Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Front Bioeng Biotechnol ; 12: 1454262, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39253705

RESUMEN

The global rise in lower limb amputation cases necessitates advancements in prosthetic limb technology to enhance the quality of life for affected patients. This review paper explores recent advancements in the integration of EEG and fNIRS modalities for smart lower prosthetic limbs for rehabilitation applications. The paper synthesizes current research progress, focusing on the synergy between brain-computer interfaces and neuroimaging technologies to enhance the functionality and user experience of lower limb prosthetics. The review discusses the potential of EEG and fNIRS in decoding neural signals, enabling more intuitive and responsive control of prosthetic devices. Additionally, the paper highlights the challenges, innovations, and prospects associated with the incorporation of these neurotechnologies in the field of rehabilitation. The insights provided in this review contribute to a deeper understanding of the evolving landscape of smart lower prosthetic limbs and pave the way for more effective and user-friendly solutions in the realm of neurorehabilitation.

2.
Front Neurosci ; 18: 1402154, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39234182

RESUMEN

Objective: The brain-computer interface (BCI) systems based on rapid serial visual presentation (RSVP) have been widely utilized for the detection of target and non-target images. Collaborative brain-computer interface (cBCI) effectively fuses electroencephalogram (EEG) data from multiple users to overcome the limitations of low single-user performance in single-trial event-related potential (ERP) detection in RSVP-based BCI systems. In a multi-user cBCI system, a superior group mode may lead to better collaborative performance and lower system cost. However, the key factors that enhance the collaboration capabilities of multiple users and how to further use these factors to optimize group mode remain unclear. Approach: This study proposed a group-member selection strategy to optimize the group mode and improve the system performance for RSVP-based cBCI. In contrast to the conventional grouping of collaborators at random, the group-member selection strategy enabled pairing each user with a better collaborator and allowed tasks to be done with fewer collaborators. Initially, we introduced the maximum individual capability and maximum collaborative capability (MIMC) to select optimal pairs, improving the system classification performance. The sequential forward floating selection (SFFS) combined with MIMC then selected a sub-group, aiming to reduce the hardware and labor expenses in the cBCI system. Moreover, the hierarchical discriminant component analysis (HDCA) was used as a classifier for within-session conditions, and the Euclidean space data alignment (EA) was used to overcome the problem of inter-trial variability for cross-session analysis. Main results: In this paper, we verified the effectiveness of the proposed group-member selection strategy on a public RSVP-based cBCI dataset. For the two-user matching task, the proposed MIMC had a significantly higher AUC and TPR and lower FPR than the common random grouping mode and the potential group-member selection method. Moreover, the SFFS with MIMC enabled a trade-off between maintaining performance and reducing the number of system users. Significance: The results showed that our proposed MIMC effectively optimized the group mode, enhanced the classification performance in the two-user matching task, and could reduce the redundant information by selecting the sub-group in the RSVP-based multi-user cBCI systems.

3.
Med Biol Eng Comput ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39028484

RESUMEN

Stroke is a neurological condition that usually results in the loss of voluntary control of body movements, making it difficult for individuals to perform activities of daily living (ADLs). Brain-computer interfaces (BCIs) integrated into robotic systems, such as motorized mini exercise bikes (MMEBs), have been demonstrated to be suitable for restoring gait-related functions. However, kinematic estimation of continuous motion in BCI systems based on electroencephalography (EEG) remains a challenge for the scientific community. This study proposes a comparative analysis to evaluate two artificial neural network (ANN)-based decoders to estimate three lower-limb kinematic parameters: x- and y-axis position of the ankle and knee joint angle during pedaling tasks. Long short-term memory (LSTM) was used as a recurrent neural network (RNN), which reached Pearson correlation coefficient (PCC) scores close to 0.58 by reconstructing kinematic parameters from the EEG features on the delta band using a time window of 250 ms. These estimates were evaluated through kinematic variance analysis, where our proposed algorithm showed promising results for identifying pedaling and rest periods, which could increase the usability of classification tasks. Additionally, negative linear correlations were found between pedaling speed and decoder performance, thereby indicating that kinematic parameters between slower speeds may be easier to estimate. The results allow concluding that the use of deep learning (DL)-based methods is feasible for the estimation of lower-limb kinematic parameters during pedaling tasks using EEG signals. This study opens new possibilities for implementing controllers most robust for MMEBs and BCIs based on continuous decoding, which may allow for maximizing the degrees of freedom and personalized rehabilitation.

4.
Sensors (Basel) ; 24(12)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38931751

RESUMEN

This work addresses the challenge of classifying multiclass visual EEG signals into 40 classes for brain-computer interface applications using deep learning architectures. The visual multiclass classification approach offers BCI applications a significant advantage since it allows the supervision of more than one BCI interaction, considering that each class label supervises a BCI task. However, because of the nonlinearity and nonstationarity of EEG signals, using multiclass classification based on EEG features remains a significant challenge for BCI systems. In the present work, mutual information-based discriminant channel selection and minimum-norm estimate algorithms were implemented to select discriminant channels and enhance the EEG data. Hence, deep EEGNet and convolutional recurrent neural networks were separately implemented to classify the EEG data for image visualization into 40 labels. Using the k-fold cross-validation approach, average classification accuracies of 94.8% and 89.8% were obtained by implementing the aforementioned network architectures. The satisfactory results obtained with this method offer a new implementation opportunity for multitask embedded BCI applications utilizing a reduced number of both channels (<50%) and network parameters (<110 K).


Asunto(s)
Algoritmos , Interfaces Cerebro-Computador , Aprendizaje Profundo , Electroencefalografía , Redes Neurales de la Computación , Electroencefalografía/métodos , Humanos , Procesamiento de Señales Asistido por Computador
5.
Front Hum Neurosci ; 18: 1362135, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38505099

RESUMEN

Introduction: Brain-computer interfaces (BCIs) are systems that acquire the brain's electrical activity and provide control of external devices. Since electroencephalography (EEG) is the simplest non-invasive method to capture the brain's electrical activity, EEG-based BCIs are very popular designs. Aside from classifying the extremity movements, recent BCI studies have focused on the accurate coding of the finger movements on the same hand through their classification by employing machine learning techniques. State-of-the-art studies were interested in coding five finger movements by neglecting the brain's idle case (i.e., the state that brain is not performing any mental tasks). This may easily cause more false positives and degrade the classification performances dramatically, thus, the performance of BCIs. This study aims to propose a more realistic system to decode the movements of five fingers and the no mental task (NoMT) case from EEG signals. Methods: In this study, a novel praxis for feature extraction is utilized. Using Proper Rotational Components (PRCs) computed through Intrinsic Time Scale Decomposition (ITD), which has been successfully applied in different biomedical signals recently, features for classification are extracted. Subsequently, these features were applied to the inputs of well-known classifiers and their different implementations to discriminate between these six classes. The highest classifier performances obtained in both subject-independent and subject-dependent cases were reported. In addition, the ANOVA-based feature selection was examined to determine whether statistically significant features have an impact on the classifier performances or not. Results: As a result, the Ensemble Learning classifier achieved the highest accuracy of 55.0% among the tested classifiers, and ANOVA-based feature selection increases the performance of classifiers on five-finger movement determination in EEG-based BCI systems. Discussion: When compared with similar studies, proposed praxis achieved a modest yet significant improvement in classification performance although the number of classes was incremented by one (i.e., NoMT).

6.
Sensors (Basel) ; 24(2)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38257638

RESUMEN

Controlling the in-car environment, including temperature and ventilation, is necessary for a comfortable driving experience. However, it often distracts the driver's attention, potentially causing critical car accidents. In the present study, we implemented an in-car environment control system utilizing a brain-computer interface (BCI) based on steady-state visual evoked potential (SSVEP). In the experiment, four visual stimuli were displayed on a laboratory-made head-up display (HUD). This allowed the participants to control the in-car environment by simply staring at a target visual stimulus, i.e., without pressing a button or averting their eyes from the front. The driving performances in two realistic driving tests-obstacle avoidance and car-following tests-were then compared between the manual control condition and SSVEP-BCI control condition using a driving simulator. In the obstacle avoidance driving test, where participants needed to stop the car when obstacles suddenly appeared, the participants showed significantly shorter response time (1.42 ± 0.26 s) in the SSVEP-BCI control condition than in the manual control condition (1.79 ± 0.27 s). No-response rate, defined as the ratio of obstacles that the participants did not react to, was also significantly lower in the SSVEP-BCI control condition (4.6 ± 14.7%) than in the manual control condition (20.5 ± 25.2%). In the car-following driving test, where the participants were instructed to follow a preceding car that runs at a sinusoidally changing speed, the participants showed significantly lower speed difference with the preceding car in the SSVEP-BCI control condition (15.65 ± 7.04 km/h) than in the manual control condition (19.54 ± 11.51 km/h). The in-car environment control system using SSVEP-based BCI showed a possibility that might contribute to safer driving by keeping the driver's focus on the front and thereby enhancing the overall driving performance.


Asunto(s)
Interfaces Cerebro-Computador , Humanos , Automóviles , Potenciales Evocados Visuales , Ojo , Laboratorios
7.
Front Neurosci ; 17: 1194554, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37502681

RESUMEN

Introduction: Attention is a complex cognitive function of human brain that plays a vital role in our daily lives. Electroencephalogram (EEG) is used to measure and analyze attention due to its high temporal resolution. Although several attention recognition brain-computer interfaces (BCIs) have been proposed, there is a scarcity of studies with a sufficient number of subjects, valid paradigms, and reliable recognition analysis across subjects. Methods: In this study, we proposed a novel attention paradigm and feature fusion method to extract features, which fused time domain features, frequency domain features and nonlinear dynamics features. We then constructed an attention recognition framework for 85 subjects. Results and discussion: We achieved an intra-subject average classification accuracy of 85.05% ± 6.87% and an inter-subject average classification accuracy of 81.60% ± 9.93%, respectively. We further explored the neural patterns in attention recognition, where attention states showed less activation than non-attention states in the prefrontal and occipital areas in α, ß and θ bands. The research explores, for the first time, the fusion of time domain features, frequency domain features and nonlinear dynamics features for attention recognition, providing a new understanding of attention recognition.

8.
Front Hum Neurosci ; 17: 1223307, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37497042

RESUMEN

In recent studies, in the field of Brain-Computer Interface (BCI), researchers have focused on Motor Imagery tasks. Motor Imagery-based electroencephalogram (EEG) signals provide the interaction and communication between the paralyzed patients and the outside world for moving and controlling external devices such as wheelchair and moving cursors. However, current approaches in the Motor Imagery-BCI system design require effective feature extraction methods and classification algorithms to acquire discriminative features from EEG signals due to the non-linear and non-stationary structure of EEG signals. This study investigates the effect of statistical significance-based feature selection on binary and multi-class Motor Imagery EEG signal classifications. In the feature extraction process performed 24 different time-domain features, 15 different frequency-domain features which are energy, variance, and entropy of Fourier transform within five EEG frequency subbands, 15 different time-frequency domain features which are energy, variance, and entropy of Wavelet transform based on five EEG frequency subbands, and 4 different Poincare plot-based non-linear parameters are extracted from each EEG channel. A total of 1,364 Motor Imagery EEG features are supplied from 22 channel EEG signals for each input EEG data. In the statistical significance-based feature selection process, the best one among all possible combinations of these features is tried to be determined using the independent t-test and one-way analysis of variance (ANOVA) test on binary and multi-class Motor Imagery EEG signal classifications, respectively. The whole extracted feature set and the feature set that contain statistically significant features only are classified in this study. We implemented 6 and 7 different classifiers in multi-class and binary (two-class) classification tasks, respectively. The classification process is evaluated using the five-fold cross-validation method, and each classification algorithm is tested 10 times. These repeated tests provide to check the repeatability of the results. The maximum of 61.86 and 47.36% for the two-class and four-class scenarios, respectively, are obtained with Ensemble Subspace Discriminant among all these classifiers using selected features including only statistically significant features. The results reveal that the introduced statistical significance-based feature selection approach improves the classifier performances by achieving higher classifier performances with fewer relevant components in Motor Imagery task classification. In conclusion, the main contribution of the presented study is two-fold evaluation of non-linear parameters as an alternative to the commonly used features and the prediction of multiple Motor Imagery tasks using statistically significant features.

9.
Brain Sci ; 13(7)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37508946

RESUMEN

Functional dissociation of brain neural activity induced by opening or closing the eyes has been well established. However, how the temporal dynamics of the underlying neuronal modulations differ between these eye conditions during movement-related behaviours is less known. Using a robotic-assisted motor imagery brain-computer interface (MI BCI), we measured neural activity over the motor regions with electroencephalography (EEG) in a stroke survivor during his longitudinal rehabilitation training. We investigated lateralized oscillatory sensorimotor rhythm modulations while the patient imagined moving his hemiplegic hand with closed and open eyes to control an external robotic splint. In order to precisely identify the main profiles of neural activation affected by MI with eyes-open (MIEO) and eyes-closed (MIEC), a data-driven approach based on parallel factor analysis (PARAFAC) tensor decomposition was employed. Using the proposed framework, a set of narrow-band, subject-specific sensorimotor rhythms was identified; each of them had its own spatial and time signature. When MIEC trials were compared with MIEO trials, three key narrow-band rhythms whose peak frequencies centred at ∼8.0 Hz, ∼11.5 Hz, and ∼15.5 Hz, were identified with differently modulated oscillatory dynamics during movement preparation, initiation, and completion time frames. Furthermore, we observed that lower and higher sensorimotor oscillations represent different functional mechanisms within the MI paradigm, reinforcing the hypothesis that rhythmic activity in the human sensorimotor system is dissociated. Leveraging PARAFAC, this study achieves remarkable precision in estimating latent sensorimotor neural substrates, aiding the investigation of the specific functional mechanisms involved in the MI process.

10.
Neural Netw ; 165: 451-462, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37336030

RESUMEN

Due to its convenience and safety, electroencephalography (EEG) data is one of the most widely used signals in motor imagery (MI) brain-computer interfaces (BCIs). In recent years, methods based on deep learning have been widely applied to the field of BCIs, and some studies have gradually tried to apply Transformer to EEG signal decoding due to its superior global information focusing ability. However, EEG signals vary from subject to subject. Based on Transformer, how to effectively use data from other subjects (source domain) to improve the classification performance of a single subject (target domain) remains a challenge. To fill this gap, we propose a novel architecture called MI-CAT. The architecture innovatively utilizes Transformer's self-attention and cross-attention mechanisms to interact features to resolve differential distribution between different domains. Specifically, we adopt a patch embedding layer for the extracted source and target features to divide the features into multiple patches. Then, we comprehensively focus on the intra-domain and inter-domain features by stacked multiple Cross-Transformer Blocks (CTBs), which can adaptively conduct bidirectional knowledge transfer and information exchange between domains. Furthermore, we also utilize two non-shared domain-based attention blocks to efficiently capture domain-dependent information, optimizing the features extracted from the source and target domains to assist in feature alignment. To evaluate our method, we conduct extensive experiments on two real public EEG datasets, Dataset IIb and Dataset IIa, achieving competitive performance with an average classification accuracy of 85.26% and 76.81%, respectively. Experimental results demonstrate that our method is a powerful model for decoding EEG signals and facilitates the development of the Transformer for brain-computer interfaces (BCIs).


Asunto(s)
Interfaces Cerebro-Computador , Imaginación , Electroencefalografía/métodos , Algoritmos
11.
J Neural Eng ; 20(3)2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37130514

RESUMEN

Objective.Motor decoding is crucial to translate the neural activity for brain-computer interfaces (BCIs) and provides information on how motor states are encoded in the brain. Deep neural networks (DNNs) are emerging as promising neural decoders. Nevertheless, it is still unclear how different DNNs perform in different motor decoding problems and scenarios, and which network could be a good candidate for invasive BCIs.Approach.Fully-connected, convolutional, and recurrent neural networks (FCNNs, CNNs, RNNs) were designed and applied to decode motor states from neurons recorded from V6A area in the posterior parietal cortex (PPC) of macaques. Three motor tasks were considered, involving reaching and reach-to-grasping (the latter under two illumination conditions). DNNs decoded nine reaching endpoints in 3D space or five grip types using a sliding window approach within the trial course. To evaluate decoders simulating a broad variety of scenarios, the performance was also analyzed while artificially reducing the number of recorded neurons and trials, and while performing transfer learning from one task to another. Finally, the accuracy time course was used to analyze V6A motor encoding.Main results.DNNs outperformed a classic Naïve Bayes classifier, and CNNs additionally outperformed XGBoost and Support Vector Machine classifiers across the motor decoding problems. CNNs resulted the top-performing DNNs when using less neurons and trials, and task-to-task transfer learning improved performance especially in the low data regime. Lastly, V6A neurons encoded reaching and reach-to-grasping properties even from action planning, with the encoding of grip properties occurring later, closer to movement execution, and appearing weaker in darkness.Significance.Results suggest that CNNs are effective candidates to realize neural decoders for invasive BCIs in humans from PPC recordings also reducing BCI calibration times (transfer learning), and that a CNN-based data-driven analysis may provide insights about the encoding properties and the functional roles of brain regions.


Asunto(s)
Interfaces Cerebro-Computador , Redes Neurales de la Computación , Humanos , Animales , Teorema de Bayes , Lóbulo Parietal , Neuronas/fisiología , Macaca fascicularis , Movimiento/fisiología
12.
J Neural Eng ; 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36808912

RESUMEN

OBJECTIVE: Visual evoked potentials (VEPs) have been commonly applied in brain-computer interfaces (BCIs) due to their satisfactory classification performance recently. However, most existing methods with flickering or oscillating stimuli will induce visual fatigue under long-term training, thus restricting the implementation of VEP-based BCIs. To address this issue, a novel paradigm adopting static motion illusion based on illusion-induced visual evoked potential (IVEP) is proposed for BCIs to enhance visual experience and practicality. APPROACH: This study explored the responses to baseline and illusion tasks including the Rotating-Tilted-Lines (RTL) illusion and Rotating-Snakes (RS) illusion. The distinguishable features were examined between different illusions by analyzing the event-related potentials (ERPs) and amplitude modulation of evoked oscillatory responses. MAIN RESULTS: The illusion stimuli elicited VEPs in an early time window encompassing a negative component (N1) from 110 to 200 ms and a positive component (P2) between 210 and 300 ms. Based on the feature analysis, a filter bank was designed to extract discriminative signals. The task-related component analysis (TRCA) was used to evaluate the binary classification task performance of the proposed method. Then the highest accuracy of 86.67% was achieved with a data length of 0.6 s. SIGNIFICANCE: The results of this study demonstrate that the static motion illusion paradigm has the feasibility of implementation and is promising for VEP-based BCI applications.

13.
Front Neuroinform ; 16: 997068, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36213545

RESUMEN

In this study, we proposed a new type of hybrid visual stimuli for steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs), which incorporate various periodic motions into conventional flickering stimuli (FS) or pattern reversal stimuli (PRS). Furthermore, we investigated optimal periodic motions for each FS and PRS to enhance the performance of SSVEP-based BCIs. Periodic motions were implemented by changing the size of the stimulus according to four different temporal functions denoted by none, square, triangular, and sine, yielding a total of eight hybrid visual stimuli. Additionally, we developed the extended version of filter bank canonical correlation analysis (FBCCA), which is a state-of-the-art training-free classification algorithm for SSVEP-based BCIs, to enhance the classification accuracy for PRS-based hybrid visual stimuli. Twenty healthy individuals participated in the SSVEP-based BCI experiment to discriminate four visual stimuli with different frequencies. An average classification accuracy and information transfer rate (ITR) were evaluated to compare the performances of SSVEP-based BCIs for different hybrid visual stimuli. Additionally, the user's visual fatigue for each of the hybrid visual stimuli was also evaluated. As the result, for FS, the highest performances were reported when the periodic motion of the sine waveform was incorporated for all window sizes except for 3 s. For PRS, the periodic motion of the square waveform showed the highest classification accuracies for all tested window sizes. A significant statistical difference in the performance between the two best stimuli was not observed. The averaged fatigue scores were reported to be 5.3 ± 2.05 and 4.05 ± 1.28 for FS with sine-wave periodic motion and PRS with square-wave periodic motion, respectively. Consequently, our results demonstrated that FS with sine-wave periodic motion and PRS with square-wave periodic motion could effectively improve the BCI performances compared to conventional FS and PRS. In addition, thanks to its low visual fatigue, PRS with square-wave periodic motion can be regarded as the most appropriate visual stimulus for the long-term use of SSVEP-based BCIs, particularly for window sizes equal to or larger than 2 s.

14.
Neural Netw ; 151: 111-120, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35405471

RESUMEN

Electroencephalographic measurement of cortical activity subserving motor behavior varies among different individuals, restricting the potential of brain computer interfaces (BCIs) based on motor imagery (MI). How to deal with this variability and thereby improve the accuracy of BCI classification remains a key issue. This paper proposes a deep learning-based approach to transfer the data distribution from BCI-friendly - "golden subjects" to the data from more typical BCI-illiterate users. In this work, we use the perceptual loss to align the dimensionality-reduced BCI-illiterate data with the data of golden subjects in low dimensions, by which a subject transfer neural network (STNN) is proposed. The network consists of two parts: 1) a generator, which generates the transferred BCI-illiterate features, and 2) a CNN classifier, which is used for the classification of the transferred features, thus outperforming traditional classification methods both in terms of accuracy and robustness. Electroencephalography (EEG) signals from 25 healthy subjects performing MI of the right hand and foot were classified with an average accuracy of 88.2%±5.1%. The proposed model was further validated on the BCI Competition IV dataset 2b, and was demonstrated to be robust to inter-subject variations. The advantages of STNN allow it to bridge the gap between the golden subjects and the BCI-illiterate ones, paving the way to real-time BCI applications.


Asunto(s)
Interfaces Cerebro-Computador , Algoritmos , Electroencefalografía/métodos , Humanos , Imaginación , Redes Neurales de la Computación
15.
Sensors (Basel) ; 21(13)2021 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-34202546

RESUMEN

In recent years, various studies have demonstrated the potential of electroencephalographic (EEG) signals for the development of brain-computer interfaces (BCIs) in the rehabilitation of human limbs. This article is a systematic review of the state of the art and opportunities in the development of BCIs for the rehabilitation of upper and lower limbs of the human body. The systematic review was conducted in databases considering using EEG signals, interface proposals to rehabilitate upper/lower limbs using motor intention or movement assistance and utilizing virtual environments in feedback. Studies that did not specify which processing system was used were excluded. Analyses of the design processing or reviews were excluded as well. It was identified that 11 corresponded to applications to rehabilitate upper limbs, six to lower limbs, and one to both. Likewise, six combined visual/auditory feedback, two haptic/visual, and two visual/auditory/haptic. In addition, four had fully immersive virtual reality (VR), three semi-immersive VR, and 11 non-immersive VR. In summary, the studies have demonstrated that using EEG signals, and user feedback offer benefits including cost, effectiveness, better training, user motivation and there is a need to continue developing interfaces that are accessible to users, and that integrate feedback techniques.


Asunto(s)
Interfaces Cerebro-Computador , Rehabilitación de Accidente Cerebrovascular , Electroencefalografía , Humanos , Extremidad Inferior , Extremidad Superior
16.
AJOB Neurosci ; 12(2-3): 172-186, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33764258

RESUMEN

Neural devices have the capacity to enable users to regain abilities lost due to disease or injury - for instance, a deep brain stimulator (DBS) that allows a person with Parkinson's disease to regain the ability to fluently perform movements or a Brain Computer Interface (BCI) that enables a person with spinal cord injury to control a robotic arm. While users recognize and appreciate the technologies' capacity to maintain or restore their capabilities, the neuroethics literature is replete with examples of concerns expressed about agentive capacities: A perceived lack of control over the movement of a robotic arm might result in an altered sense of feeling responsible for that movement. Clinicians or researchers being able to record and access detailed information of a person's brain might raise privacy concerns. A disconnect between previous, current, and future understandings of the self might result in a sense of alienation. The ability to receive and interpret sensory feedback might change whether someone trusts the implanted device or themselves. Inquiries into the nature of these concerns and how to mitigate them has produced scholarship that often emphasizes one issue - responsibility, privacy, authenticity, or trust - selectively. However, we believe that examining these ethical dimensions separately fails to capture a key aspect of the experience of living with a neural device. In exploring their interrelations, we argue that their mutual significance for neuroethical research can be adequately captured if they are described under a unified heading of agency. On these grounds, we propose an "Agency Map" which brings together the diverse neuroethical dimensions and their interrelations into a comprehensive framework. With this, we offer a theoretically-grounded approach to understanding how these various dimensions are interwoven in an individual's experience of agency.


Asunto(s)
Interfaces Cerebro-Computador , Terapia por Estimulación Eléctrica , Traumatismos de la Médula Espinal , Encéfalo , Humanos , Movimiento
17.
HCA Healthc J Med ; 2(3): 143-162, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-37427002

RESUMEN

Description Sensorimotor rhythm-based brain-computer interfaces (SMR-BCIs) are used for the acquisition and translation of motor imagery-related brain signals into machine control commands, bypassing the usual central nervous system output. The selection of optimal external variable configuration can maximize SMR-BCI performance in both healthy and disabled people. This performance is especially important now when the BCI is targeted for everyday use in the environment beyond strictly regulated laboratory settings. In this review article, we summarize and critically evaluate the current body of knowledge pertaining to the effect of the external variables on SMR-BCI performance. When assessing the relationship between SMR-BCI performance and external variables, we broadly characterize them as elements that are less dependent on the BCI user and originate from beyond the user. These elements include such factors as BCI type, distractors, training, visual and auditory feedback, virtual reality and magneto electric feedback, proprioceptive and haptic feedback, carefulness of electroencephalography (EEG) system assembling and positioning of EEG electrodes as well as recording-related artifacts. At the end of this review paper, future developments are proposed regarding the research into the effects of external variables on SMR-BCI performance. We believe that our critical review will be of value for academic BCI scientists and developers and clinical professionals working in the field of BCIs as well as for SMR-BCI users.

18.
HCA Healthc J Med ; 2(3): 163-179, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-37427003

RESUMEN

Description In this review article, we aimed to create a summary of the effects of internal variables on the performance of sensorimotor rhythm-based brain computer interfaces (SMR-BCIs). SMR-BCIs can be potentially used for interfacing between the brain and devices, bypassing usual central nervous system output, such as muscle activity. The careful consideration of internal factors, affecting SMR-BCI performance, can maximize BCI application in both healthy and disabled people. Internal variables may be generalized as descriptors of the processes mainly dependent on the BCI user and/or originating within the user. The current review aimed to critically evaluate and summarize the currently accumulated body of knowledge regarding the effect of internal variables on SMR-BCI performance. The examples of such internal variables include motor imagery, hand coordination, attention, motivation, quality of life, mood and neurophysiological signals other than SMR. We will conclude our review with the discussion about the future developments regarding the research on the effects of internal variables on SMR-BCI performance. The end-goal of this review paper is to provide current BCI users and researchers with the reference guide that can help them optimize the SMR-BCI performance by accounting for possible influences of various internal factors.

19.
Sensors (Basel) ; 19(17)2019 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-31480390

RESUMEN

This paper presents a novel motor imagery (MI) classification algorithm using filter-bank common spatial pattern (FBCSP) features based on MI-relevant channel selection. In contrast to existing channel selection methods based on global CSP features, the proposed algorithm utilizes the Fisher ratio of time domain parameters (TDPs) and correlation coefficients: the channel with the highest Fisher ratio of TDPs, named principle channel, is selected and a supporting channel set for the principle channel that consists of highly correlated channels to the principle channel is generated. The proposed algorithm using the FBCSP features generated from the supporting channel set for the principle channel significantly improved the classification performance. The performance of the proposed method was evaluated using BCI Competition III Dataset IVa (18 channels) and BCI Competition IV Dataset I (59 channels).

20.
Neurosci Lett ; 698: 113-120, 2019 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-30630057

RESUMEN

Decoding the movements of different fingers within the same hand can increase the control's dimensions of the electroencephalography (EEG)-based brain-computer interface (BCI) systems. This in turn enables the subjects who are using assistive devices to better perform various dexterous tasks. However, decoding the movements performed by different fingers within the same hand by analyzing the EEG signals is considered a challenging task. In this paper, we present a new EEG-based BCI system for decoding the movements of each finger within the same hand based on analyzing the EEG signals using a quadratic time-frequency distribution (QTFD), namely the Choi-William distribution (CWD). In particular, the CWD is employed to characterize the time-varying spectral components of the EEG signals and extract features that can capture movement-related information encapsulated within the EEG signals. The extracted CWD-based features are used to build a two-layer classification framework that decodes finger movements within the same hand. The performance of the proposed system is evaluated by recording the EEG signals for eighteen healthy subjects while performing twelve finger movements using their right hands. The results demonstrate the efficacy of the proposed system to decode finger movements within the same hand of each subject.


Asunto(s)
Electroencefalografía , Dedos/fisiología , Mano/fisiología , Movimiento/fisiología , Adulto , Algoritmos , Interfaces Cerebro-Computador , Electroencefalografía/métodos , Femenino , Humanos , Imaginación/fisiología , Masculino , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA