Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 581
Filtrar
1.
Neural Netw ; 180: 106665, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39241437

RESUMEN

In brain-computer interface (BCI), building accurate electroencephalogram (EEG) classifiers for specific mental tasks is critical for BCI performance. The classifiers are developed by machine learning (ML) and deep learning (DL) techniques, requiring a large dataset for training to build reliable and accurate models. However, collecting large enough EEG datasets is difficult due to intra-/inter-subject variabilities and experimental costs. This leads to the data scarcity problem, which causes overfitting issues to training samples, resulting in reducing generalization performance. To solve the EEG data scarcity problem and improve the performance of the EEG classifiers, we propose a novel EEG data augmentation (DA) framework using conditional generative adversarial networks (cGANs). An experimental study is implemented with two public EEG datasets, including motor imagery (MI) tasks (BCI competition IV IIa and III IVa), to validate the effectiveness of the proposed EEG DA method for the EEG classifiers. To evaluate the proposed cGAN-based DA method, we tested eight EEG classifiers for the experiment, including traditional MLs and state-of-the-art DLs with three existing EEG DA methods. Experimental results showed that most DA methods with proper DA proportion in the training dataset had higher classification performances than without DA. Moreover, applying the proposed DA method showed superior classification performance improvement than the other DA methods. This shows that the proposed method is a promising EEG DA method for enhancing the performances of the EEG classifiers in MI-based BCIs.

2.
Sci Rep ; 14(1): 20420, 2024 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-39227389

RESUMEN

Injection molding is a common plastic processing technique that allows melted plastic to be injected into a mold through pressure to form differently shaped plastic parts. In injection molding, in-mold electronics (IME) can include various circuit components, such as sensors, amplifiers, and filters. These components can be injected into the mold to form a whole within the melted plastic and can therefore be very easily integrated into the molded part. The brain-computer interface (BCI) is a direct connection pathway between a human or animal brain and an external device. Through BCIs, individuals can use their own brain signals to control these components, enabling more natural and intuitive interactions. In addition, brain-computer interfaces can also be used to assist in medical treatments, such as controlling prosthetic limbs or helping paralyzed patients regain mobility. Brain-computer interfaces can be realized in two ways: invasively and noninvasively, and in this paper, we adopt a noninvasive approach. First, a helmet model is designed according to head shape, and second, a printed circuit film is made to receive EEG signals and an IME injection mold for the helmet plastic parts. In the electronic film, conductive ink is printed to connect each component. However, improper parameterization during the injection molding process can lead to node displacements and residual stress changes in the molded part, which can damage the circuits in the electronic film and affect its performance. Therefore, in this paper, the use of the BCI molding process to ensure that the node displacement reaches the optimal value is studied. Second, the multistrategy differential evolutionary algorithm is used to optimize the injection molding parameters in the process of brain-computer interface formation. The relationship between the injection molding parameters and the actual target value is investigated through Latin hypercubic sampling, and the optimized parameters are compared with the target parameters to obtain the optimal parameter combination. Under the optimal parameters, the node displacement can be optimized from 0.585 to 0.027 mm, and the optimization rate can reach 95.38%. Ultimately, by detecting whether the voltage difference between the output inputs is within the permissible range, the reliability of the brain-computer interface after node displacement optimization can be evaluated.


Asunto(s)
Algoritmos , Interfaces Cerebro-Computador , Electroencefalografía , Electroencefalografía/métodos , Humanos , Encéfalo/fisiología , Procesamiento de Señales Asistido por Computador
3.
J Neural Eng ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39265614

RESUMEN

OBJECTIVE: Serving as a channel for communication with locked-in patients or control of prostheses, sensorimotor brain-computer interfaces (BCIs) decode imaginary movements from the recorded activity of the user's brain. However, many individuals remain unable to control the BCI, and the underlying mechanisms are unclear. The user's BCI performance was previously shown to correlate with the resting-state signal-to-noise ratio (SNR) of the mu rhythm and the phase synchronization (PS) of the mu rhythm between sensorimotor areas. Yet, these predictors of performance were primarily evaluated in a single BCI session, while the longitudinal aspect remains rather uninvestigated. In addition, different analysis pipelines were used to estimate PS in source space, potentially hindering the reproducibility of the results. APPROACH: To systematically address these issues, we performed an extensive validation of the relationship between pre-stimulus SNR, PS, and session-wise BCI performance using a publicly available dataset of 62 human participants performing up to 11 sessions of BCI training. We performed the analysis in sensor space using the surface Laplacian and in source space by combining 24 processing pipelines in a multiverse analysis. This way, we could investigate how robust the observed effects were to the selection of the pipeline. MAIN RESULTS: Our results show that SNR had both between- and within-subject effects on BCI performance for the majority of the pipelines. In contrast, the effect of PS on BCI performance was less robust to the selection of the pipeline and became non-significant after controlling for SNR. SIGNIFICANCE: Taken together, our results demonstrate that changes in neuronal connectivity within the sensorimotor system are not critical for learning to control a BCI, and interventions that increase the SNR of the mu rhythm might lead to improvements in the user's BCI performance.

4.
J Neural Eng ; 21(5)2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39231465

RESUMEN

Objective. Over the last decades, error-related potentials (ErrPs) have repeatedly proven especially useful as corrective mechanisms in invasive and non-invasive brain-computer interfaces (BCIs). However, research in this context exclusively investigated the distinction of discrete events intocorrectorerroneousto the present day. Due to this predominant formulation as a binary classification problem, classical ErrP-based BCIs fail to monitor tasks demanding quantitative information on error severity rather than mere qualitative decisions on error occurrence. As a result, fine-tuned and natural feedback control based on continuously perceived deviations from an intended target remains beyond the capabilities of previously used BCI setups.Approach.To address this issue for future BCI designs, we investigated the feasibility of regressing rather than classifying error-related activity non-invasively from the brain.Main results.Using pre-recorded data from ten able-bodied participants in three sessions each and a multi-output convolutional neural network, we demonstrated the above-chance regression of ongoing target-feedback discrepancies from brain signals in a pseudo-online fashion. In a second step, we used this inferred information about the target deviation to correct the initially displayed feedback accordingly, reporting significant improvements in correlations between corrected feedback and target trajectories across feedback conditions.Significance.Our results indicate that continuous information on target-feedback discrepancies can be successfully regressed from cortical activity, paving the way to increasingly naturalistic, fine-tuned correction mechanisms for future BCI applications.


Asunto(s)
Interfaces Cerebro-Computador , Electroencefalografía , Humanos , Masculino , Adulto , Femenino , Electroencefalografía/métodos , Adulto Joven , Redes Neurales de la Computación , Encéfalo/fisiología
5.
Polymers (Basel) ; 16(17)2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39274138

RESUMEN

Injection molding is an efficient and precise manufacturing technology that is widely used in the production of plastic products. In recent years, injection molding technology has made significant progress, especially with the combination of in-mold electronics (IME) technology, which makes it possible to embed electronic components directly into the surface of a product. IME technology improves the integration and performance of a product by embedding conductive materials and functional components in the mold. Brain-computer interfaces (BCIs) are a rapidly growing field of research that aims to capture, analyze, and feedback brain signals by directly connecting the brain to external devices. The Utah array, a high-density microelectrode array, has been widely used for the recording and transmission of brain signals. However, the traditional fabrication method of the Utah array suffers from high cost and low integration, which limits its promotion in practical applications. The lines that receive EEG signals are one of the key parts of a brain-computer interface system. The optimization of injection molding parameters is particularly important in order to effectively embed these lines into thin films and to ensure the precise displacement of the line nodes and the stability of signal transmission during the injection molding process. In this study, a method based on the Kriging prediction model and sparse regression partial differential equations (PDEs) is proposed to optimize the key parameters in the injection molding process. This method can effectively predict and control the displacement of nodes in the film, ensure the stability and reliability of the line during the injection process, and improve the accuracy of EEG signal transmission and system performance. The optimal injection parameters were finally obtained: a holding pressure of 525 MPa, a holding time of 50 s, and a melting temperature of 285 °C. Under this condition, the average node displacement of UA was reduced from the initial 0.19 mm to 0.89 µm, with an optimization rate of 95.32%.

6.
Sensors (Basel) ; 24(17)2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39275636

RESUMEN

This study explores neuroplasticity through the use of virtual reality (VR) and brain-computer interfaces (BCIs). Neuroplasticity is the brain's ability to reorganize itself by forming new neural connections in response to learning, experience, and injury. VR offers a controlled environment to manipulate sensory inputs, while BCIs facilitate real-time monitoring and modulation of neural activity. By combining VR and BCI, researchers can stimulate specific brain regions, trigger neurochemical changes, and influence cognitive functions such as memory, perception, and motor skills. Key findings indicate that VR and BCI interventions are promising for rehabilitation therapies, treatment of phobias and anxiety disorders, and cognitive enhancement. Personalized VR experiences, adapted based on BCI feedback, enhance the efficacy of these interventions. This study underscores the potential for integrating VR and BCI technologies to understand and harness neuroplasticity for cognitive and therapeutic applications. The researchers utilized the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) method to conduct a comprehensive and systematic review of the existing literature on neuroplasticity, VR, and BCI. This involved identifying relevant studies through database searches, screening for eligibility, and assessing the quality of the included studies. Data extraction focused on the effects of VR and BCI on neuroplasticity and cognitive functions. The PRISMA method ensured a rigorous and transparent approach to synthesizing evidence, allowing the researchers to draw robust conclusions about the potential of VR and BCI technologies in promoting neuroplasticity and cognitive enhancement.


Asunto(s)
Interfaces Cerebro-Computador , Encéfalo , Plasticidad Neuronal , Realidad Virtual , Humanos , Plasticidad Neuronal/fisiología , Encéfalo/fisiología , Cognición/fisiología
7.
Ethics Hum Res ; 46(5): 37-42, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39277877

RESUMEN

The research and development of emerging technologies has potential long-term and societal impacts that pose governance challenges. This essay summarizes the development of research ethics in China over the past few decades, as well as the measures taken by the Chinese government to build its ethical governance system of science and technology after the occurrence of the CRISPR-babies incident. The essay then elaborates on the current problems of this system through the case study of ethical governance of brain-computer interface research, and explores how the transition from research ethics to translational bioethics, which encourages interdisciplinary collaboration and focuses on societal implications, may respond to the challenges of ethical governance of science and technology.


Asunto(s)
Bioética , Interfaces Cerebro-Computador , Investigación Biomédica Traslacional , China , Humanos , Interfaces Cerebro-Computador/ética , Investigación Biomédica Traslacional/ética , Ética en Investigación
8.
Artículo en Inglés | MEDLINE | ID: mdl-39286921

RESUMEN

Motor imagery brain computer interface (BCI) systems are considered one of the most crucial paradigms and have received extensive attention from researchers worldwide. However, the non-stationary from subject-to-subject transfer is a substantial challenge for robust BCI operations. To address this issue, this paper proposes a novel approach that integrates joint multi-feature extraction, specifically combining common spatial patterns (CSP) and wavelet packet transforms (WPT), along with transfer learning (TL) in motor imagery BCI systems. This approach leverages the time-frequency characteristics of WPT and the spatial characteristics of CSP while utilizing transfer learning to facilitate EEG identification for target subjects based on knowledge acquired from non-target subjects. Using dataset IVa from BCI Competition III, our proposed approach achieves an impressive average classification accuracy of 93.4%, outperforming five kinds of state-of-the-art approaches. Furthermore, it offers the advantage of enabling the design of various auxiliary problems to learn different aspects of the target problem from unlabeled data through transfer learning, thereby facilitating the implementation of innovative ideas within our proposed approach. Simultaneously, it demonstrates that integrating CSP and WPT while transferring knowledge from other subjects is highly effective in enhancing the average classification accuracy of EEG signals and it provides a novel solution to address subject-to-subject transfer challenges in motor imagery BCI systems.

12.
Bioengineering (Basel) ; 11(8)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39199739

RESUMEN

Event-related optical signals (EROS) measure fast modulations in the brain's optical properties related to neuronal activity. EROS offer a high spatial and temporal resolution and can be used for brain-computer interface (BCI) applications. However, the ability to classify single-trial EROS remains unexplored. This study evaluates the performance of neural network methods for single-trial classification of motor response-related EROS. EROS activity was obtained from a high-density recording montage covering the motor cortex during a two-choice reaction time task involving responses with the left or right hand. This study utilized a convolutional neural network (CNN) approach to extract spatiotemporal features from EROS data and perform classification of left and right motor responses. Subject-specific classifiers trained on EROS phase data outperformed those trained on intensity data, reaching an average single-trial classification accuracy of around 63%. Removing low-frequency noise from intensity data is critical for achieving discriminative classification results with this measure. Our results indicate that deep learning with high-spatial-resolution signals, such as EROS, can be successfully applied to single-trial classifications.

13.
Biosensors (Basel) ; 14(8)2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39194597

RESUMEN

This study investigates the feasibility of a novel brain-computer interface (BCI) device designed for sensory training following stroke. The BCI system administers electrotactile stimuli to the user's forearm, mirroring classical sensory training interventions. Concurrently, selective attention tasks are employed to modulate electrophysiological brain responses (somatosensory event-related potentials-sERPs), reflecting cortical excitability in related sensorimotor areas. The BCI identifies attention-induced changes in the brain's reactions to stimulation in an online manner. The study protocol assesses the feasibility of online binary classification of selective attention focus in ten subacute stroke patients. Each experimental session includes a BCI training phase for data collection and classifier training, followed by a BCI test phase to evaluate online classification of selective tactile attention based on sERP. During online classification tests, patients complete 20 repetitions of selective attention tasks with feedback on attention focus recognition. Using a single electroencephalographic channel, attention classification accuracy ranges from 70% to 100% across all patients. The significance of this novel BCI paradigm lies in its ability to quantitatively measure selective tactile attention resources throughout the therapy session, introducing a top-down approach to classical sensory training interventions based on repeated neuromuscular electrical stimulation.


Asunto(s)
Interfaces Cerebro-Computador , Electroencefalografía , Accidente Cerebrovascular , Humanos , Masculino , Accidente Cerebrovascular/fisiopatología , Femenino , Persona de Mediana Edad , Anciano , Estudios de Factibilidad , Potenciales Evocados Somatosensoriales/fisiología , Rehabilitación de Accidente Cerebrovascular/métodos , Adulto , Tacto
14.
Biosensors (Basel) ; 14(8)2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39194625

RESUMEN

Taste sensation recognition is a core for taste-related queries. Most prior research has been devoted to recognizing the basic taste sensations using the Brain-Computer Interface (BCI), which includes EEG, MEG, EMG, and fMRI. This research aims to recognize electronic taste (E-Taste) sensations based on surface electromyography (sEMG). Silver electrodes with platinum plating of the E-Taste device were placed on the tongue's tip to stimulate various tastes and flavors. In contrast, the electrodes of the sEMG were placed on facial muscles to collect the data. The dataset was organized and preprocessed, and a random forest classifier was applied, giving a five-fold accuracy of 70.43%. The random forest classifier was used on each participant dataset individually and in groups, providing the highest accuracy of 84.79% for a single participant. Moreover, various feature combinations were extracted and acquired 72.56% accuracy after extracting eight features. For a future perspective, this research offers guidance for electronic taste recognition based on sEMG.


Asunto(s)
Electromiografía , Gusto , Humanos , Interfaces Cerebro-Computador , Adulto
15.
Neuroscience ; 556: 42-51, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39103043

RESUMEN

Brain-computer interface (BCI) is a technology that directly connects signals between the human brain and a computer or other external device. Motor imagery electroencephalographic (MI-EEG) signals are considered a promising paradigm for BCI systems, with a wide range of potential applications in medical rehabilitation, human-computer interaction, and virtual reality. Accurate decoding of MI-EEG signals poses a significant challenge due to issues related to the quality of the collected EEG data and subject variability. Therefore, developing an efficient MI-EEG decoding network is crucial and warrants research. This paper proposes a loss joint training model based on the vision transformer (VIT) and the temporal convolutional network (EEG-VTTCNet) to classify MI-EEG signals. To take advantage of multiple modules together, the EEG-VTTCNet adopts a shared convolution strategy and a dual-branching strategy. The dual-branching modules perform complementary learning and jointly train shared convolutional modules with better performance. We conducted experiments on the BCI Competition IV-2a and IV-2b datasets, and the proposed network outperformed the current state-of-the-art techniques with an accuracy of 84.58% and 90.94%, respectively, for the subject-dependent mode. In addition, we used t-SNE to visualize the features extracted by the proposed network, further demonstrating the effectiveness of the feature extraction framework. We also conducted extensive ablation and hyperparameter tuning experiments to construct a robust network architecture that can be well generalized.


Asunto(s)
Interfaces Cerebro-Computador , Electroencefalografía , Imaginación , Redes Neurales de la Computación , Humanos , Electroencefalografía/métodos , Imaginación/fisiología , Encéfalo/fisiología
16.
J Neurosci Methods ; 410: 110241, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39111203

RESUMEN

BACKGROUND: In electroencephalographic (EEG) or electrocorticographic (ECoG) experiments, visual cues are commonly used for timing synchronization but may inadvertently induce neural activity and cognitive processing, posing challenges when decoding self-initiated tasks. NEW METHOD: To address this concern, we introduced four new visual cues (Fade, Rotation, Reference, and Star) and investigated their impact on brain signals. Our objective was to identify a cue that minimizes its influence on brain activity, facilitating cue-effect free classifier training for asynchronous applications, particularly aiding individuals with severe paralysis. RESULTS: 22 able-bodied, right-handed participants aged 18-30 performed hand movements upon presentation of the visual cues. Analysis of time-variability between movement onset and cue-aligned data, grand average MRCP, and classification outcomes revealed significant differences among cues. Rotation and Reference cue exhibited favorable results in minimizing temporal variability, maintaining MRCP patterns, and achieving comparable accuracy to self-paced signals in classification. COMPARISON WITH EXISTING METHODS: Our study contrasts with traditional cue-based paradigms by introducing novel visual cues designed to mitigate unintended neural activity. We demonstrate the effectiveness of Rotation and Reference cue in eliciting consistent and accurate MRCPs during motor tasks, surpassing previous methods in achieving precise timing and high discriminability for classifier training. CONCLUSIONS: Precision in cue timing is crucial for training classifiers, where both Rotation and Reference cue demonstrate minimal variability and high discriminability, highlighting their potential for accurate classifications in online scenarios. These findings offer promising avenues for refining brain-computer interface systems, particularly for individuals with motor impairments, by enabling more reliable and intuitive control mechanisms.


Asunto(s)
Señales (Psicología) , Electroencefalografía , Humanos , Adulto , Adulto Joven , Masculino , Femenino , Electroencefalografía/métodos , Adolescente , Desempeño Psicomotor/fisiología , Movimiento/fisiología , Encéfalo/fisiología , Percepción Visual/fisiología , Mano/fisiología , Estimulación Luminosa/métodos , Actividad Motora/fisiología
17.
Sensors (Basel) ; 24(15)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39124036

RESUMEN

The accuracy of classifying motor imagery (MI) activities is a significant challenge when using brain-computer interfaces (BCIs). BCIs allow people with motor impairments to control external devices directly with their brains using electroencephalogram (EEG) patterns that translate brain activity into control signals. Many researchers have been working to develop MI-based BCI recognition systems using various time-frequency feature extraction and classification approaches. However, the existing systems still face challenges in achieving satisfactory performance due to large amount of non-discriminative and ineffective features. To get around these problems, we suggested a multiband decomposition-based feature extraction and classification method that works well, along with a strong feature selection method for MI tasks. Our method starts by splitting the preprocessed EEG signal into four sub-bands. In each sub-band, we then used a common spatial pattern (CSP) technique to pull out narrowband-oriented useful features, which gives us a high-dimensional feature vector. Subsequently, we utilized an effective feature selection method, Relief-F, which reduces the dimensionality of the final features. Finally, incorporating advanced classification techniques, we classified the final reduced feature vector. To evaluate the proposed model, we used the three different EEG-based MI benchmark datasets, and our proposed model achieved better performance accuracy than existing systems. Our model's strong points include its ability to effectively reduce feature dimensionality and improve classification accuracy through advanced feature extraction and selection methods.


Asunto(s)
Interfaces Cerebro-Computador , Electroencefalografía , Electroencefalografía/métodos , Humanos , Algoritmos , Procesamiento de Señales Asistido por Computador , Imaginación/fisiología , Encéfalo/fisiología
18.
Sci Rep ; 14(1): 20237, 2024 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-39215126

RESUMEN

Brain-computer interface (BCI) technology bridges the direct communication between the brain and machines, unlocking new possibilities for human interaction and rehabilitation. EEG-based motor imagery (MI) plays a pivotal role in BCI, enabling the translation of thought into actionable commands for interactive and assistive technologies. However, the constrained decoding performance of brain signals poses a limitation to the broader application and development of BCI systems. In this study, we introduce a convolutional Transformer network (CTNet) designed for EEG-based MI classification. Firstly, CTNet employs a convolutional module analogous to EEGNet, dedicated to extracting local and spatial features from EEG time series. Subsequently, it incorporates a Transformer encoder module, leveraging a multi-head attention mechanism to discern the global dependencies of EEG's high-level features. Finally, a straightforward classifier module comprising fully connected layers is followed to categorize EEG signals. In subject-specific evaluations, CTNet achieved remarkable decoding accuracies of 82.52% and 88.49% on the BCI IV-2a and IV-2b datasets, respectively. Furthermore, in the challenging cross-subject assessments, CTNet achieved recognition accuracies of 58.64% on the BCI IV-2a dataset and 76.27% on the BCI IV-2b dataset. In both subject-specific and cross-subject evaluations, CTNet holds a leading position when compared to some of the state-of-the-art methods. This underscores the exceptional efficacy of our approach and its potential to set a new benchmark in EEG decoding.


Asunto(s)
Interfaces Cerebro-Computador , Electroencefalografía , Imaginación , Redes Neurales de la Computación , Humanos , Electroencefalografía/métodos , Imaginación/fisiología , Encéfalo/fisiología , Procesamiento de Señales Asistido por Computador , Algoritmos
19.
Brain Sci ; 14(8)2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39199537

RESUMEN

Brain-computer interfaces (BCIs) enable direct communication between the brain and external devices using electroencephalography (EEG) signals. BCIs based on code-modulated visual evoked potentials (cVEPs) are based on visual stimuli, thus appropriate visual feedback on the interface is crucial for an effective BCI system. Many previous studies have demonstrated that implementing visual feedback can improve information transfer rate (ITR) and reduce fatigue. This research compares a dynamic interface, where target boxes change their sizes based on detection certainty, with a threshold bar interface in a three-step cVEP speller. In this study, we found that both interfaces perform well, with slight variations in accuracy, ITR, and output characters per minute (OCM). Notably, some participants showed significant performance improvements with the dynamic interface and found it less distracting compared to the threshold bars. These results suggest that while average performance metrics are similar, the dynamic interface can provide significant benefits for certain users. This study underscores the potential for personalized interface choices to enhance BCI user experience and performance. By improving user friendliness, performance, and reducing distraction, dynamic visual feedback could optimize BCI technology for a broader range of users.

20.
Neural Netw ; 179: 106617, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39180976

RESUMEN

Vigilance state is crucial for the effective performance of users in brain-computer interface (BCI) systems. Most vigilance estimation methods rely on a large amount of labeled data to train a satisfactory model for the specific subject, which limits the practical application of the methods. This study aimed to build a reliable vigilance estimation method using a small amount of unlabeled calibration data. We conducted a vigilance experiment in the designed BCI-based cursor-control task. Electroencephalogram (EEG) signals of eighteen participants were recorded in two sessions on two different days. And, we proposed a contrastive fine-grained domain adaptation network (CFGDAN) for vigilance estimation. Here, an adaptive graph convolution network (GCN) was built to project the EEG data of different domains into a common space. The fine-grained feature alignment mechanism was designed to weight and align the feature distributions across domains at the EEG channel level, and the contrastive information preservation module was developed to preserve the useful target-specific information during the feature alignment. The experimental results show that the proposed CFGDAN outperforms the compared methods in our BCI vigilance dataset and SEED-VIG dataset. Moreover, the visualization results demonstrate the efficacy of the designed feature alignment mechanisms. These results indicate the effectiveness of our method for vigilance estimation. Our study is helpful for reducing calibration efforts and promoting the practical application potential of vigilance estimation methods.


Asunto(s)
Nivel de Alerta , Interfaces Cerebro-Computador , Electroencefalografía , Redes Neurales de la Computación , Humanos , Electroencefalografía/métodos , Masculino , Nivel de Alerta/fisiología , Femenino , Adulto , Adulto Joven , Encéfalo/fisiología , Algoritmos , Procesamiento de Señales Asistido por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA