properties test showed that the armoured coating could withstand more than 20 cycles of water-cooled thermal shock at 600 °C, and the peeling area of the armoured coating was approximately three times less than that of the unarmoured coating under a normal load of 1471 N. The laboratory and field corrosion test results indicated that at high temperatures, the corrosion resistance of the armoured coating was comparable with that of the unarmoured coating and was approximately 10 times higher than that of the uncoated sample. The proposed method will aid in suppressing the brittle failure of ceramic coatings and broaden their scope of application in different fields.

2.
Materials (Basel) ; 16(7)2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-37048858

RESUMEN

Slightly SBS-modified bitumen binders have been applied for the asphalt concrete impermeable layer of pumped storage power stations (PSPSs) in China. However, the storage stability and aging resistance of slightly SBS-modified bitumen are big concerns. In this study, three different types of slightly SBS-modified bitumen binders were evaluated by using a commonly used virgin bitumen and a normal SBS polymer-modified bitumen as references. All of the bitumen binders were subjected to short-term and long-term aging that were simulated by using a 5 h and 24 h thin film oven test (TFOT), respectively. A Fourier transform infrared (FTIR) spectroscopy test, storage stability test, dynamic shear rheological test, stress relaxation test, and direct tensile (DT) test were carried out to obtain insight into the storage stability and aging resistance. FTIR analysis indicated that slightly SBS modified bitumen exhibited serious aging of base bitumen together with higher polymer degradation. The aging indexes obtained from the carbonyl index and the polybutadiene (PB) index can well rank the aging resistance. Slightly SBS-modified bitumen binders had excellent storage stability, and even after a long-term period of 7 days of storage, the complex modulus and phase angle remained fairly constant. The rheological master curves were constructed to investigate the effects of short-term and long-term aging. Slightly modified bitumen binders were well identified by the plateau of the phase angle master curves. The aging resistance was well distinguished by the deviation of the complex modulus master curve using unaged bitumen as a baseline. It was found that three types of slightly SBS-modified bitumen binders exhibited inconsistent aging resistance in terms of rheological aging index. The relative change of the initial instantaneous modulus and the modulus relaxation rate was able to explain the relaxation properties. With respect to the direct tensile test, the increase in stiffness modulus and the loss of ultimate tensile strain can be used to evaluate the susceptibility of bitumen aging. An attempt was made to establish the relationship of the aging index between FTIR analysis, rheological properties, and low-temperature performance. It was found that the relationship among these aging indexes was weak. In general, slightly SBS modified bitumen should be well designed to obtain good aging resistance and low-temperature performance. Highly modified bitumen is foreseen to be promising in the case of extremely low temperatures and long-term durability.

3.
Materials (Basel) ; 16(2)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36676487

RESUMEN

The retrofitting of existing RC slabs with an innovative system comprising FRP and HPC has been demonstrated to be effective in strengthening and overcoming the logistical challenges of installation. Nonetheless, the excessive improvement of flexural strength over shear strength would cause the sudden failure of rehabilitated flexural members. The literature has previously recommended failure limits to determine the additional moment strength compared with the shear strength to prevent brittle shear failure of strengthened, continuous RC slabs. This study suggests a design process for preventing shear failure and inducing the ductile-failure mode to improve the safety and applicability of retrofitted RC slabs based on the proposed failure limits. The effectiveness of the procedure in brittle-failure prevention for the end and interior spans of retrofitted RC slabs is illustrated via a case study. The outcomes showed that the retrofit system with 0.53-mm-thick-CFRP prevented brittle failure and significantly enhanced the design-factored load and ultimate failure load by up to 2.07 times and 2.13 times, respectively.

4.
Materials (Basel) ; 14(24)2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34947203

RESUMEN

Split Hopkinson bars are used for the dynamic mechanical characterisation of materials under high strain rates. Many of these test benches are designed in such a way that they can either be used for compressive or tensile loading. The goal of the present work is to develop a release mechanism for an elastically pre-stressed Split Hopkinson bar that can be universally used for tensile or compressive loading. The paper describes the design and dimensioning of the release mechanism, including the brittle failing wear parts from ultra-high strength steel. Additionally, a numerical study on the effect of the time-to-full-release on the pulse-shape and pulse-rising time was conducted. The results of the analytical dimensioning approaches for the release mechanism, including the wear parts, were validated against experimental tests. It can be demonstrated that the designed release concept leads to sufficiently short and reproducible pulse rising times of roughly 0.11 ms to 0.21 ms, depending on the pre-loading level for both the tension and compression wave. According to literature, the usual pulse rising times can range from 0.01 ms to 0.35 ms, which leads to the conclusion that a good average pulse rising time was achieved with the present release system.

5.
Proc Inst Mech Eng H ; 233(11): 1151-1164, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31532324

RESUMEN

Enamel grinding is a critical dental surgery process. However, tooth damage during the process remains a significant problem. Grinding forces, burr wear, and surface quality were characterised in relation to grinding speed, enamel orientation, grinding depth, and burr grit grain size. Results indicated that enamel rod orientation, grinding depth, and grinding speed critically affected enamel grinding. Occlusal surface grinding resulted in significantly higher normal forces, surface roughness, and marginally greater tangential forces than axial surface grinding. Damage to enamel machined surfaces indicated the significant impact of diamond grit size and rod orientation. Burr wear was primarily diamond grit peeling off and breakage. Surface roughness of axial and occlusal sections was largely influenced by grinding speed and diamond grit size. Improving the surface quality of machined enamel surfaces could be realised using fine burrs, reducing the grinding speed and grinding depth, and adjusting the feed direction vertical to the rod orientation. Enamel surface quality and roughness could be improved by reducing brittle failure and circular runout during the grinding process, respectively.


Asunto(s)
Esmalte Dental/cirugía , Diamante , Fenómenos Mecánicos , Procedimientos Quirúrgicos Orales/instrumentación , Adolescente , Adulto , Fenómenos Biomecánicos , Humanos , Cinética , Propiedades de Superficie , Torque , Adulto Joven
6.
Int J Rock Mech Min Sci (1997) ; 105: 182-191, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29780272

RESUMEN

Characterizing a coal from an engineering perspective for design of mining excavations is critical in order to prevent fatalities, as underground coal mines are often developed in highly stressed ground conditions. Coal pillar bursts involve the sudden expulsion of coal and rock into the mine opening. These events occur when relatively high stresses in a coal pillar, left for support in underground workings, exceed the pillar's load capacity causing the pillar to rupture without warning. This process may be influenced by cleating, which is a type of joint system that can be found in coal rock masses. As such, it is important to consider the anisotropy of coal mechanical behavior. Additionally, if coal is expected to fail in a brittle manner, then behavior changes, such as the transition from extensional to shear failure, have to be considered and reflected in the adopted failure criteria. It must be anticipated that a different failure mechanism occurs as the confinement level increases and conditions for tensile failure are prevented or strongly diminished. The anisotropy and confinement dependency of coal behavior previously mentioned merit extensive investigation. In this study, a total of 84 samples obtained from a Utah coal mine were investigated by conducting both unconfined and triaxial compressive tests. The results showed that the confining pressure dictated not only the peak compressive strength but also the brittleness as a function of the major to the minor principal stress ratio. Additionally, an s-shaped brittle failure criterion was fitted to the results, showing the development of confinement-dependent strength. Moreover, these mechanical characteristics were found to be strongly anisotropic, which was associated with the orientation of the cleats relative to the loading direction.

7.
J Mech Behav Biomed Mater ; 66: 1-11, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27825047

RESUMEN

The main failure factors of cortical bone are aging or osteoporosis, accident and high energy trauma or physiological activities. However, the mechanism of damage evolution coupled with yield criterion is considered as one of the unclear subjects in failure analysis of cortical bone materials. Therefore, this study attempts to assess the structural response and progressive failure process of cortical bone using a brittle damaged plasticity model. For this reason, several compressive tests are performed on cortical bone specimens made of bovine femur, in order to obtain the structural response and mechanical properties of the material. Complementary finite element (FE) model of the sample and test is prepared to simulate the elastic-to-damage behavior of the cortical bone using the brittle damaged plasticity model. The FE model is validated in a comparative method using the predicted and measured structural response as load-compressive displacement through simulation and experiment. FE results indicated that the compressive damage initiated and propagated at central region where maximum equivalent plastic strain is computed, which coincided with the degradation of structural compressive stiffness followed by a vast amount of strain energy dissipation. The parameter of compressive damage rate, which is a function dependent on damage parameter and the plastic strain is examined for different rates. Results show that considering a similar rate to the initial slope of the damage parameter in the experiment would give a better sense for prediction of compressive failure.


Asunto(s)
Fuerza Compresiva , Hueso Cortical/fisiología , Modelos Biológicos , Estrés Mecánico , Animales , Bovinos , Análisis de Elementos Finitos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA